CN108922972B - Perovskite thin film, perovskite solar cell and preparation method thereof - Google Patents
Perovskite thin film, perovskite solar cell and preparation method thereof Download PDFInfo
- Publication number
- CN108922972B CN108922972B CN201810685274.7A CN201810685274A CN108922972B CN 108922972 B CN108922972 B CN 108922972B CN 201810685274 A CN201810685274 A CN 201810685274A CN 108922972 B CN108922972 B CN 108922972B
- Authority
- CN
- China
- Prior art keywords
- perovskite
- preparation
- film
- transport layer
- thin film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000010409 thin film Substances 0.000 title claims abstract description 63
- 238000002360 preparation method Methods 0.000 title claims abstract description 42
- 229920000642 polymer Polymers 0.000 claims abstract description 41
- 239000000758 substrate Substances 0.000 claims abstract description 35
- 239000002243 precursor Substances 0.000 claims abstract description 30
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 claims abstract description 27
- 239000000463 material Substances 0.000 claims abstract description 20
- 239000000178 monomer Substances 0.000 claims abstract description 16
- 238000006116 polymerization reaction Methods 0.000 claims abstract description 11
- 238000000137 annealing Methods 0.000 claims abstract description 9
- 230000000379 polymerizing effect Effects 0.000 claims abstract description 6
- 239000002904 solvent Substances 0.000 claims abstract description 5
- 238000005286 illumination Methods 0.000 claims abstract description 4
- 239000010408 film Substances 0.000 claims description 88
- FGBJXOREULPLGL-UHFFFAOYSA-N ethyl cyanoacrylate Chemical compound CCOC(=O)C(=C)C#N FGBJXOREULPLGL-UHFFFAOYSA-N 0.000 claims description 38
- 229940053009 ethyl cyanoacrylate Drugs 0.000 claims description 38
- 230000005525 hole transport Effects 0.000 claims description 30
- -1 amine cation Chemical class 0.000 claims description 18
- 238000000034 method Methods 0.000 claims description 10
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 claims description 9
- SUPCQIBBMFXVTL-UHFFFAOYSA-N ethyl 2-methylprop-2-enoate Chemical compound CCOC(=O)C(C)=C SUPCQIBBMFXVTL-UHFFFAOYSA-N 0.000 claims description 9
- 230000008569 process Effects 0.000 claims description 7
- 229910052736 halogen Inorganic materials 0.000 claims description 6
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 claims 1
- 229910052791 calcium Inorganic materials 0.000 claims 1
- 239000011575 calcium Substances 0.000 claims 1
- 238000006243 chemical reaction Methods 0.000 abstract description 14
- 239000013078 crystal Substances 0.000 abstract description 5
- 239000010410 layer Substances 0.000 description 95
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 24
- 230000000052 comparative effect Effects 0.000 description 24
- MCEWYIDBDVPMES-UHFFFAOYSA-N [60]pcbm Chemical compound C123C(C4=C5C6=C7C8=C9C%10=C%11C%12=C%13C%14=C%15C%16=C%17C%18=C(C=%19C=%20C%18=C%18C%16=C%13C%13=C%11C9=C9C7=C(C=%20C9=C%13%18)C(C7=%19)=C96)C6=C%11C%17=C%15C%13=C%15C%14=C%12C%12=C%10C%10=C85)=C9C7=C6C2=C%11C%13=C2C%15=C%12C%10=C4C23C1(CCCC(=O)OC)C1=CC=CC=C1 MCEWYIDBDVPMES-UHFFFAOYSA-N 0.000 description 21
- 125000000524 functional group Chemical group 0.000 description 18
- 239000011521 glass Substances 0.000 description 18
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 16
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 15
- 238000004528 spin coating Methods 0.000 description 15
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 15
- 238000002207 thermal evaporation Methods 0.000 description 14
- 230000007547 defect Effects 0.000 description 11
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 10
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 10
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 10
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 10
- MVPPADPHJFYWMZ-UHFFFAOYSA-N chlorobenzene Chemical compound ClC1=CC=CC=C1 MVPPADPHJFYWMZ-UHFFFAOYSA-N 0.000 description 10
- 239000008367 deionised water Substances 0.000 description 10
- 229910021641 deionized water Inorganic materials 0.000 description 10
- 239000001301 oxygen Substances 0.000 description 10
- 229910052760 oxygen Inorganic materials 0.000 description 10
- 238000010586 diagram Methods 0.000 description 8
- 239000012046 mixed solvent Substances 0.000 description 8
- 150000002500 ions Chemical class 0.000 description 7
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 6
- 229910052802 copper Inorganic materials 0.000 description 6
- 239000010949 copper Substances 0.000 description 6
- 238000000354 decomposition reaction Methods 0.000 description 6
- 238000002189 fluorescence spectrum Methods 0.000 description 6
- 239000011241 protective layer Substances 0.000 description 6
- 230000015572 biosynthetic process Effects 0.000 description 5
- 239000012459 cleaning agent Substances 0.000 description 5
- 239000004519 grease Substances 0.000 description 5
- 229910052757 nitrogen Inorganic materials 0.000 description 5
- 239000005416 organic matter Substances 0.000 description 5
- 238000001878 scanning electron micrograph Methods 0.000 description 5
- 238000002441 X-ray diffraction Methods 0.000 description 4
- 230000003993 interaction Effects 0.000 description 4
- 230000000903 blocking effect Effects 0.000 description 3
- YTPLMLYBLZKORZ-UHFFFAOYSA-N Thiophene Chemical compound C=1C=CSC=1 YTPLMLYBLZKORZ-UHFFFAOYSA-N 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 239000000969 carrier Substances 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 238000011065 in-situ storage Methods 0.000 description 2
- 238000002329 infrared spectrum Methods 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- 229910052861 titanite Inorganic materials 0.000 description 2
- MWCLLHOVUTZFKS-UHFFFAOYSA-N Methyl cyanoacrylate Chemical compound COC(=O)C(=C)C#N MWCLLHOVUTZFKS-UHFFFAOYSA-N 0.000 description 1
- 229920000144 PEDOT:PSS Polymers 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000011203 carbon fibre reinforced carbon Substances 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 125000004093 cyano group Chemical group *C#N 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 150000002736 metal compounds Chemical class 0.000 description 1
- 238000001000 micrograph Methods 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 230000002269 spontaneous effect Effects 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229930192474 thiophene Natural products 0.000 description 1
- 238000001685 time-resolved fluorescence spectroscopy Methods 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
- 238000007738 vacuum evaporation Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K30/00—Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
- H10K30/80—Constructional details
- H10K30/88—Passivation; Containers; Encapsulations
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K30/00—Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
- H10K30/10—Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising heterojunctions between organic semiconductors and inorganic semiconductors
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K71/00—Manufacture or treatment specially adapted for the organic devices covered by this subclass
- H10K71/40—Thermal treatment, e.g. annealing in the presence of a solvent vapour
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/549—Organic PV cells
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Photovoltaic Devices (AREA)
Abstract
Description
技术领域technical field
本发明涉及太阳能电池技术领域,特别是涉及钙钛矿薄膜、钙钛矿太阳能电池及其制备方法。The invention relates to the technical field of solar cells, in particular to a perovskite thin film, a perovskite solar cell and a preparation method thereof.
背景技术Background technique
钙钛矿太阳能电池效率高,成本低,近年来受到了人们的广泛关注。目前,制约钙钛矿太阳能电池走向实用化的最大瓶颈在于其稳定性。因此,如何在维持其高效率的同时最大限度地提高其稳定性成为一个非常有意义的研究方向。The high efficiency and low cost of perovskite solar cells have attracted extensive attention in recent years. At present, the biggest bottleneck restricting the practical application of perovskite solar cells lies in their stability. Therefore, how to maximize its stability while maintaining its high efficiency becomes a very meaningful research direction.
钙钛矿太阳能电池的稳定性在一定程度上取决于钙钛矿薄膜的稳定性。在传统的钙钛矿薄膜的制备方法中,溶液法制备的钙钛矿薄膜通常含有非常多的表面和晶界缺陷,导致空气中的水、氧等会通过这些缺陷渗透进钙钛矿内部,进而引起钙钛矿的分解。同时,由于界面缺陷在能量上是不稳定的,容易受到外界因素(如光照、电场、加热等)的攻击,也会加速钙钛矿的分解。因此,为了提高钙钛矿薄膜的稳定性,需要对钙钛矿的晶界进行保护。The stability of perovskite solar cells depends to some extent on the stability of perovskite thin films. In the traditional preparation method of perovskite thin film, the perovskite thin film prepared by solution method usually contains a lot of surface and grain boundary defects, which causes water and oxygen in the air to penetrate into the interior of the perovskite through these defects. This in turn causes the decomposition of perovskite. At the same time, since the interfacial defects are unstable in energy and are easily attacked by external factors (such as illumination, electric field, heating, etc.), the decomposition of perovskite will also be accelerated. Therefore, in order to improve the stability of perovskite films, it is necessary to protect the grain boundaries of perovskite.
发明内容SUMMARY OF THE INVENTION
基于此,有必要针对钙钛矿薄膜不稳定的问题,提供一种钙钛矿薄膜及其制备方法,该钙钛矿薄膜对钙钛矿晶界进行了保护,钙钛矿薄膜的稳定性好;将其应用于钙钛矿太阳能电池及其制备方法中,可使钙钛矿太阳能电池具有高转化效率的同时还具有良好的稳定性。Based on this, it is necessary to provide a perovskite film and a preparation method for the unstable problem of the perovskite film. The perovskite film protects the perovskite grain boundary, and the perovskite film has good stability. ; Applying it to a perovskite solar cell and its preparation method can make the perovskite solar cell have high conversion efficiency and good stability.
一种钙钛矿薄膜,所述钙钛矿薄膜包括钙钛矿型ABX3有机-无机杂化材料和聚合物,所述聚合物由丙烯酸酯单体聚合得到。A perovskite thin film, the perovskite thin film comprises a perovskite ABX 3 organic-inorganic hybrid material and a polymer, and the polymer is obtained by polymerizing an acrylate monomer.
上述钙钛矿薄膜中,聚合物含有C=O官能团和C=C官能团,其中C=O官能团可与钙钛矿晶界处的B离子(如Pb2+、Sn2+、Ge2+等)通过配位键发生弱相互作用,可以有效调节钙钛矿薄膜的生长,因此该钙钛矿薄膜均匀致密,没有明显空洞,钙钛矿薄膜的晶界缺陷被有效钝化,从而提高了钙钛矿薄膜的稳定性。同时C=O官能团与B离子(如Pb2+、Sn2+、Ge2+等)的配位作用能够使聚合物有效地附着在晶界处,从而在晶界处形成致密的保护层,进而阻挡水、氧以及外加因素对钙钛矿的分解作用,提高钙钛矿电池的稳定性。因此,聚合物不仅可以作为钙钛矿晶界的保护层,还可以钝化晶界的缺陷,可协同提高钙钛矿薄膜的稳定性。In the above perovskite film, the polymer contains C=O functional groups and C=C functional groups, wherein the C=O functional groups can interact with B ions (such as Pb 2+ , Sn 2+ , Ge 2+ , etc.) at the perovskite grain boundaries. ) through the weak interaction of coordination bonds, the growth of the perovskite film can be effectively regulated, so the perovskite film is uniform and dense without obvious voids, and the grain boundary defects of the perovskite film are effectively passivated, thereby improving the perovskite film. Stability of titanite thin films. At the same time, the coordination between C=O functional groups and B ions (such as Pb 2+ , Sn 2+ , Ge 2+ , etc.) can make the polymer effectively attach to the grain boundary, thereby forming a dense protective layer at the grain boundary. In turn, the decomposition of water, oxygen and external factors on the perovskite is blocked, and the stability of the perovskite battery is improved. Therefore, the polymer can not only serve as a protective layer for perovskite grain boundaries, but also passivate the defects of grain boundaries, which can synergistically improve the stability of perovskite thin films.
在其中一个实施例中,所述丙烯酸酯单体为甲基丙烯酸甲酯、甲基丙烯酸乙酯、氰基丙烯酸乙酯中的一种或多种。In one embodiment, the acrylate monomer is one or more of methyl methacrylate, ethyl methacrylate, and ethyl cyanoacrylate.
在其中一个实施例中,所述钙钛矿薄膜中所述聚合物的质量百分数为0.3%~2%。In one embodiment, the mass percentage of the polymer in the perovskite film is 0.3% to 2%.
在其中一个实施例中,所述钙钛矿型ABX3有机-无机杂化材料中A为有机胺阳离子,B为Pb2+、Sn2+、Ge2+中的任意一种,X为卤素阴离子或SCN-。In one embodiment, in the perovskite ABX 3 organic-inorganic hybrid material, A is an organic amine cation, B is any one of Pb 2+ , Sn 2+ , and Ge 2+ , and X is a halogen anion or SCN - .
一种钙钛矿薄膜的制备方法,所述制备方法包括以下步骤:A preparation method of a perovskite film, the preparation method comprises the following steps:
将丙烯酸酯单体、AX和BX2溶于溶剂中,得到钙钛矿前驱体溶液;Dissolving acrylate monomers, AX and BX 2 in a solvent to obtain a perovskite precursor solution;
将所述钙钛矿前驱体溶液形成于一基底上;forming the perovskite precursor solution on a substrate;
对带有钙钛矿前驱体溶液的基底依次进行退火处理和光照处理,得到钙钛矿薄膜;其中,在光照处理过程中所述丙烯酸酯进行聚合反应。The substrate with the perovskite precursor solution is sequentially subjected to annealing treatment and light treatment to obtain a perovskite thin film; wherein, the acrylate undergoes a polymerization reaction during the light treatment process.
上述钙钛矿薄膜的制备方法中,在钙钛矿前驱体溶液中的丙烯酸酯单体可在光照的作用下而自主发生聚合反应,得到聚合物。该反应步骤简单,易行,无需其他的反应条件,易于工业化。In the above-mentioned preparation method of the perovskite thin film, the acrylate monomer in the perovskite precursor solution can spontaneously undergo a polymerization reaction under the action of light to obtain a polymer. The reaction step is simple and easy to implement, no other reaction conditions are required, and it is easy to industrialize.
在反应过程中,丙烯酸酯含有C=O官能团和C=C官能团,其中C=O官能团与钙钛矿晶界处的B离子(如Pb2+、Sn2+、Ge2+等)通过配位键发生弱相互作用,钝化晶界缺陷。同时C=O官能团与B(如Pb2+、Sn2+、Ge2+等)的配位作用能够使聚合物有效地附着在晶界处,经过光照处理,丙烯酸酯中的C=C官能团发生聚合反应,从而在晶界处形成致密保护层,阻挡水、氧以及外加因素对钙钛矿的分解作用,提高了钙钛矿薄膜的稳定性。During the reaction process, the acrylate contains C=O functional group and C=C functional group, wherein the C=O functional group and B ions (such as Pb 2+ , Sn 2+ , Ge 2+ , etc.) at the perovskite grain boundary through coordination A weak interaction occurs between the bit bonds, which passivate the grain boundary defects. At the same time, the coordination between C=O functional group and B (such as Pb 2+ , Sn 2+ , Ge 2+ , etc.) can make the polymer effectively attach to the grain boundary. After light treatment, the C=C functional group in the acrylate A polymerization reaction occurs, thereby forming a dense protective layer at the grain boundary, blocking the decomposition of water, oxygen and external factors on the perovskite, and improving the stability of the perovskite film.
在其中一个实施例中,所述AX中的A为有机胺阳离子,X为卤素阴离子或SCN-;所述BX2中的B为Pb2+、Sn2+、Ge2+中的任意一种。In one embodiment, A in the AX is an organic amine cation, X is a halogen anion or SCN − ; B in the BX 2 is any one of Pb 2+ , Sn 2+ , Ge 2+ .
在其中一个实施例中,所述退火处理的温度为80℃~100℃,时间为5min~10min。In one embodiment, the temperature of the annealing treatment is 80° C.˜100° C., and the time is 5 min˜10 min.
在其中一个实施例中,所述光照处理为采用紫外、红外或者太阳光照射,时间为5min~30min。In one embodiment, the irradiation treatment is ultraviolet, infrared, or sunlight irradiation, and the time is 5 min to 30 min.
一种钙钛矿太阳能电池,包括叠层设置的空穴传输层、钙钛矿薄膜和电子传输层,所述钙钛矿薄膜包括钙钛矿型ABX3有机-无机杂化材料和聚合物,所述聚合物由丙烯酸酯单体聚合得到。A perovskite solar cell, comprising a stacked hole transport layer, a perovskite thin film and an electron transport layer, the perovskite thin film comprising a perovskite ABX 3 organic-inorganic hybrid material and a polymer, The polymer is obtained by polymerizing acrylate monomers.
上述钙钛矿薄膜均匀致密,没有明显的空洞,且钙钛矿薄膜具有优异的稳定性。因此,使用上述钙钛矿薄膜的钙钛矿太阳能电池不仅具有高转化效率,同时还具有良好的稳定性。The above perovskite films are uniform and dense, without obvious voids, and the perovskite films have excellent stability. Therefore, perovskite solar cells using the above perovskite thin films not only have high conversion efficiency, but also have good stability.
一种钙钛矿太阳能电池的制备方法,所述制备方法包括以下步骤:A preparation method of a perovskite solar cell, the preparation method comprises the following steps:
提供一衬底;providing a substrate;
在所述衬底上形成空穴传输层;以及forming a hole transport layer on the substrate; and
在所述空穴传输层上采用上述制备方法形成钙钛矿薄膜;以及A perovskite thin film is formed on the hole transport layer using the above-mentioned preparation method; and
在所述钙钛矿薄膜上形成电子传输层;以及forming an electron transport layer on the perovskite film; and
在所述电子传输层上形成电极。An electrode is formed on the electron transport layer.
上述钙钛矿太阳能电池的制备方法具有简单、易操作的优点。得到的钙钛矿太阳能电池具有高的转化效率和良好的稳定性。The above-mentioned preparation method of the perovskite solar cell has the advantages of being simple and easy to operate. The obtained perovskite solar cells have high conversion efficiency and good stability.
附图说明Description of drawings
图1为本发明实施例1的钙钛矿薄膜的光照处理前、后的红外图谱图,图中,a为光照处理后钙钛矿薄膜的红外曲线,b为光照处理前钙钛矿薄膜的红外曲线;Fig. 1 is the infrared spectrum diagram of the perovskite film before and after the light treatment of the
图2为本发明实施例1和对比例1制备的钙钛矿薄膜的平面和截面扫描电镜图,图中,b为实施例1制备的钙钛矿薄膜的平面扫描电镜图,d为实施例1制备的钙钛矿薄膜的截面扫描电镜图,a为对比例1制备的钙钛矿薄膜的平面扫描电镜图,c为对比例1制备的钙钛矿薄膜的截面扫描电镜图;Fig. 2 is the plane and cross-sectional SEM images of the perovskite films prepared in Example 1 and Comparative Example 1 of the present invention, in the figure, b is the plane SEM image of the perovskite films prepared in Example 1, and d is an
图3为本发明实施例1和对比例1制备的钙钛矿薄膜的稳态荧光光谱图,图中,c为对比例1的钙钛矿薄膜的荧光光谱图,d为实施例1的钙钛矿薄膜的荧光光谱图;Fig. 3 is the steady-state fluorescence spectrogram of the perovskite thin film prepared in Example 1 and Comparative Example 1 of the present invention, in the figure, c is the fluorescence spectrogram of the perovskite thin film of Comparative Example 1, and d is the perovskite thin film of Example 1 Fluorescence spectrum of the titanium ore thin film;
图4为本发明实施例1和对比例1制备的钙钛矿薄膜的时间分辨荧光光谱图,图中,e为实施例1的钙钛矿薄膜的时间分辨荧光光谱,f为对比例1的钙钛矿薄膜的荧光光谱图;4 is a time-resolved fluorescence spectrum diagram of the perovskite films prepared in Example 1 of the present invention and Comparative Example 1, in the figure, e is the time-resolved fluorescence spectrum of the perovskite film of Example 1, and f is the Fluorescence spectra of perovskite films;
图5为本发明实施例1和对比例1制备的钙钛矿薄膜的X射线衍射(XRD)图谱对比图,图中,h为对比例1的钙钛矿薄膜的X射线衍射曲线,g为实施例1的钙钛矿薄膜的X射线衍射曲线;Fig. 5 is the X-ray diffraction (XRD) pattern comparison diagram of the perovskite thin film prepared in Example 1 of the present invention and Comparative Example 1, in the figure, h is the X-ray diffraction curve of the perovskite thin film of Comparative Example 1, and g is The X-ray diffraction curve of the perovskite film of Example 1;
图6为本发明钙钛矿太阳能电池的结构示意图,图中,1为衬底,2为空穴传输层,3为钙钛矿薄膜,4为电子传输层,5为电极;6 is a schematic structural diagram of a perovskite solar cell of the present invention, in the figure, 1 is a substrate, 2 is a hole transport layer, 3 is a perovskite film, 4 is an electron transport layer, and 5 is an electrode;
图7为本发明实施例7和对比例2的钙钛矿太阳能电池的稳定性对比图,图中,i为实施例7的钙钛矿太阳能电池在空气中的稳定性,j为对比例2的钙钛矿太阳能电池在空气中的稳定性。Fig. 7 is the stability comparison diagram of the perovskite solar cell of Example 7 of the present invention and the comparative example 2, in the figure, i is the stability of the perovskite solar cell of Example 7 in air, j is the comparative example 2 Stability of perovskite solar cells in air.
具体实施方式Detailed ways
以下将对本发明提供的钙钛矿薄膜、钙钛矿太阳能电池及其制备方法作进一步说明。The perovskite thin film, the perovskite solar cell and the preparation method thereof provided by the present invention will be further described below.
本发明提供的钙钛矿薄膜包括钙钛矿型ABX3有机-无机杂化材料和聚合物,所述聚合物由丙烯酸酯单体聚合得到。The perovskite thin film provided by the present invention includes a perovskite ABX 3 organic-inorganic hybrid material and a polymer, and the polymer is obtained by polymerizing an acrylate monomer.
所述钙钛矿薄膜中所述聚合物的质量百分数为0.3%~2%。钙钛矿薄膜在应用时,如在钙钛矿太阳能电池中应用时,考虑到聚合物对电池的转化效率和稳定性的改善效果,优选地,所述钙钛矿薄膜中所述聚合物的质量百分数为0.3%~1%。The mass percentage of the polymer in the perovskite film is 0.3% to 2%. When the perovskite film is applied, such as in a perovskite solar cell, considering the improvement effect of the polymer on the conversion efficiency and stability of the cell, preferably, the polymer in the perovskite film The mass percentage is 0.3% to 1%.
所述钙钛矿型ABX3有机-无机杂化材料中A为有机胺阳离子,B为Pb2+、Sn2+、Ge2+中的任意一种,X为卤素阴离子或SCN-。优选地,所述A为CH3NH3 +、HC(NH2)2 +、CH3CH2NH3 +中的任意一种,所述X为Cl-、Br-、I-中的任意一种。由于CH3NH3PbI3的电子和空穴扩散长度分别为130nm和100nm,禁带宽度为1.51eV,在400nm~800nm范围内均有良好的吸收,因此,所述钙钛矿型ABX3有机-无机杂化材料进一步优选为CH3NH3PbI3。In the perovskite ABX 3 organic-inorganic hybrid material, A is an organic amine cation, B is any one of Pb 2+ , Sn 2+ , and Ge 2+ , and X is a halogen anion or SCN − . Preferably, the A is any one of CH 3 NH 3 + , HC(NH 2 ) 2 + , CH 3 CH 2 NH 3 + , and the X is any one of Cl - , Br - , and I - kind. Since the electron and hole diffusion lengths of CH 3 NH 3 PbI 3 are 130 nm and 100 nm, respectively, the band gap is 1.51 eV, and the absorption is good in the range of 400 nm to 800 nm, the perovskite ABX 3 organic - The inorganic hybrid material is further preferably CH 3 NH 3 PbI 3 .
所述丙烯酸酯单体为甲基丙烯酸甲酯、甲基丙烯酸乙酯、氰基丙烯酸乙酯中的一种或多种。由于氰基丙烯酸乙酯中氰基也能与B离子(如Pb2+、Sn2+、Ge2+等)发生弱相互作用,更有利于钝化晶界缺陷,提高钙钛矿薄膜的稳定性。同时,氰基丙烯酸乙酯可以在温和的条件下(光照或者在空气中自发聚合)发生聚合,易于实现低温溶液法制备钙钛矿薄膜。此外,氰基丙烯酸乙酯室温下是液体,更容易掺入到钙钛矿前驱体溶液中,可以在较大的范围内调节其在钙钛矿薄膜中的含量。因此,所述丙烯酸酯进一步优选为氰基丙烯酸甲酯。The acrylate monomer is one or more of methyl methacrylate, ethyl methacrylate and ethyl cyanoacrylate. Since the cyano group in ethyl cyanoacrylate can also weakly interact with B ions (such as Pb 2+ , Sn 2+ , Ge 2+ , etc.), it is more beneficial to passivate grain boundary defects and improve the stability of perovskite films. sex. At the same time, ethyl cyanoacrylate can be polymerized under mild conditions (light or spontaneous polymerization in air), which is easy to realize the low temperature solution method to prepare perovskite thin films. In addition, ethyl cyanoacrylate is a liquid at room temperature, which is easier to incorporate into the perovskite precursor solution, and its content in perovskite films can be adjusted in a wide range. Therefore, the acrylate is further preferably methyl cyanoacrylate.
上述钙钛矿薄膜中,聚合物含有C=O官能团和C=C官能团,其中C=O官能团可与钙钛矿晶界处的B离子(如Pb2+、Sn2+、Ge2+等)通过配位键发生弱相互作用,可以有效调节钙钛矿薄膜的生长,因此该钙钛矿薄膜均匀致密,没有明显空洞,钙钛矿薄膜的晶界缺陷被有效钝化,从而提高了钙钛矿薄膜的稳定性。同时C=O官能团与B离子(如Pb2+、Sn2+、Ge2+等)的配位作用能够使聚合物有效地附着在晶界处,从而在晶界处形成致密的保护层,进而阻挡水、氧以及外加因素对钙钛矿的分解作用,提高钙钛矿电池的稳定性。因此,聚合物不仅可以作为钙钛矿晶界的保护层,还可以钝化晶界的缺陷,可协同提高钙钛矿薄膜的稳定性。In the above perovskite film, the polymer contains C=O functional groups and C=C functional groups, wherein the C=O functional groups can interact with B ions (such as Pb 2+ , Sn 2+ , Ge 2+ , etc.) at the perovskite grain boundaries. ) through the weak interaction of coordination bonds, the growth of the perovskite film can be effectively regulated, so the perovskite film is uniform and dense without obvious voids, and the grain boundary defects of the perovskite film are effectively passivated, thereby improving the perovskite film. Stability of titanite thin films. At the same time, the coordination between C=O functional groups and B ions (such as Pb 2+ , Sn 2+ , Ge 2+ , etc.) can make the polymer effectively attach to the grain boundary, thereby forming a dense protective layer at the grain boundary. In turn, the decomposition of water, oxygen and external factors on the perovskite is blocked, and the stability of the perovskite battery is improved. Therefore, the polymer can not only serve as a protective layer for perovskite grain boundaries, but also passivate the defects of grain boundaries, which can synergistically improve the stability of perovskite thin films.
本发明还提供一种钙钛矿薄膜的制备方法,所述制备方法包括以下步骤:The present invention also provides a preparation method of the perovskite film, the preparation method comprising the following steps:
S1,将丙烯酸酯单体、AX和BX2溶于溶剂中,得到钙钛矿前驱体溶液;S1, dissolve the acrylate monomer, AX and BX 2 in a solvent to obtain a perovskite precursor solution;
S2,将所述钙钛矿前驱体溶液形成于一基底上;S2, forming the perovskite precursor solution on a substrate;
S3,对带有钙钛矿前驱体溶液的基底依次进行退火处理和光照处理,得到钙钛矿薄膜;其中,在光照处理过程中所述丙烯酸酯进行聚合反应。S3, sequentially performing annealing treatment and light treatment on the substrate with the perovskite precursor solution to obtain a perovskite thin film; wherein, the acrylate undergoes a polymerization reaction during the light treatment process.
在步骤S1中,所述BX2和AX的摩尔比为1:(0.8~1.2),优选为1:1。In step S1, the molar ratio of BX 2 and AX is 1:(0.8-1.2), preferably 1:1.
所述AX中的A为有机胺阳离子,X为卤素阴离子或SCN-。优选地,所述A为CH3NH3 +、HC(NH2)2 +、CH3CH2NH3 +中的任意一种,所述X为Cl-、Br-、I-中的任意一种。由于所述钙钛矿型ABX3有机-无机杂化材料进一步优选为CH3NH3PbI3,因此,所述AX对应优选为CH3NH3I。A in the AX is an organic amine cation, and X is a halogen anion or SCN − . Preferably, the A is any one of CH 3 NH 3 + , HC(NH 2 ) 2 + , CH 3 CH 2 NH 3 + , and the X is any one of Cl - , Br - , and I - kind. Since the perovskite ABX 3 organic-inorganic hybrid material is further preferably CH 3 NH 3 PbI 3 , the corresponding AX is preferably CH 3 NH 3 I.
所述BX2中的B为Pb2+、Sn2+、Ge2+中的任意一种,X为卤素阴离子或SCN-。优选地,所述B为Pb2+、Sn2+中的一种,所述X为Cl-、Br-、I-中的任意一种。由于所述钙钛矿型ABX3有机-无机杂化材料进一步优选为CH3NH3PbI3,因此,所述BX2对应优选为PbI2。B in the BX 2 is any one of Pb 2+ , Sn 2+ , and Ge 2+ , and X is a halogen anion or SCN − . Preferably, the B is one of Pb 2+ and Sn 2+ , and the X is any one of Cl − , Br − , and I − . Since the perovskite ABX 3 organic-inorganic hybrid material is further preferably CH 3 NH 3 PbI 3 , the BX 2 is preferably PbI 2 correspondingly.
所述溶剂为N,N-二甲基甲酰胺和二甲基亚砜组成的混合溶剂,混合溶剂中N,N-二甲基甲酰胺和二甲基亚砜的体积比为(3~5):1,优选为4:1。The solvent is a mixed solvent composed of N,N-dimethylformamide and dimethylsulfoxide, and the volume ratio of N,N-dimethylformamide and dimethylsulfoxide in the mixed solvent is (3-5 ): 1, preferably 4:1.
在步骤S3中,所述退火处理的温度为80℃~100℃,时间为5min~10min。在基底上形成钙钛矿前驱体溶液后进行退火处理,使钙钛矿前驱体溶液结晶,得到钙钛矿薄膜。考虑到充分完全结晶的要求,优选温度为100℃,优选时间为10min。In step S3, the temperature of the annealing treatment is 80° C.˜100° C., and the time is 5 min˜10 min. After the perovskite precursor solution is formed on the substrate, annealing is performed to crystallize the perovskite precursor solution to obtain a perovskite thin film. Considering the requirement of sufficient and complete crystallization, the preferred temperature is 100°C, and the preferred time is 10 min.
所述光照处理为采用紫外、红外或者太阳光照射,时间为5min~30min。对退火处理后结晶形成的钙钛矿薄膜进一步进行光照处理,使钙钛矿薄膜中的丙烯酸酯发生原位聚合,生成稳定的聚合物。考虑到太阳光易于获得且丙烯酸酯需要完全聚合,优选光照为太阳光,时间为10min。The illumination treatment is to use ultraviolet, infrared or sunlight irradiation, and the time is 5min-30min. The perovskite film crystallized after the annealing treatment is further subjected to light treatment, so that the acrylate in the perovskite film undergoes in-situ polymerization to generate a stable polymer. Considering that sunlight is easy to obtain and the acrylate needs to be fully polymerized, the sunlight is preferably sunlight, and the time is 10 min.
所述丙烯酸酯为甲基丙烯酸甲酯、甲基丙烯酸乙酯、氰基丙烯酸乙酯中的一种或多种,优选为氰基丙烯酸乙酯。所述氰基丙烯酸乙酯的原位的反应方程式如下所示:The acrylate is one or more of methyl methacrylate, ethyl methacrylate and ethyl cyanoacrylate, preferably ethyl cyanoacrylate. The in-situ reaction equation of the ethyl cyanoacrylate is as follows:
上述钙钛矿薄膜的制备方法中,在钙钛矿前驱体溶液中的丙烯酸酯单体可在光照的作用下而自主发生聚合反应,得到聚合物。该反应步骤简单,易行,无需其他的反应条件,易于工业化。In the above-mentioned preparation method of the perovskite thin film, the acrylate monomer in the perovskite precursor solution can spontaneously undergo a polymerization reaction under the action of light to obtain a polymer. The reaction step is simple and easy to implement, no other reaction conditions are required, and it is easy to industrialize.
在反应过程中,丙烯酸酯含有C=O官能团和C=C官能团,其中C=O官能团与钙钛矿晶界处的B离子(如Pb2+、Sn2+、Ge2+等)通过配位键发生弱相互作用,钝化晶界缺陷。同时C=O官能团与B(如Pb2+、Sn2+、Ge2+等)的配位作用能够使聚合物有效地附着在晶界处,经过光照处理,丙烯酸酯中的C=C官能团发生聚合反应,从而在晶界处形成致密保护层,阻挡水、氧以及外加因素对钙钛矿的分解作用,提高了钙钛矿薄膜的稳定性。During the reaction process, the acrylate contains C=O functional group and C=C functional group, wherein the C=O functional group and B ions (such as Pb 2+ , Sn 2+ , Ge 2+ , etc.) at the perovskite grain boundary through coordination A weak interaction occurs between the bit bonds, which passivate the grain boundary defects. At the same time, the coordination between C=O functional group and B (such as Pb 2+ , Sn 2+ , Ge 2+ , etc.) can make the polymer effectively attach to the grain boundary. After light treatment, the C=C functional group in the acrylate A polymerization reaction occurs, thereby forming a dense protective layer at the grain boundary, blocking the decomposition of water, oxygen and external factors on the perovskite, and improving the stability of the perovskite film.
本发明还提供一种钙钛矿太阳能电池,包括叠层设置的空穴传输层2、钙钛矿薄膜3和电子传输层4,所述钙钛矿薄膜3包括钙钛矿型ABX3有机-无机杂化材料和聚合物,所述聚合物由丙烯酸酯单体聚合得到。The present invention also provides a perovskite solar cell, comprising a stacked
所述钙钛矿电池还包括衬底1以及电极5。The perovskite battery further includes a
具体的,如图4所示,所述钙钛矿太阳能电池包括依次叠层设置的衬底1、空穴传输层2、钙钛矿薄膜3、电子传输层4和电极5。Specifically, as shown in FIG. 4 , the perovskite solar cell includes a
所述衬底1的材料不限,可为硅片、玻璃、不锈钢片中的任意一种。由于ITO是一种具有良好透明导电性能的金属化合物,具有禁带宽、可见光谱区光透射率高和电阻率低等特性,因此,所述衬底1优选为ITO导电玻璃。The material of the
所述空穴传输层2为聚[3-(丁酸甲胺盐)噻吩](PSCT-N)材料层,厚度为5nm~20nm,相对于常用的空穴传输层PEDOT:PSS(能级5.11eV),P3CT-N的能级在5.26eV,与所选钙钛矿CH3NH3PbI3的价带(5.3eV)更为接近,能够有效避免由于能级不匹配而造成的电池效率下降。P3CT-N优选厚度为10nm。所述P3CT-N的化学结构式如下:The
所述钙钛矿薄膜3的厚度为400nm~500nm。考虑到载流子的平衡传输,优选厚度为450nm。The thickness of the perovskite
所述电子传输层4包括依次叠层设置的PCBM层、C60层和BCP层,所述PCBM层的厚度为20nm~50nm,所述C60层的厚度为20nm~40nm,所述BCP层的厚度为8nm~10nm,所述电子传输层4的厚度为50nm~100nm。PCBM用溶液法旋涂制备,能够有效地渗入并覆盖钙钛矿表面可能存在的空洞,优选厚度为20nm;而C60通过真空蒸镀制备,这样得到的C60层更加致密均匀,优选厚度为40nm;而BCP则作为空穴阻挡层能够抑制电极界面处的复合,提高器件性能,优选厚度为8nm。The
所述电极5的厚度为100nm~300nm,所述电极5的材料不限,但考虑到金作为电极成本昂贵,银作为电极使用寿命短,因此,所述电极5优选为铜电极。The thickness of the electrode 5 is 100 nm to 300 nm, and the material of the electrode 5 is not limited, but considering that gold as an electrode is expensive and silver as an electrode has a short service life, the electrode 5 is preferably a copper electrode.
上述钙钛矿薄膜均匀致密,没有明显的空洞,且钙钛矿薄膜具有优异的稳定性。因此,使用上述钙钛矿薄膜的钙钛矿太阳能电池不仅具有高转化效率,同时还具有良好的稳定性。The above perovskite films are uniform and dense, without obvious voids, and the perovskite films have excellent stability. Therefore, perovskite solar cells using the above perovskite thin films not only have high conversion efficiency, but also have good stability.
本发明还提供一种钙钛矿太阳能电池的制备方法。所述制备方法包括以下步骤:The invention also provides a preparation method of the perovskite solar cell. The preparation method comprises the following steps:
提供一衬底1;providing a
在所述衬底1上形成空穴传输层2;以及forming a
在所述空穴传输层2上采用上述钙钛矿薄膜的制备方法形成钙钛矿薄膜3;以及A perovskite
在所述钙钛矿薄膜3上形成电子传输层4;以及forming an
在所述电子传输层4上形成电极5。An electrode 5 is formed on the
所述衬底1为ITO导电玻璃,所述ITO导电玻璃先用ITO清洗剂和去离子水洗涤,去除油脂和有机物,然后依次用去离子水、丙酮、异丙醇超声洗涤,氮气吹干,再经过氧等离子进一步处理。Described
所述空穴传输层2为P3CT-N材料层,所述P3CT-N材料层采用P3CT-N溶液旋涂形成,转速为3000转/分钟~4000转/分钟,时间为45秒~60秒。所述P3CT-N溶液为P3CT-N的甲醇溶液,所述P3CT-N的浓度为1mg/mL~5mg/mL。The
所述电子传输层4包括依次叠层设置的PCBM层、C60层和BCP层。所述PCBM层采用PCBM溶液旋涂形成,转速为1500转/分钟~2500转/分钟,时间为50秒~80秒。所述PCBM溶液为PCBM的氯苯溶液,所述PCBM的浓度为10mg/mL~25mg/mL。所述C60层和所述BCP层采用真空热蒸镀的方法形成。The
所述电极5为铜电极,采用真空热蒸镀的方法形成。The electrode 5 is a copper electrode, which is formed by vacuum thermal evaporation.
上述钙钛矿太阳能电池的制备方法具有简单、易操作的优点。得到的钙钛矿太阳能电池具有高的转化效率和良好的稳定性。The above-mentioned preparation method of the perovskite solar cell has the advantages of being simple and easy to operate. The obtained perovskite solar cells have high conversion efficiency and good stability.
以下,将通过以下具体实施例对所述钙钛矿薄膜、钙钛矿太阳能电池及其制备方法做进一步的说明。Hereinafter, the perovskite thin film, the perovskite solar cell and the preparation method thereof will be further described by the following specific examples.
实施例1:Example 1:
将摩尔比1:1的PbI2(668.5mg)和CH3NH3I(230.5mg)以及5mg的氰基丙烯酸乙酯溶解在1mL体积比为4:1的N,N-二甲基甲酰胺和二甲基亚砜混合溶剂中,得到钙钛矿前驱体溶液。其中,PbI2和CH3NH3I的浓度均为1.45mmol/mL,氰基丙烯酸乙酯的浓度为5mg/mL。PbI 2 (668.5 mg) and CH 3 NH 3 I (230.5 mg) in a molar ratio of 1:1 and 5 mg of ethyl cyanoacrylate were dissolved in 1 mL of N,N-dimethylformamide in a 4:1 volume ratio and dimethyl sulfoxide mixed solvent to obtain a perovskite precursor solution. The concentrations of PbI 2 and CH 3 NH 3 I were both 1.45 mmol/mL, and the concentration of ethyl cyanoacrylate was 5 mg/mL.
然后用匀胶机将钙钛矿前驱体溶液旋涂在ITO玻璃衬底上,转速为4800转/分,时间为20秒。Then, the perovskite precursor solution was spin-coated on the ITO glass substrate with a spin coater at 4800 rpm for 20 s.
再在100℃下退火处理10分钟,形成钙钛矿薄膜。钙钛矿薄膜形成后经过太阳光照处理发生聚合,光照时间为10分钟。Then annealed at 100 °C for 10 minutes to form a perovskite thin film. After the formation of the perovskite film, the polymerization was carried out by solar irradiation, and the irradiation time was 10 minutes.
所得到的钙钛矿薄膜包括CH3NH3PbI3和氰基丙烯酸乙酯的聚合物,其中,氰基丙烯酸乙酯的聚合物的质量百分数为0.5%。The obtained perovskite film includes a polymer of CH 3 NH 3 PbI 3 and ethyl cyanoacrylate, wherein the mass percentage of the polymer of ethyl cyanoacrylate is 0.5%.
钙钛矿薄膜的光照处理前、后的红外图谱图如图1所示。从图1可知,光照处理前钙钛矿薄膜中确实存在氰基丙烯酸乙酯。而光照处理后,钙钛矿薄膜中的碳碳双键峰消失,说明,氰基丙烯酸乙酯完全聚合,形成聚合物。The infrared spectra of the perovskite films before and after light treatment are shown in Figure 1. It can be seen from Figure 1 that ethyl cyanoacrylate does exist in the perovskite film before light treatment. After light treatment, the carbon-carbon double bond peaks in the perovskite film disappeared, indicating that ethyl cyanoacrylate was completely polymerized to form a polymer.
实施例2:Example 2:
将摩尔比1:1的PbI2(668.5mg)和CH3NH3I(230.5mg)以及3mg的氰基丙烯酸乙酯溶解1mL在体积比为4:1的N,N-二甲基甲酰胺和二甲基亚砜混合溶剂中,得到钙钛矿前驱体溶液。其中,PbI2和CH3NH3I的浓度均为1.45mmol/mL,氰基丙烯酸乙酯的浓度为3mg/mL。PbI 2 (668.5 mg) and CH 3 NH 3 I (230.5 mg) in a molar ratio of 1:1 and 3 mg of ethyl cyanoacrylate were dissolved in 1 mL of N,N-dimethylformamide in a 4:1 volume ratio and dimethyl sulfoxide mixed solvent to obtain a perovskite precursor solution. The concentrations of PbI 2 and CH 3 NH 3 I were both 1.45 mmol/mL, and the concentration of ethyl cyanoacrylate was 3 mg/mL.
然后用匀胶机将钙钛矿前驱体溶液旋涂在ITO玻璃衬底上,转速为4800转/分,时间为20秒。Then, the perovskite precursor solution was spin-coated on the ITO glass substrate with a spin coater at 4800 rpm for 20 s.
再在100℃下退火处理5分钟,形成钙钛矿薄膜。钙钛矿薄膜形成后经过太阳光照处理使其中的氰基丙烯酸乙酯发生聚合,光照时间为30分钟。Then annealed at 100 °C for 5 minutes to form a perovskite thin film. After the perovskite film is formed, the ethyl cyanoacrylate is polymerized by solar irradiation, and the irradiation time is 30 minutes.
所得到的钙钛矿薄膜包括CH3NH3PbI3和氰基丙烯酸乙酯的聚合物,其中,氰基丙烯酸乙酯的聚合物的质量百分数为0.3%。The obtained perovskite film includes a polymer of CH 3 NH 3 PbI 3 and ethyl cyanoacrylate, wherein the mass percentage of the polymer of ethyl cyanoacrylate is 0.3%.
实施例3:Example 3:
将摩尔比1:0.8的PbI2(668.5mg)和CH3NH3I(184.4mg)以及10mg的氰基丙烯酸乙酯溶解在1mL体积比为3:1的N,N-二甲基甲酰胺和二甲基亚砜混合溶剂中,得到钙钛矿前驱体溶液。其中,PbI2和CH3NH3I的浓度均为1.45mmol/mL,氰基丙烯酸乙酯的浓度为10mg/mL。PbI 2 (668.5 mg) and CH 3 NH 3 I (184.4 mg) in a molar ratio of 1:0.8 and 10 mg of ethyl cyanoacrylate were dissolved in 1 mL of N,N-dimethylformamide in a 3:1 volume ratio and dimethyl sulfoxide mixed solvent to obtain a perovskite precursor solution. The concentrations of PbI 2 and CH 3 NH 3 I were both 1.45 mmol/mL, and the concentration of ethyl cyanoacrylate was 10 mg/mL.
然后用匀胶机将钙钛矿前驱体溶液旋涂在ITO玻璃衬底上,转速为4800转/分,时间为20秒。Then, the perovskite precursor solution was spin-coated on the ITO glass substrate with a spin coater at 4800 rpm for 20 s.
再在80℃下退火处理8分钟,形成钙钛矿薄膜。钙钛矿薄膜形成后经过紫外灯照射处理使其中的氰基丙烯酸乙酯发生聚合,光照时间为5分钟。Then annealed at 80 °C for 8 minutes to form a perovskite thin film. After the formation of the perovskite film, the ethyl cyanoacrylate was polymerized by ultraviolet light irradiation treatment, and the irradiation time was 5 minutes.
所得到的钙钛矿薄膜包括CH3NH3PbI3和氰基丙烯酸乙酯的聚合物,其中,氰基丙烯酸乙酯的聚合物的质量百分数为1%。The obtained perovskite film includes a polymer of CH 3 NH 3 PbI 3 and ethyl cyanoacrylate, wherein the mass percentage of the polymer of ethyl cyanoacrylate is 1%.
实施例4:Example 4:
将摩尔比1:1.2的PbI2(668.5mg)和CH3NH3I(276.6mg)以及20mg的氰基丙烯酸乙酯溶解1mL在体积比为5:1的N,N-二甲基甲酰胺和二甲基亚砜混合溶剂中,得到钙钛矿前驱体溶液。其中,PbI2和CH3NH3I的浓度均为1.45mmol/mL,氰基丙烯酸乙酯的浓度为20mg/mL。PbI 2 (668.5 mg) and CH 3 NH 3 I (276.6 mg) in a molar ratio of 1:1.2 and 20 mg of ethyl cyanoacrylate were dissolved in 1 mL of N,N-dimethylformamide in a 5:1 volume ratio and dimethyl sulfoxide mixed solvent to obtain a perovskite precursor solution. The concentrations of PbI 2 and CH 3 NH 3 I were both 1.45 mmol/mL, and the concentration of ethyl cyanoacrylate was 20 mg/mL.
然后用匀胶机将钙钛矿前驱体溶液旋涂在ITO玻璃衬底上,转速为4800转/分,时间为20秒。Then, the perovskite precursor solution was spin-coated on the ITO glass substrate with a spin coater at 4800 rpm for 20 s.
再在90℃下退火处理10分钟,形成钙钛矿薄膜。钙钛矿薄膜形成后经红外灯照射处理使其中的氰基丙烯酸乙酯发生聚合,光照时间为20分钟。Then annealed at 90 °C for 10 minutes to form a perovskite thin film. After the formation of the perovskite film, the ethyl cyanoacrylate was polymerized by irradiation with an infrared lamp, and the irradiation time was 20 minutes.
所得到的钙钛矿薄膜包括CH3NH3PbI3和氰基丙烯酸乙酯的聚合物,其中,氰基丙烯酸乙酯的聚合物的质量百分数为2%。The obtained perovskite thin film includes a polymer of CH 3 NH 3 PbI 3 and ethyl cyanoacrylate, wherein the mass percentage of the polymer of ethyl cyanoacrylate is 2%.
实施例5:Example 5:
将摩尔比1:1的PbI2(668.5mg)和CH3NH3I(230.5mg)以及5mg的甲基丙烯酸甲酯溶解1mL在体积比为4:1的N,N-二甲基甲酰胺和二甲基亚砜混合溶剂中,得到钙钛矿前驱体溶液。其中,PbI2和CH3NH3I的浓度均为1.45mmol/mL,甲基丙烯酸甲酯的浓度为5mg/mL。PbI 2 (668.5 mg) and CH 3 NH 3 I (230.5 mg) in a molar ratio of 1:1 and 5 mg of methyl methacrylate were dissolved in 1 mL of N,N-dimethylformamide in a 4:1 volume ratio and dimethyl sulfoxide mixed solvent to obtain a perovskite precursor solution. The concentrations of PbI 2 and CH 3 NH 3 I were both 1.45 mmol/mL, and the concentration of methyl methacrylate was 5 mg/mL.
然后用匀胶机将钙钛矿前驱体溶液旋涂在ITO玻璃衬底上,转速为4800转/分,时间为20秒。Then, the perovskite precursor solution was spin-coated on the ITO glass substrate with a spin coater at 4800 rpm for 20 s.
再在80℃下退火处理5分钟,形成钙钛矿薄膜。钙钛矿薄膜形成后经过紫外灯光照处理使其中的甲基丙烯酸甲酯发生聚合,光照时间为20分钟。Then annealed at 80 °C for 5 minutes to form a perovskite thin film. After the formation of the perovskite film, the methyl methacrylate was polymerized by ultraviolet light irradiation, and the irradiation time was 20 minutes.
所得到的钙钛矿薄膜包括CH3NH3PbI3和甲基丙烯酸甲酯的聚合物,其中,甲基丙烯酸甲酯的聚合物的质量百分数为0.5%。The obtained perovskite film includes a polymer of CH 3 NH 3 PbI 3 and methyl methacrylate, wherein the mass percentage of the polymer of methyl methacrylate is 0.5%.
实施例6Example 6
将摩尔比1:1的PbI2(668.5mg)和CH3NH3I(230.5mg)以及5mg的甲基丙烯酸乙酯溶解1mL在体积比为4:1的N,N-二甲基甲酰胺和二甲基亚砜混合溶剂中,得到钙钛矿前驱体溶液。其中,PbI2和CH3NH3I的浓度均为1.45mmol/mL,甲基丙烯酸乙酯的浓度为5mg/mL。PbI 2 (668.5 mg) and CH 3 NH 3 I (230.5 mg) in a molar ratio of 1:1 and 5 mg of ethyl methacrylate were dissolved in 1 mL of N,N-dimethylformamide in a 4:1 volume ratio and dimethyl sulfoxide mixed solvent to obtain a perovskite precursor solution. The concentrations of PbI 2 and CH 3 NH 3 I were both 1.45 mmol/mL, and the concentration of ethyl methacrylate was 5 mg/mL.
然后用匀胶机将钙钛矿前驱体溶液旋涂在ITO玻璃衬底上,转速为4800转/分,时间为20秒。Then, the perovskite precursor solution was spin-coated on the ITO glass substrate with a spin coater at 4800 rpm for 20 s.
再在80℃下退火处理5分钟,形成钙钛矿薄膜。钙钛矿薄膜形成后经过紫外灯光照处理使其中的甲基丙烯酸乙酯发生聚合,光照时间为20分钟。Then annealed at 80 °C for 5 minutes to form a perovskite thin film. After the formation of the perovskite film, the ethyl methacrylate was polymerized by ultraviolet light irradiation, and the irradiation time was 20 minutes.
所得到的钙钛矿薄膜包括CH3NH3PbI3和甲基丙烯酸乙酯的聚合物,其中,甲基丙烯酸乙酯的聚合物的质量百分数为0.5%。The obtained perovskite film includes a polymer of CH 3 NH 3 PbI 3 and ethyl methacrylate, wherein the mass percentage of the polymer of ethyl methacrylate is 0.5%.
实施例7:Example 7:
如图6所示,钙钛矿太阳能电池包括依次叠层设置的衬底1、空穴传输层2、钙钛矿薄膜3、电子传输层4和电极5,制备方法如下:As shown in Figure 6, the perovskite solar cell includes a
以ITO导电玻璃作为衬底1,先用ITO清洗剂和去离子水洗涤,去除油脂和有机物,然后依次用去离子水、丙酮、异丙醇超声洗涤,氮气吹干,再经过氧等离子进一步处理。Using ITO conductive glass as
在处理后的ITO导电玻璃上采用旋涂法制作空穴传输层2。空穴传输层2为P3CT-N材料层,采用浓度为2mg/mL的P3CT-N的甲醇溶液旋涂形成,匀胶机的转速为3500转/分钟,时间为45秒,厚度为10nm。The
在空穴传输层2上采用实施例1的制备方法制作钙钛矿薄膜3,厚度为450nm。A perovskite
在钙钛矿薄膜3上制作电子传输层4,先采用浓度为10mg/mL的PCBM的氯苯溶液旋涂形成一PCBM层,匀胶机的转速为2000转/分钟,时间为60秒,厚度为20nm。然后在PCBM层上采用真空热蒸镀的方法形成厚度为40nm的C60层和在C60层上采用真空热蒸镀的方法形成厚度为8nm的BCP层。The
在电子传输层4上采用真空热蒸镀的方法蒸镀一层铜作为电极5,厚度为300nm。On the
实施例8:Example 8:
如图6所示,钙钛矿太阳能电池包括依次叠层设置的衬底1、空穴传输层2、钙钛矿薄膜3、电子传输层4和电极5,制备方法如下:As shown in Figure 6, the perovskite solar cell includes a
以ITO导电玻璃作为衬底1,先用ITO清洗剂和去离子水洗涤,去除油脂和有机物,然后依次用去离子水、丙酮、异丙醇超声洗涤,氮气吹干,再经过氧等离子进一步处理。Using ITO conductive glass as
在处理后的ITO导电玻璃上采用旋涂法制作空穴传输层2。空穴传输层2为P3CT-N材料层,采用浓度为1mg/mL的P3CT-N的甲醇溶液旋涂形成,匀胶机的转速为3000转/分钟转/分钟,时间为45秒,厚度为5nm。The
在空穴传输层2上采用实施例1的制备方法制作钙钛矿薄膜3,厚度为400nm。A perovskite
在钙钛矿薄膜3上制作电子传输层4,先采用浓度为15mg/mL的PCBM的氯苯溶液旋涂形成一PCBM层,匀胶机的转速为1500转/分钟,时间为80秒,厚度为30nm。然后在PCBM层上采用真空热蒸镀的方法形成厚度为20nm的C60层和在C60层上采用真空热蒸镀的方法形成厚度为10nm的BCP层。The
在电子传输层4上采用真空热蒸镀的方法蒸镀一层铜作为电极5,厚度为100nm。On the
实施例9:Example 9:
如图6所示,钙钛矿太阳能电池包括依次叠层设置的衬底1、空穴传输层2、钙钛矿薄膜3、电子传输层4和电极5,制备方法如下:As shown in Figure 6, the perovskite solar cell includes a
以ITO导电玻璃作为衬底1,先用ITO清洗剂和去离子水洗涤,去除油脂和有机物,然后依次用去离子水、丙酮、异丙醇超声洗涤,氮气吹干,再经过氧等离子进一步处理。Using ITO conductive glass as
在处理后的ITO导电玻璃上采用旋涂法制作空穴传输层2。空穴传输层2为P3CT-N材料层,采用浓度为3mg/mL的P3CT-N的甲醇溶液旋涂形成,匀胶机的转速为3600转/分钟,时间为60秒,厚度为15nm。The
在空穴传输层2上采用实施例1的制备方法制作钙钛矿薄膜3,厚度为460nm。A perovskite
在钙钛矿薄膜3上制作电子传输层4,先采用浓度为18mg/mL的PCBM的氯苯溶液旋涂形成一PCBM层,匀胶机的转速为1800转/分钟,时间为70秒,厚度为40nm。然后在PCBM层上采用真空热蒸镀的方法形成厚度为30nm的C60层和在C60层上采用真空热蒸镀的方法形成厚度为9nm的BCP层。The
在电子传输层4上采用真空热蒸镀的方法蒸镀一层铜作为电极5,厚度为200nm。On the
实施例10:Example 10:
如图6所示,钙钛矿太阳能电池包括依次叠层设置的衬底1、空穴传输层2、钙钛矿薄膜3、电子传输层4和电极5,制备方法如下:As shown in Figure 6, the perovskite solar cell includes a
以ITO导电玻璃作为衬底1,先用ITO清洗剂和去离子水洗涤,去除油脂和有机物,然后依次用去离子水、丙酮、异丙醇超声洗涤,氮气吹干,再经过氧等离子进一步处理。Using ITO conductive glass as
在处理后的ITO导电玻璃上采用旋涂法制作空穴传输层2。空穴传输层2为P3CT-N材料层,采用浓度为5mg/mL的P3CT-N的甲醇溶液旋涂形成,匀胶机的转速为4000转/分钟,时间为60秒,厚度为20nm。The
在空穴传输层2上采用实施例1的制备方法制作钙钛矿薄膜3,厚度为500nm。A perovskite
在钙钛矿薄膜3上制作电子传输层4,先采用浓度为25mg/mL的PCBM的氯苯溶液旋涂形成一PCBM层,匀胶机的转速为2500转/分钟,时间为80秒,厚度为50nm。然后在PCBM层上采用真空热蒸镀的方法形成厚度为40nm的C60层和在C60层上采用真空热蒸镀的方法形成厚度为10nm的BCP层。The
在电子传输层4上采用真空热蒸镀的方法蒸镀一层铜作为电极5,厚度为150nm。On the
对比例1:Comparative Example 1:
对比例1与实施例1条件相同,区别仅在于,对比例1的钙钛矿前驱体溶液中不含氰基丙烯酸乙酯,所得到的钙钛矿薄膜不含氰基丙烯酸乙酯的聚合物。Comparative Example 1 has the same conditions as Example 1, except that the perovskite precursor solution of Comparative Example 1 does not contain ethyl cyanoacrylate, and the obtained perovskite film does not contain ethyl cyanoacrylate polymer .
图2为本发明实施例1和对比例1的钙钛矿薄膜的扫描电镜图,从图2可知,氰基丙烯酸乙酯的加入可以有效引发钙钛矿的均匀生长,形成致密均一的钙钛矿薄膜。实施例1得到的钙钛矿薄膜晶体尺寸均匀,且薄膜致密均匀,没有明显空洞或者裂纹;而对比例1得到的钙钛矿薄膜晶体尺寸大小不一,且有明显的空洞。Fig. 2 is the scanning electron microscope images of the perovskite films of Example 1 and Comparative Example 1 of the present invention. It can be seen from Fig. 2 that the addition of ethyl cyanoacrylate can effectively induce the uniform growth of perovskite, forming dense and uniform perovskite Mineral film. The crystal size of the perovskite thin film obtained in Example 1 is uniform, and the film is dense and uniform, without obvious voids or cracks; while the perovskite thin film obtained in Comparative Example 1 has different crystal sizes and obvious voids.
图3为本发明实施例1和对比例1的钙钛矿薄膜的稳态荧光光谱图。从图3可知,氰基丙烯酸乙酯的加入可以使钙钛矿薄膜的荧光光谱发生蓝移,表明钙钛矿内部的缺陷得到有效抑制。3 is a steady-state fluorescence spectrum diagram of the perovskite thin films of Example 1 and Comparative Example 1 of the present invention. It can be seen from Figure 3 that the addition of ethyl cyanoacrylate can blue-shift the fluorescence spectrum of the perovskite film, indicating that the defects inside the perovskite are effectively suppressed.
图4为本发明实施例1和对比例1的钙钛矿薄膜的时间分辨荧光光谱图。时间分辨荧光光谱表明氰基丙烯酸乙酯的加入可以有效提高载流子在钙钛矿薄膜内的寿命,进而钙钛矿薄膜在应用于钙钛矿太阳能电池中时可以提高电池效率。4 is a time-resolved fluorescence spectrogram of the perovskite thin films of Example 1 and Comparative Example 1 of the present invention. Time-resolved fluorescence spectroscopy shows that the addition of ethyl cyanoacrylate can effectively improve the lifetime of carriers in the perovskite film, and then the perovskite film can improve the cell efficiency when applied in perovskite solar cells.
图5为本发明实施例1和对比例1的钙钛矿薄膜的X射线衍射(XRD)图谱对比图。从图5可知,含有氰基丙烯酸乙酯的钙钛矿薄膜的衍射峰并没有出现任何位移,表明:氰基丙烯酸乙酯的加入并不会进入到钙钛矿的晶体结构内部,而仅仅存在于其晶体与晶体之间的晶界附近。5 is a comparison diagram of the X-ray diffraction (XRD) patterns of the perovskite thin films of Example 1 and Comparative Example 1 of the present invention. It can be seen from Figure 5 that the diffraction peak of the perovskite film containing ethyl cyanoacrylate does not shift, indicating that the addition of ethyl cyanoacrylate does not enter the perovskite crystal structure, but only exists near the grain boundary between its crystals.
对比例2:Comparative Example 2:
对比例2与实施例7条件相同,区别仅在于,对比例2的钙钛矿薄膜采用对比例1所得到的钙钛矿薄膜,钙钛矿薄膜中不含氰基丙烯酸乙酯的聚合物。The conditions of Comparative Example 2 are the same as those of Example 7, except that the perovskite film of Comparative Example 2 adopts the perovskite film obtained in Comparative Example 1, and the perovskite film does not contain a polymer of ethyl cyanoacrylate.
实施例7和对比例2的钙钛矿太阳能电池器件效率对比如表1所示。The efficiency comparison of the perovskite solar cell device of Example 7 and Comparative Example 2 is shown in Table 1.
表1Table 1
图7为本发明实施例7和对比例2的钙钛矿太阳能电池在空气中的稳定性对比图,空气湿度为:40%~60%。从图7可知,本发明的钙钛矿太阳能电池的稳定性有明显提升。FIG. 7 is a comparison diagram of the stability of the perovskite solar cells in the air of Example 7 and Comparative Example 2 of the present invention, and the air humidity is: 40% to 60%. It can be seen from FIG. 7 that the stability of the perovskite solar cell of the present invention is significantly improved.
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。The technical features of the above-described embodiments can be combined arbitrarily. For the sake of brevity, all possible combinations of the technical features in the above-described embodiments are not described. However, as long as there is no contradiction between the combinations of these technical features, All should be regarded as the scope described in this specification.
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。The above-mentioned embodiments only represent several embodiments of the present invention, and the descriptions thereof are specific and detailed, but should not be construed as a limitation on the scope of the invention patent. It should be pointed out that for those skilled in the art, without departing from the concept of the present invention, several modifications and improvements can be made, which all belong to the protection scope of the present invention. Therefore, the protection scope of the patent of the present invention shall be subject to the appended claims.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810685274.7A CN108922972B (en) | 2018-06-28 | 2018-06-28 | Perovskite thin film, perovskite solar cell and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810685274.7A CN108922972B (en) | 2018-06-28 | 2018-06-28 | Perovskite thin film, perovskite solar cell and preparation method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN108922972A CN108922972A (en) | 2018-11-30 |
CN108922972B true CN108922972B (en) | 2022-07-05 |
Family
ID=64422359
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810685274.7A Active CN108922972B (en) | 2018-06-28 | 2018-06-28 | Perovskite thin film, perovskite solar cell and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108922972B (en) |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110690355B (en) * | 2019-09-26 | 2020-12-04 | 深圳市华星光电半导体显示技术有限公司 | A kind of perovskite thin film and preparation method thereof, optoelectronic device |
CN111106245A (en) * | 2019-12-03 | 2020-05-05 | 华东师范大学 | Perovskite battery for inhibiting electrode corrosion and preparation method thereof |
CN113130823A (en) * | 2019-12-30 | 2021-07-16 | Tcl集团股份有限公司 | Photoelectric device and preparation method thereof |
CN111584716B (en) * | 2020-05-15 | 2022-05-10 | 浙江大学 | A method for thermally activated assisted photorepair of two-dimensional hybrid perovskite solar cells |
CN111584717B (en) * | 2020-05-15 | 2022-05-10 | 浙江大学 | Method for improving efficiency of hybrid perovskite solar cell by aid of photo-thermal combined external field |
CN114855283B (en) * | 2021-01-20 | 2023-06-09 | 中国科学院福建物质结构研究所 | A kind of Pb-based coordination polymer crystal and its preparation method and application |
CN113637126A (en) * | 2021-08-03 | 2021-11-12 | 西北工业大学 | A kind of perovskite solar cell doped with star polymer and preparation method thereof |
CN113512149B (en) * | 2021-08-05 | 2023-08-01 | 重庆工商大学 | Preparation method of flocculant based on visible light polymerization and using cesium triiodo-plumbate as initiator |
CN113782678B (en) * | 2021-08-17 | 2023-06-27 | 华东师范大学 | Perovskite solar cell and preparation method thereof |
CN114256422B (en) * | 2021-12-07 | 2023-02-21 | 华能新能源股份有限公司 | Perovskite solar cell for slowing down ion migration and preparation method thereof |
CN114316948B (en) * | 2022-01-06 | 2023-05-16 | 西北工业大学 | Method for preparing flexible luminous gel by acrylic acid induced perovskite crystallization |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106170877A (en) * | 2014-02-26 | 2016-11-30 | 联邦科学和工业研究组织 | The method forming the photosensitive layer of perovskite light-sensitive unit |
CN106634962A (en) * | 2016-12-21 | 2017-05-10 | 电子科技大学 | Preparation method of polymer modified perovskite particle |
-
2018
- 2018-06-28 CN CN201810685274.7A patent/CN108922972B/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106170877A (en) * | 2014-02-26 | 2016-11-30 | 联邦科学和工业研究组织 | The method forming the photosensitive layer of perovskite light-sensitive unit |
CN106634962A (en) * | 2016-12-21 | 2017-05-10 | 电子科技大学 | Preparation method of polymer modified perovskite particle |
Non-Patent Citations (4)
Title |
---|
"Highly Stable and Luminescent Perovskite-Polymer Composites from a Convenient and Universal Strategy";Xin Y, Zhao H, Zhang J.;《ACS Applied Materials & Interfaces》;20180115;第10卷(第5期);第4977页实验部分以及附图1 * |
"Polymer-templated nucleation and crystal growth of perovskite films for solar cells with efficiency greater than 21%";D Bi, Yi C, Luo J, et al.;《Nature Energy》;20160919;第1卷(第10期);第1页右栏最后一段、第4页实验部分以及附图1 * |
D Bi, Yi C, Luo J, et al.."Polymer-templated nucleation and crystal growth of perovskite films for solar cells with efficiency greater than 21%".《Nature Energy》.2016,第1卷(第10期), * |
Xin Y, Zhao H, Zhang J.."Highly Stable and Luminescent Perovskite-Polymer Composites from a Convenient and Universal Strategy".《ACS Applied Materials & Interfaces》.2018,第10卷(第5期), * |
Also Published As
Publication number | Publication date |
---|---|
CN108922972A (en) | 2018-11-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108922972B (en) | Perovskite thin film, perovskite solar cell and preparation method thereof | |
Dong et al. | Chlorobenzenesulfonic potassium salts as the efficient multifunctional passivator for the buried interface in regular perovskite solar cells | |
Kim et al. | Enhanced environmental stability of planar heterojunction perovskite solar cells based on blade-coating. | |
CN110085747B (en) | Perovskite thin film, perovskite solar cell and preparation method of perovskite thin film | |
Zhu et al. | A facile, solvent vapor–fumigation-induced, self-repair recrystallization of CH 3 NH 3 PbI 3 films for high-performance perovskite solar cells | |
Zhu et al. | Ultraviolet filtration and defect passivation for efficient and photostable CsPbBr3 perovskite solar cells by interface engineering with ultraviolet absorber | |
TWI705576B (en) | Perovskite solar cell and method of manufacturing the same | |
CN104788649B (en) | A kind of electron transport layer materials and perovskite solar cell | |
CN109728166B (en) | Methylamine lead iodide perovskite solar cells with organic light-emitting small molecule interface modification layer | |
CN108091766B (en) | A kind of preparation method of perovskite battery with n-type doped electron transport layer and TiO2 layer | |
CN105870341A (en) | Method for improving growth quality of perovskite crystal and solar cell device | |
CN108365100A (en) | A kind of perovskite solar cell and preparation method thereof | |
CN104218109A (en) | High-efficiency perovskite thin film solar cell and preparation method thereof | |
Khorshidi et al. | Hydrophobic graphene quantum dots for defect passivation and enhanced moisture stability of CH3NH3PbI3 perovskite solar cells | |
Zarenezhad et al. | Efficient carrier utilization induced by conductive polypyrrole additives in organic-inorganic halide perovskite solar cells | |
CN106340587A (en) | Perovskite film preparation method and perovskite solar cell | |
CN114094019A (en) | A method for improving the adsorption density of self-assembled monomolecular carrier transport layers | |
Jahandar et al. | High-performance CH3NH3PbI3 inverted planar perovskite solar cells via ammonium halide additives | |
Jiang et al. | Efficiency enhancement of perovskite solar cells by fabricating as-prepared film before sequential spin-coating procedure | |
CN102509769B (en) | Thin-film photoelectric conversion devices based on hybridization of Ag2S flake nanocrystal arrays and P3HT prepared at low temperature | |
Chen et al. | Ionic bonding without directionality facilitates efficient interfacial bridging for perovskite solar cells | |
CN107706309B (en) | A kind of preparation method of planar perovskite solar cell | |
CN105870342A (en) | Interface processing method for preparing high-performance perovskite film | |
CN108767120A (en) | A kind of method and solar cell preparing perovskite thin film using carbon quantum dot | |
Bian et al. | Multifunctional interfacial molecular bridge enabled by an aggregation-induced emission strategy for enhancing efficiency and UV stability of perovskite solar cells |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |