CN108921164B - 一种基于三维点云分割的接触网定位器坡度检测方法 - Google Patents

一种基于三维点云分割的接触网定位器坡度检测方法 Download PDF

Info

Publication number
CN108921164B
CN108921164B CN201810618950.9A CN201810618950A CN108921164B CN 108921164 B CN108921164 B CN 108921164B CN 201810618950 A CN201810618950 A CN 201810618950A CN 108921164 B CN108921164 B CN 108921164B
Authority
CN
China
Prior art keywords
point cloud
points
cloud data
point
gradient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810618950.9A
Other languages
English (en)
Other versions
CN108921164A (zh
Inventor
韩志伟
周靖松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southwest Jiaotong University
Original Assignee
Southwest Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southwest Jiaotong University filed Critical Southwest Jiaotong University
Priority to CN201810618950.9A priority Critical patent/CN108921164B/zh
Publication of CN108921164A publication Critical patent/CN108921164A/zh
Application granted granted Critical
Publication of CN108921164B publication Critical patent/CN108921164B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/20Image preprocessing
    • G06V10/26Segmentation of patterns in the image field; Cutting or merging of image elements to establish the pattern region, e.g. clustering-based techniques; Detection of occlusion
    • G06V10/267Segmentation of patterns in the image field; Cutting or merging of image elements to establish the pattern region, e.g. clustering-based techniques; Detection of occlusion by performing operations on regions, e.g. growing, shrinking or watersheds
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/23Clustering techniques
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/136Segmentation; Edge detection involving thresholding
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10028Range image; Depth image; 3D point clouds

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Data Mining & Analysis (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Evolutionary Biology (AREA)
  • Evolutionary Computation (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • General Engineering & Computer Science (AREA)
  • Artificial Intelligence (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Multimedia (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Image Analysis (AREA)

Abstract

本发明公开了一种基于三维点云分割的接触网定位器坡度检测方法,包括以下步骤:步骤1:接触网腕臂三维点云数据获取;步骤2:通过直线检测算法检测分割出接触网腕臂点云数据中的三个线性区域,之后去除点云中的噪声点;步骤3:利用点云之间的距离关系,通过点云聚类分割出接触网腕臂的剩余线性区域4:获取分割出的空间直线的矢量信息,检测接触网定位器坡度。本发明检测结果准确可靠,检测效率高;不受天气、背景和物体表面反射等情况的干扰,检测效果好。

Description

一种基于三维点云分割的接触网定位器坡度检测方法
技术领域
本发明涉及高速铁路接触网检测领域,具体涉及一种基于三维点云分割的接触网定位器坡度检测方法。
背景技术
随着高速电气化铁路的发展,铁路运输的稳定性与安全性变得越来越重要。接触网是高速铁路牵引供电系统中最重要的设备之一,作为接触网定位装置的关键部件,接触网的定位器坡度直接影响到列车的受流质量和行车安全。如果定位器坡度太小,由于受电弓的抬升量,容易出现打弓等现象。另一方面,定位器坡度过大,在定位点处易形成硬点,导致弓网接触力突变,将增加接触线和受电弓的磨损甚至造成离线。因此,利用计算机视觉的方式对接触网定位器坡度进行准确且高效的检测显得尤为重要。
定位器坡度检测作为接触网维护的项目之一。目前,接触网定位器坡度检测主要分为接触式和非接触式两种。相较于接触式检测,基于计算机视觉技术的非接触式检测由于其具有交通干扰少,通用性好,安装方便等优点,在实际铁路检测中已经得到越来越多的应用。应用领域涵盖了诸如故障分类,接触线检测,铁路障碍物检测和受电弓故障检测等方面。然而,现阶段非接触式检测主要基于2D图像,这些检测方法很容易受到天气,图像曝光度和物体表面反射等因素的影响,影响最终的检测结果。由于具有深度信息,三维点云可以避免上述因素的影响,具有良好的检测精度与适用性。
发明内容
本发明的目的是针对现有技术存在的问题而提供一种检测精度更高、抗干扰能力更强的基于三维点云分割的接触网定位器坡度检测方法。
本发明采用的技术方案是:一种基于三维点云分割的接触网定位器坡度检测方法,包括以下步骤:
步骤1:接触网腕臂三维点云数据获取;
步骤2:通过直线检测算法检测并分割出接触网点云数据中的三个线性区域,之后去除点云中的噪声点;
步骤3:利用点云之间的距离关系,通过点云聚类分割出接触网腕臂的剩余线性区域;
步骤4:获取分割出的空间直线的矢量信息,检测接触网定位器坡度;
进一步的,所述步骤1接触网腕臂三维点云数据获取过程如下:
将深度相机安装在检测装置上方,检测装置沿铁路轨道向前移动,对接触网支持装置成像,采集接触网腕臂的三维点云数据。
进一步的,所述步骤2中通过直线检测算法检测并分割出接触网点云数据中的三个线性区域,之后去除点云中的噪声点,具体过程如下:
S1:根据接触网腕臂特征设置提取点云范围阈值λ0,Nt,Nr分别代表点云数据中总的点数目与分割后剩余的点数目,λ为剩余点数与总点数的比值,其中:
Figure BDA0001697594320000021
S2:从点云数据中随机选择两点{A1(x1,y1,z1),A2(x2,y2,z2)},A1,A2构成的直线l方程为:
Figure BDA0001697594320000022
S3:设置距离阈值ε,计算点云数据中其它点到直线l的距离di。假定直线l外的一点A坐标为(xa,ya,za),距离di表达如下:
Figure BDA0001697594320000023
S4:遍历点云数据中的所有点,满足di<ε的点记为目标点。统计数据中目标点的个数,记为直线l的得分数s;
S5:重复S2~S4k次,选取得分最高的直线作为检测目标;
S6:分割提取出目标线性区域的点云数据;
S7:根据分割后剩余点数目计算当前的λ值,若满足λ>λ0,回到S2;
S8:利用统计滤波算法,去除剩余点中的噪声点。
进一步的,所述步骤3中利用点云之间的距离关系,通过点云聚类分割出接触网腕臂的剩余线性区域的过程如下:
欧几里得聚类算法通过将欧氏距离内的点分类到一个类里实现对点云的聚类分割,欧氏距离表达如下:
Figure BDA0001697594320000024
其中pi,qi∈P,n为点云数据的维数,pik,qik分别为2个点在不同维度上的值,P为点云数据集合;
S1:对于输入的点集P,建立KD-Tree拓扑结构;
S2:设置一个空集C和一个队列Q,Q用来存放待检测的点,Q中的每个点都需执行以下操作;
S3:对于点集P中的点Pi∈P,执行以下步骤:
a.将点Pi加入队列Q
b.设置搜索半径dth,在点Pi的搜索半径内进行k领域搜索,得到点集pi k
c.计算点集pi k中所有点到点Pi的欧氏距离,距离最小的两个归为一类
d.检查每个Pi点是否执行以上操作,若没有,将该点加入队列Q
e.在队列Q中的所有点完成上述步骤后,将队列Q中的点加入集合C并清空队列Q
S4:当所有Pi点已经加入集合C,计算完毕。
进一步的,所述步骤4获取分割出的空间直线的矢量信息,检测接触网定位器坡度的过程如下:
根据之前的分割结果,提取出接触网腕臂的6个线性部分,
Figure BDA0001697594320000031
分别代表6条空间直线的空间向量,ω1...ω6表示6条直线与X轴的夹角。检测得到接触网定位器的空间向量
Figure BDA0001697594320000032
为(a4,b4,c4),夹角ω4计算如下:
Figure BDA0001697594320000033
根据接触网定位器坡度定义,定位器坡度ρ计算如下:
ρ=tanω4 (6)
本发明的有益效果是:
(1)本发明通过三维图像处理方法对接触线定位器坡度进行检测,给出准确、可靠的检测结果,这种非接触式检测方法对接触网部件没有任何摩擦损耗;
(2)本发明通过三维点云数据对接触网定位器坡度检测,由于三维图像具有深度信息,不受天气、背景和物体表面反射等情况的干扰,检测效果好;
(3)本发明通过改进的R-RANSAC检测算法和Euclidean聚类算法有效分割出了接触网腕臂的线性部分后利用空间直线的矢量信息检测出了定位器坡度,相较于基于二维图像的先进行相机先标定再利用图像处理方法,检测效率更高。
附图说明
图1为本发明中定位器坡度检测流程图。
图2为本发明采用的检测装置示意图。
图3为本发明中采集单帧点云数据示意图。
图4为本发明中R-RANSAC算法分割结果效果图,其中图4(a)为采集的原始点云;图4(b)~图4(d)分别是提取三个线性部分的过程示意图。
图5为本发明中统计滤波去除噪声点效果图,其中左图为去除噪声点之前的点云,右图为去除噪声点后的点云。
图6为本发明中Euclidean聚类分割效果图,上图为聚类前的点云数据,下图分别为聚类分割后三个线性区域的点云数据。
图7为本发明中接触网定位器提取效果图。
具体实施方式
下面结合附图和具体实施例对本发明做进一步说明。
如图1所示,一种基于三维点云分割的接触网定位器坡度检测方法,包括以下步骤:
步骤1:接触网腕臂三维点云数据获取;
安装有深度相机3的检测装置(即检测车2)沿铁路轨道1前行,对高速铁路接触网支持及悬挂装置以及定位器4进行成像,采集接触网的三维点云数据。获取接触网腕臂点云过程如图2所示,随着检测装置沿轨道前行,深度相机3中的红外发射器向目标发出红外光,传感器通过处理收到的反射信息获取图像中每个深度点的深度值;对深度信息进行映射变换得到所有点的xyz三维坐标并将其保存为点云数据。采集的单帧数据最多可包含217088个深度点,每个点由其自身的xyz位置信息唯一确定。
深度相机3具有自身定义的坐标系称之为相机空间坐标系。如图3(图3中,屏幕5,射线6)所示,该坐标系的原点位于相机光心,相机主光轴为z轴(蓝色),垂直于z轴往上为y轴(绿色),x轴(红色)与y轴与z轴的平面构成了右手系。点云数据中xyz坐标均为相机坐标系下坐标。
步骤2:通过改进的R-RANAC(Region-Random Sample Consensus)直线检测算法检测并分割出接触网点云数据中的三个线性区域,之后去除点云中的噪声点;
R-RANSAC算法分割出接触网腕臂中线性区域的点云分割结果如图4所示,利用统计滤波去除点云数据中噪声点的滤波结果如图5所示。
S1:根据接触网腕臂特征设置提取点云范围阈值λ0,Nt,Nr分别代表点云数据中总的点数目与分割后剩余的点数目,λ为剩余点数与总点数的比值,其中:
Figure BDA0001697594320000041
S2:从点云数据中随机选择两点{A1(x1,y1,z1),A2(x2,y2,z2)},A1,A2构成的直线l方程为:
Figure BDA0001697594320000051
S3:设置距离阈值ε,计算点云数据中其它点到直线l的距离di。假定直线l外的一点A坐标为(xa,ya,za),距离di表达如下:
Figure BDA0001697594320000052
S4:遍历点云数据中的所有点,满足di<ε的点记为目标点。统计数据中目标点的个数,记为直线l的得分数s;
S5:重复S2~S4k次,选取得分最高的直线作为检测目标;
S6:分割提取出目标线性区域的点云数据;
S7:根据分割后剩余点数目计算当前的λ值,若满足λ>λ0,回到S2;
S8:采用统计滤波(Statistical Outlier Removal)算法,对点云进行去噪处理;首先设定距离阈值Td和临近点数k;对每个点的领域进行统计分析,若距离某点处最近的k个点的平均距离为
Figure BDA0001697594320000053
满足
Figure BDA0001697594320000054
则该点为有效点,反之则为噪声点,数学表达如下:
Figure BDA0001697594320000055
结合接触网腕臂三维点云的实际特征,本发明进行的大量的实例测试表明,当λ设为0.25时,ε为0.02,w为0.17时,可得到最佳的分割结果。
步骤3:利用点云之间的距离关系,通过Euclidean聚类分割出接触网腕臂的剩余线性区域;
Euclidean聚类算法通过将欧氏距离内的点分类到一个类里实现对点云的聚类分割,欧氏距离表达如下:
Figure BDA0001697594320000056
其中pi,qi∈P,n为点云数据的维数,pik,qik分别为2个点在不同维度上的值,P为点云数据集合;
S1:对于输入的点集P,建立KD-Tree拓扑结构;
S2:设置一个空集C和一个队列Q,Q用来存放待检测的点,Q中的每个点都需执行以下操作;
S3:对于点集P中的点Pi∈P,执行以下步骤:
a.将点Pi加入队列Q
b.设置搜索半径dth,在点Pi的搜索半径内进行k领域搜索,得到点集pi k
c.计算点集pi k中所有点到点Pi的欧氏距离,距离最小的两个归为一类
d.检查每个Pi点是否执行以上操作,若没有,将该点加入队列Q
e.在队列Q中的所有点完成上述步骤后,将队列Q中的点加入集合C并清空队列Q
S4:当所有Pi点已经加入集合C,计算完毕。
本发明中Euclidean聚类过程如图6所示。
步骤4:获取分割出的空间直线的矢量信息,检测接触网定位器坡度;
根据之前的分割结果,如图7所示,提取出接触网腕臂的6个线性部分,
Figure BDA0001697594320000061
分别代表6条空间直线的空间向量,ω1...ω6表示6条直线与X轴的夹角。检测得到接触网定位器的空间向量
Figure BDA0001697594320000062
为(a4,b4,c4),夹角ω4计算如下:
Figure BDA0001697594320000063
根据接触网定位器坡度定义,定位器坡度ρ计算如下:
ρ=tanω4 (7)
本发明实施实例中对采集的6组接触网腕臂数据进行接触网定位器坡度检测,将本发明中的检测值与使用光学仪器测量的标准值相对比,获得本发明中方法的检测精度。定位器与X轴的夹角计算结果与定位器坡度计算结果分别见表1、2,本发明计算得出定位器坡度检测结果误差小于2%,可满足实际检测需求。
表1空间直线与X轴夹角计算结果
Figure BDA0001697594320000064
Figure BDA0001697594320000071
表2接触网定位器坡度计算结果
Figure BDA0001697594320000072
本发明通过三维图像处理方法对接触网定位器坡度进行检测,给出准确、可靠的检测结果;这种非接触式检测方法对接触网部件没有任何摩擦损耗,对列车的正常运行不会产生任何影响;通过三维点云数据对接触网支持装置进行几何参数检测,由于三维图像具有深度信息,不易受到天气、背景、物体表面反射等情况的干扰,检测效果更好;利用三维点云的坐标获取检测目标位置信息,相较于二维图像检测中先对相机标定再进行检测,具有更高的检测效率且更易操作;本发明能有效对接触网定位器坡度进行非接触式检测,并具有良好的检测精度;使用三维点云图像处理技术,为接触网支持装置几何参数检测提供了一种新的解决方案,具有良好的使用前景。

Claims (3)

1.一种基于三维点云分割的接触网定位器坡度检测方法,其特征在于,包括以下步骤:
步骤A:接触网腕臂三维点云数据获取;
步骤B:通过直线检测算法检测并分割出接触网点云数据中的三个线性区域,之后去除点云数据中的噪声点;
步骤C:利用点云数据之间的距离关系,通过点云数据聚类分割出接触网腕臂的剩余线性区域;
步骤D:获取分割出的空间直线的矢量信息,检测接触网定位器坡度;
所述步骤B中通过R-RANSAC(Region-Random Sample Consensus)直线检测算法检测并分割出接触网点云数据中的三个线性区域,再去除点云数据中的噪声点过程如下:
S1:根据接触网腕臂特征设置提取点云数据范围阈值λ0,Nt,Nr分别代表点云数据中总的点数目与分割后剩余的点数目,λ为剩余点数与总点数的比值,其中:
Figure FDA0003217338270000011
S2:从点云数据中随机选择两点{A1(x1,y1,z1),A2(x2,y2,z2)},A1,A2构成的直线l方程为:
Figure FDA0003217338270000012
S3:设置距离阈值ε,计算点云数据中其它点到直线l的距离di;假定直线l外的一点A坐标为(xa,ya,za),距离di表达如下:
Figure FDA0003217338270000013
S4:遍历点云数据中的所有点,满足di<ε的点记为目标点;统计数据中目标点的个数,记为直线l的得分数s;
S5:重复S2~S4 k次,选取得分最高的直线作为检测目标;
S6:分割提取出目标线性区域的点云数据;
S7:根据分割后剩余点数目计算当前的λ值,若满足λ>λ0,回到S2;
S8:利用统计滤波算法,去除剩余点中的噪声点。
2.根据权利要求1所述的一种基于三维点云分割的接触网定位器坡度检测方法,其特征在于,步骤C中利用欧氏聚类对剩余点进行分割过程如下:
欧几里得聚类算法通过将欧氏距离内的点分类到一个类里实现对点云数据的聚类分割,欧氏距离表达如下:
Figure FDA0003217338270000021
其中pi,qi∈P,n为点云数据的维数,pik,qik分别为2个点在不同维度上的值,P为点云数据集合;
S1:对于输入的点集P,建立KD-Tree拓扑结构;
S2:设置一个空集C和一个队列Q,Q用来存放待检测的点,Q中的每个点都需执行以下操作;
S3:对于点集P中的点Pi∈P,执行以下步骤:
a.将点Pi加入队列Q
b.设置搜索半径dth,在点Pi的搜索半径内进行k领域搜索,得到点集pi k
c.计算点集pi k中所有点到点Pi的欧氏距离,距离最小的两个归为一类
d.检查每个Pi点是否执行以上操作,若没有,将该点加入队列Q
e.在队列Q中的所有点完成上述步骤后,将队列Q中的点加入集合C并清空队列Q
S4:当所有Pi点已经加入集合C,计算完毕。
3.根据权利要求1所述的一种基于三维点云分割的接触网定位器坡度检测方法,其特征在于,步骤D中检测接触网定位器坡度过程如下:
根据之前的分割结果,提取出接触网腕臂的6个线性部分,
Figure FDA0003217338270000022
分别代表6条空间直线的空间向量,ω1...ω6表示6条直线与X轴的夹角;检测得到接触网定位器的空间向量
Figure FDA0003217338270000023
为(a4,b4,c4),夹角ω4计算如下:
Figure FDA0003217338270000024
根据接触网定位器坡度定义,定位器坡度ρ计算如下:
ρ=tanω4 (6)。
CN201810618950.9A 2018-06-15 2018-06-15 一种基于三维点云分割的接触网定位器坡度检测方法 Active CN108921164B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810618950.9A CN108921164B (zh) 2018-06-15 2018-06-15 一种基于三维点云分割的接触网定位器坡度检测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810618950.9A CN108921164B (zh) 2018-06-15 2018-06-15 一种基于三维点云分割的接触网定位器坡度检测方法

Publications (2)

Publication Number Publication Date
CN108921164A CN108921164A (zh) 2018-11-30
CN108921164B true CN108921164B (zh) 2021-10-08

Family

ID=64421717

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810618950.9A Active CN108921164B (zh) 2018-06-15 2018-06-15 一种基于三维点云分割的接触网定位器坡度检测方法

Country Status (1)

Country Link
CN (1) CN108921164B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109816682B (zh) * 2019-01-22 2022-12-06 西南交通大学 一种基于凹凸性的腕臂系统分割与参数检测方法
CN113295143B (zh) * 2020-03-12 2023-04-25 广东中科如铁技术有限公司 一种接触网定位器坡度的动态测量方法
CN111553500B (zh) * 2020-05-11 2021-05-14 北京航空航天大学 基于注意力机制全卷积网络的铁路交通接触网巡检方法
CN112256781B (zh) * 2020-10-23 2023-07-25 重庆同汇勘测规划有限公司 一种基于ArcGIS快速输出具有坡度值点云精度报告的方法
CN112529044B (zh) * 2020-11-20 2022-06-28 西南交通大学 基于车载LiDAR的铁路接触网提取分类的方法
CN112950532B (zh) * 2021-01-14 2024-04-16 成都铁安科技有限责任公司 一种列车受电弓状态检测方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104299260A (zh) * 2014-09-10 2015-01-21 西南交通大学 一种基于sift和lbp的点云配准的接触网三维重建方法
CN107123161A (zh) * 2017-06-14 2017-09-01 西南交通大学 一种基于narf和fpfh的接触网零全网三维重建方法
CN107578400A (zh) * 2017-07-26 2018-01-12 西南交通大学 一种bim和三维点云融合的接触网装置参数检测方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10086857B2 (en) * 2013-11-27 2018-10-02 Shanmukha Sravan Puttagunta Real time machine vision system for train control and protection

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104299260A (zh) * 2014-09-10 2015-01-21 西南交通大学 一种基于sift和lbp的点云配准的接触网三维重建方法
CN107123161A (zh) * 2017-06-14 2017-09-01 西南交通大学 一种基于narf和fpfh的接触网零全网三维重建方法
CN107578400A (zh) * 2017-07-26 2018-01-12 西南交通大学 一种bim和三维点云融合的接触网装置参数检测方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
基于三维点云的接触网几何参数检测方法;周靖松等;《仪器仪表学报》;20180415;第39卷(第04期);第239-246页 *
基于接触网三维成像的故障识别;钟震远;《中国优秀硕士学位论文全文数据库 工程科技Ⅱ辑》;20170715(第07期);第C033-179页 *

Also Published As

Publication number Publication date
CN108921164A (zh) 2018-11-30

Similar Documents

Publication Publication Date Title
CN108921164B (zh) 一种基于三维点云分割的接触网定位器坡度检测方法
Banić et al. Intelligent machine vision based railway infrastructure inspection and monitoring using UAV
CN106997049B (zh) 一种基于激光点云数据的检测障碍物的方法和装置
CN110687904B (zh) 一种巡线机器人视觉导航巡检和避障方法
CN108647646A (zh) 基于低线束雷达的低矮障碍物的优化检测方法及装置
CN108564575A (zh) 一种基于三维点云数据的非接触式接触网参数检测方法
CN103814306A (zh) 深度测量质量增强
CN111612728B (zh) 一种基于双目rgb图像的3d点云稠密化方法和装置
CN104299260A (zh) 一种基于sift和lbp的点云配准的接触网三维重建方法
CN115482195B (zh) 一种基于三维点云的列车部件变形检测方法
EP4086846A1 (en) Automatic detection of a calibration standard in unstructured lidar point clouds
WO2014002692A1 (ja) ステレオカメラ
CN110910443B (zh) 基于单监控相机的接触网几何参数实时测量方法及装置
JP2017083245A (ja) 建築限界判定装置
CN106500594B (zh) 融合反射强度和几何特征的铁路轨道半自动检测方法
CN108765393B (zh) 一种高速铁路接触网振动行为检测方法
CN113728360A (zh) 用于3d场景中对象的姿态、尺寸和形状测量的方法和装置
CN107806824A (zh) 一种低速状态下接触网几何参数的检测方法及装置
CN111768417A (zh) 基于单目视觉3d重建技术的铁路货车超限检测方法
Pan et al. One-stage 3D profile-based pavement crack detection and quantification
CN113504545A (zh) 一种基于激光雷达的接触网数据检测方法
JP6699323B2 (ja) 電車設備の三次元計測装置及び三次元計測方法
CN117292181A (zh) 基于3d点云处理的钣金件孔组分类及全尺寸测量方法
CN116681912A (zh) 铁路道岔的轨距检测方法及装置
CN113963053A (zh) 一种接触网高度的检测方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant