CN108898253A - 一种预测中药材加工废水急性毒性的方法 - Google Patents
一种预测中药材加工废水急性毒性的方法 Download PDFInfo
- Publication number
- CN108898253A CN108898253A CN201810710383.XA CN201810710383A CN108898253A CN 108898253 A CN108898253 A CN 108898253A CN 201810710383 A CN201810710383 A CN 201810710383A CN 108898253 A CN108898253 A CN 108898253A
- Authority
- CN
- China
- Prior art keywords
- acute toxicity
- prediction model
- waste water
- chinese medicine
- prediction
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 231100000403 acute toxicity Toxicity 0.000 title claims abstract description 60
- 230000007059 acute toxicity Effects 0.000 title claims abstract description 60
- 239000002351 wastewater Substances 0.000 title claims abstract description 34
- 239000003814 drug Substances 0.000 title claims abstract description 30
- 238000000034 method Methods 0.000 title claims abstract description 26
- 238000012545 processing Methods 0.000 title claims abstract description 25
- 238000001514 detection method Methods 0.000 claims abstract description 19
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 17
- 238000012795 verification Methods 0.000 claims abstract description 10
- 238000012417 linear regression Methods 0.000 claims description 8
- 238000002835 absorbance Methods 0.000 claims description 5
- 238000004458 analytical method Methods 0.000 claims description 5
- BVKZGUZCCUSVTD-UHFFFAOYSA-M Bicarbonate Chemical compound OC([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-M 0.000 claims description 2
- 239000010453 quartz Substances 0.000 claims description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 2
- 238000004448 titration Methods 0.000 claims description 2
- 230000001988 toxicity Effects 0.000 claims description 2
- 231100000419 toxicity Toxicity 0.000 claims description 2
- 239000010842 industrial wastewater Substances 0.000 abstract description 2
- 238000004065 wastewater treatment Methods 0.000 abstract description 2
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 6
- 238000012544 monitoring process Methods 0.000 description 6
- 238000012360 testing method Methods 0.000 description 6
- 241000894006 Bacteria Species 0.000 description 2
- 241001269238 Data Species 0.000 description 2
- 230000001154 acute effect Effects 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- RCTYPNKXASFOBE-UHFFFAOYSA-M chloromercury Chemical compound [Hg]Cl RCTYPNKXASFOBE-UHFFFAOYSA-M 0.000 description 2
- 229940079593 drug Drugs 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 239000002574 poison Substances 0.000 description 2
- 231100000614 poison Toxicity 0.000 description 2
- 239000010865 sewage Substances 0.000 description 2
- 231100000215 acute (single dose) toxicity testing Toxicity 0.000 description 1
- 230000003750 conditioning effect Effects 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- KBPHJBAIARWVSC-RGZFRNHPSA-N lutein Chemical compound C([C@H](O)CC=1C)C(C)(C)C=1\C=C\C(\C)=C\C=C\C(\C)=C\C=C\C=C(/C)\C=C\C=C(/C)\C=C\[C@H]1C(C)=C[C@H](O)CC1(C)C KBPHJBAIARWVSC-RGZFRNHPSA-N 0.000 description 1
- 229960005375 lutein Drugs 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- KBPHJBAIARWVSC-XQIHNALSSA-N trans-lutein Natural products CC(=C/C=C/C=C(C)/C=C/C=C(C)/C=C/C1=C(C)CC(O)CC1(C)C)C=CC=C(/C)C=CC2C(=CC(O)CC2(C)C)C KBPHJBAIARWVSC-XQIHNALSSA-N 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- FJHBOVDFOQMZRV-XQIHNALSSA-N xanthophyll Natural products CC(=C/C=C/C=C(C)/C=C/C=C(C)/C=C/C1=C(C)CC(O)CC1(C)C)C=CC=C(/C)C=CC2C=C(C)C(O)CC2(C)C FJHBOVDFOQMZRV-XQIHNALSSA-N 0.000 description 1
- 235000008210 xanthophylls Nutrition 0.000 description 1
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q10/00—Administration; Management
- G06Q10/04—Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/25—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
- G01N21/31—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/10—Complex mathematical operations
- G06F17/18—Complex mathematical operations for evaluating statistical data, e.g. average values, frequency distributions, probability functions, regression analysis
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q10/00—Administration; Management
- G06Q10/06—Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
- G06Q10/063—Operations research, analysis or management
- G06Q10/0639—Performance analysis of employees; Performance analysis of enterprise or organisation operations
- G06Q10/06393—Score-carding, benchmarking or key performance indicator [KPI] analysis
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q50/00—Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
- G06Q50/06—Energy or water supply
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A20/00—Water conservation; Efficient water supply; Efficient water use
- Y02A20/152—Water filtration
Landscapes
- Engineering & Computer Science (AREA)
- Business, Economics & Management (AREA)
- Physics & Mathematics (AREA)
- Human Resources & Organizations (AREA)
- General Physics & Mathematics (AREA)
- Economics (AREA)
- Strategic Management (AREA)
- Theoretical Computer Science (AREA)
- Entrepreneurship & Innovation (AREA)
- Operations Research (AREA)
- General Business, Economics & Management (AREA)
- Tourism & Hospitality (AREA)
- Marketing (AREA)
- Health & Medical Sciences (AREA)
- Development Economics (AREA)
- Data Mining & Analysis (AREA)
- Mathematical Analysis (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Mathematical Optimization (AREA)
- General Health & Medical Sciences (AREA)
- Quality & Reliability (AREA)
- Pure & Applied Mathematics (AREA)
- Game Theory and Decision Science (AREA)
- Mathematical Physics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Educational Administration (AREA)
- Computational Mathematics (AREA)
- Immunology (AREA)
- Software Systems (AREA)
- Biochemistry (AREA)
- General Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Databases & Information Systems (AREA)
- Bioinformatics & Computational Biology (AREA)
- Probability & Statistics with Applications (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Algebra (AREA)
- Evolutionary Biology (AREA)
- Pathology (AREA)
Abstract
一种预测中药材加工废水急性毒性的方法,本发明涉及预测中药材加工废水急性毒性的方法。本发明为了解决现有急性毒性检测技术操作复杂及成本高昂的问题。本发明包括:一:针对要测水样,检测UV254、VFA及急性毒性三个指标,每天检测一次,收集大于等于一个月的检测数据;二:建立预测模型;三:通过预测模型计算出急性毒性的预测值,与急性毒性实测值进行比较,若满足准确性要求,则将预测模型用于急性毒性的预测;若不满足,则重新执行步骤一至步骤二建立预测模型;四:若水质不变,每三个月进行一次预测模型校验;若水质有变动,则立即进行预测模型校验;若不满足准确性要求,则重新建立预测模型。本发明用于工业废水处理技术领域。
Description
技术领域
本发明涉及工业废水处理技术领域,具体涉及预测中药材加工废水急性毒性的方法。
背景技术
随着人们对环境问题的关注,中药材加工废水的污染问题也越来越受到重视,2008年环保部出台了中药类制药工业水污染物排放标准(GB 21906-2008),其中明确将急性毒性纳入中药类制药工业废水日常监测的14项指标范围。标准表明急性毒性指标是采用发光细菌的方法(GB/T 15441-1995)进行测定,发光细菌方法是根据废水对发光细菌的发光抑制程度来评价废水的急性毒性水平,该方法操作复杂,而且每次检测需要购买昂贵的发光菌剂,而且需要专业的人员进行检测。
然而,目前许多中药材加工企业没有配备急性毒性检测设备及专业的检测人员,即使具备检测条件,每次检测都需要购买发光菌剂,检测费用比较昂贵。故大部分中药材加工企业很难将急性毒性纳入日常监测的指标范围内,致使急性毒性指标常常被忽略。
发明内容
本发明的目的是为了解决现有急性毒性检测技术操作复杂及成本高昂的缺点,而提出一种预测中药材加工废水急性毒性的方法。
一种预测中药材加工废水急性毒性的方法包括以下步骤:
步骤一:针对要测水样,同时检测UV254、VFA及急性毒性三个指标,每天检测一次,收集大于等于一个月的检测数据;
步骤二:利用步骤一得到的检测数据进行二元线性回归分析,建立预测模型;
步骤三:通过预测模型计算出急性毒性的预测值,与急性毒性实测值进行比较,若满足准确性要求,则将步骤二建立的预测模型用于急性毒性的预测;若不满足,则重新执行步骤一至步骤二建立预测模型;
所述准确性要求为预测值全部落在实测值±20%误差限之内,且80%以上的预测值落在实测值±10%误差限之内;
步骤四:若水质不变的情况下,每三个月进行一次预测模型校验;若水质有变动,则立即进行预测模型校验;若预测模型满足准确性要求,则预测模型继续用于急性毒性的预测;若不满足准确性要求,则重新执行步骤一至步骤三建立预测模型。
本发明的有益效果为:
急性毒性是中药材加工废水排放标准中重要的水质指标,但由于其复杂的检测方法及昂贵的检测费用很难作为制药企业的日常检测指标。本发明公开了一种基于常规水质指标的急性毒性预测方法。对中药材加工废水进行实验研究表明:相比其他常规指标,254nm处的吸光度(UV254)和挥发性脂肪酸(VFA)两个指标与急性毒性表现出更好的相关性。采用二元线性回归方法建立UV254和VFA两个变量的回归模型很好的预测了中药材加工废水的急性毒性。该方法预测结果的准确性高,适用于复杂和多变的中药材加工废水,使用效果好。本发明为中药制药企业提供了一个快速及低成本的废水急性毒性监测方法,,为企业节省急性毒性检测成本80%以上。
本发明基于企业日常检测的指标建立一种急性毒性指标的预测方法,保证每个中药材加工企业都能日常监测排放废水的急性毒性指标,使企业废水达标排放。
附图说明
图1为本发明实施例1模型验证结果图;
图2为本发明实施例2模型验证结果图。
具体实施方式
具体实施方式一:一种预测中药材加工废水急性毒性的方法包括以下步骤:
步骤一:针对要测水样,同时检测UV254、VFA及急性毒性三个指标,每天检测一次,收集大于等于一个月的检测数据;
步骤二:利用步骤一得到的检测数据进行二元线性回归分析,建立预测模型;
步骤三:通过预测模型计算出急性毒性的预测值,与急性毒性实测值进行比较,若满足准确性要求,则将步骤二建立的预测模型用于急性毒性的预测;若不满足,则重新执行步骤一至步骤二建立预测模型;
所述准确性要求为预测值全部落在实测值±20%误差限之内,且80%以上的预测值落在实测值±10%误差限之内;
步骤四:若水质不变的情况下,每三个月进行一次预测模型校验;若水质有变动,则立即进行预测模型校验;若预测模型满足准确性要求,则预测模型继续用于急性毒性的预测;若不满足准确性要求,则重新执行步骤一至步骤三建立预测模型。
本发明针对具体的水质,通过检测废水的UV254、VFA及急性毒性指标,建立以UV254和VFA为变量的二元线性急性毒性预测模型,以此模型来监测中药材加工废水急性毒性指标。
具体实施方式二:本实施方式与具体实施方式一不同的是:所述步骤一中UV254是采用厚度为1cm石英比色皿在254nm波长下,在分光光度计上测定的吸光度值,其单位为cm-1。
其它步骤及参数与具体实施方式一相同。
具体实施方式三:本实施方式与具体实施方式一或二不同的是:所述步骤一中VFA是采用VFA与碳酸氢盐碱度联合滴定方法进行检测,其单位为mg/L(乙酸)。
其它步骤及参数与具体实施方式一或二相同。
具体实施方式四:本实施方式与具体实施方式一至三之一不同的是:所述急性毒性是采用国标发光细菌的方法进行检测,其单位为mg/L(氯化汞)。
其它步骤及参数与具体实施方式一至三之一相同。
具体实施方式五:本实施方式与具体实施方式一至四之一不同的是:所述步骤二中二元线性回归是利用IBM公司SPSS Statistics 21.0软件进行分析。
其它步骤及参数与具体实施方式一至四之一相同。
具体实施方式六:本实施方式与具体实施方式一至五之一不同的是:所述步骤二中预测模型具体为:
AT=a·UV254+b·VFA+c
其中AT为被预测废水的急性毒性值,其单位为mg/L(氯化汞);UV254为被预测废水的在254nm处的吸光度值,其单位为cm-1;VFA为被预测废水的挥发性脂肪酸浓度值,其单位为mg/L(乙酸);a为UV254权重系数;b为VFA权重系数;c为常数项。
其它步骤及参数与具体实施方式一至五之一相同。
采用以下实施例验证本发明的有益效果:
实施例一:
现以湖北省某中药加工企业污水站调节池中废水为例。
通过监测三个月的水质,得到UV254、VFA及急性毒性指标数据84组。
利用这84组检测数据进行二元线性回归分析,建立预测模型如下:急性毒性=0.108·UV254+8.800×10-4·VFA+0.147。
对以上模型进行验证表明,通过上述模型计算出急性毒性的预测值,全部落在实测值±10%误差限之内,说明该模型预测准确,可以用于急性毒性的预测。模型的预测结果如图1所示,图中两条实线之间为±20%误差范围,两条虚线之间为±10%误差范围。
实施例二:
现以湖北省某中药加工企业污水站处理后的排水为例。
通过监测5个月的水质,得到UV254、VFA及急性毒性指标数据138组。
利用这183组检测数据进行二元线性回归分析,建立预测模型如下:急性毒性=0.075·UV254+6.600×10-4·VFA+0.204。
对以上模型进行验证表明,通过上述模型计算出急性毒性的预测值,全部落在实测值±20%误差限之内,且86.7%(>80%)的预测值落在实测值±10%误差限之内,说明该模型预测准确,可以用于急性毒性的预测。模型的预测结果如图2所示,图中两条实线之间为±20%误差范围,两条虚线之间为±10%误差范围。
本发明还可有其它多种实施例,在不背离本发明精神及其实质的情况下,本领域技术人员当可根据本发明作出各种相应的改变和变形,但这些相应的改变和变形都应属于本发明所附的权利要求的保护范围。
Claims (6)
1.一种预测中药材加工废水急性毒性的方法,其特征在于:所述预测中药材加工废水急性毒性的方法包括以下步骤:
步骤一:针对要测水样,同时检测UV254、VFA及急性毒性三个指标,每天检测一次,收集大于等于一个月的检测数据;
步骤二:利用步骤一得到的检测数据进行二元线性回归分析,建立预测模型;
步骤三:通过预测模型计算出急性毒性的预测值,与急性毒性实测值进行比较,若满足准确性要求,则将步骤二建立的预测模型用于急性毒性的预测;若不满足,则重新执行步骤一至步骤二建立预测模型;
所述准确性要求为预测值全部落在实测值±20%误差限之内,且80%以上的预测值落在实测值±10%误差限之内;
步骤四:若水质不变的情况下,每三个月进行一次预测模型校验;若水质有变动,则立即进行预测模型校验;若预测模型满足准确性要求,则预测模型继续用于急性毒性的预测;若不满足准确性要求,则重新执行步骤一至步骤三建立预测模型。
2.根据权利要求1所述一种预测中药材加工废水急性毒性的方法,其特征在于:所述步骤一中UV254是采用厚度为1cm石英比色皿在254nm波长下,在分光光度计上测定的吸光度值。
3.根据权利要求1或2所述一种预测中药材加工废水急性毒性的方法,其特征在于:所述步骤一中VFA是采用VFA与碳酸氢盐碱度联合滴定方法进行检测。
4.根据权利要求3所述一种预测中药材加工废水急性毒性的方法,其特征在于:所述急性毒性是采用国标发光细菌的方法进行检测。
5.根据权利要求4所述一种预测中药材加工废水急性毒性的方法,其特征在于:所述步骤二中二元线性回归是利用IBM公司SPSS Statistics 21.0软件进行分析。
6.根据权利要求5所述一种预测中药材加工废水急性毒性的方法,其特征在于:所述步骤二中预测模型具体为:
AT=a·UV254+b·VFA+c
其中AT为被预测废水的急性毒性值,UV254为被预测废水的在254nm处的吸光度值,VFA为被预测废水的挥发性脂肪酸浓度值,a为UV254权重系数;b为VFA权重系数;c为常数项。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810710383.XA CN108898253A (zh) | 2018-07-02 | 2018-07-02 | 一种预测中药材加工废水急性毒性的方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810710383.XA CN108898253A (zh) | 2018-07-02 | 2018-07-02 | 一种预测中药材加工废水急性毒性的方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN108898253A true CN108898253A (zh) | 2018-11-27 |
Family
ID=64347543
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810710383.XA Pending CN108898253A (zh) | 2018-07-02 | 2018-07-02 | 一种预测中药材加工废水急性毒性的方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108898253A (zh) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103359897A (zh) * | 2013-08-07 | 2013-10-23 | 山东太平洋环保有限公司 | 一种处理高浓度硫酸根纺织印染废水的工艺及装置 |
CN103632032A (zh) * | 2013-10-23 | 2014-03-12 | 华南理工大学 | 一种城市污水处理过程出水指标在线软测量预测方法 |
CN104030476A (zh) * | 2013-03-05 | 2014-09-10 | 刘自忠 | 一种化工污水工艺处理流程的方法 |
CN104619652A (zh) * | 2012-06-15 | 2015-05-13 | 微视生物技术有限公司 | 新型生物催化剂组合物和使用的方法 |
CN106525822A (zh) * | 2016-10-27 | 2017-03-22 | 吉林大学 | 预测三种农药对发光菌急性联合毒性的方法 |
-
2018
- 2018-07-02 CN CN201810710383.XA patent/CN108898253A/zh active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104619652A (zh) * | 2012-06-15 | 2015-05-13 | 微视生物技术有限公司 | 新型生物催化剂组合物和使用的方法 |
CN104030476A (zh) * | 2013-03-05 | 2014-09-10 | 刘自忠 | 一种化工污水工艺处理流程的方法 |
CN103359897A (zh) * | 2013-08-07 | 2013-10-23 | 山东太平洋环保有限公司 | 一种处理高浓度硫酸根纺织印染废水的工艺及装置 |
CN103632032A (zh) * | 2013-10-23 | 2014-03-12 | 华南理工大学 | 一种城市污水处理过程出水指标在线软测量预测方法 |
CN106525822A (zh) * | 2016-10-27 | 2017-03-22 | 吉林大学 | 预测三种农药对发光菌急性联合毒性的方法 |
Non-Patent Citations (1)
Title |
---|
吕龙义: "Predicting acute toxicity of traditional Chinese medicine wastewater using UV absorption and volatile fatty acids as surrogates", 《CHEMOSPHERE》 * |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Wang et al. | Arsenic and fluoride exposure in drinking water: children’s IQ and growth in Shanyin county, Shanxi province, China | |
Arndt et al. | Elevated liver enzyme activity in construction workers: prevalence and impact on early retirement and all-cause mortality | |
CN104034684A (zh) | 一种基于紫外-可见吸收光谱的水质多指标检测方法 | |
Mitra et al. | Prevalence of and risk factors for lead poisoning in young children in Bangladesh | |
CN110057761A (zh) | 一种全光谱结合快速易测指标的水质在线监测系统与方法 | |
Rao et al. | The correlation between maternal exposure to air pollution and the risk of orofacial clefts in infants: a systematic review and meta-analysis | |
Thompson | Finding a correction for the sampling error in multivariate measures of relationship: A Monte Carlo study | |
CN116448988A (zh) | 一种工业园区土壤污染监测系统及方法 | |
Dos Passos et al. | Seasonal distribution of attacks in aquaporin-4 antibody disease and myelin-oligodendrocyte antibody disease | |
CN108898253A (zh) | 一种预测中药材加工废水急性毒性的方法 | |
Calcaterra et al. | Sarcopenia and poor nutritional status in older adults | |
Polls | How people in the regulated community view biological integrity | |
RU2711492C1 (ru) | Способ проведения экологического компьютерного мониторинга состояния объектов окружающей среды | |
JP2023159417A (ja) | マルチパラメータ代謝脆弱性指数評価 | |
Du et al. | Mediating role of systemic inflammation in the association between heavy metals exposure and periodontitis risk | |
EP1809760A2 (en) | Infrared measurement for the rapid enumeration of microbial concentrations | |
Dehon et al. | Validation of an automatic comet assay analysis system integrating the curve fitting of combined comet intensity profiles | |
Ongerth | ICR SS protozoan data site-by-site: a picture of Cryptosporidium and Giardia in US surface water | |
Jeong et al. | The information content of high-frequency environmental monitoring data signals pollution events in the coastal ocean | |
Conti et al. | Uncertainty in environmental analysis: theory and laboratory studies | |
CN116893242A (zh) | 一种酱油发酵质量检测方法、装置、电子设备及存储介质 | |
US12029484B2 (en) | Method and device of determining distance and height based on a plurality of sensors | |
Margareta et al. | Indonesian version of the PainDETECT Questionnaire in the assessment of neuropathic pain: a validity and reliability study | |
Bergman et al. | Microscopic Colitis and Risk of Incident Psoriasis: A Nationwide Population-Based Matched Cohort Study | |
Yuan et al. | Gastrointestinal Diseases, Genetic Risk, and Incident Dementia: A Prospective Cohort Study in 352,463 Middle-Aged Adults |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20181127 |