CN108892170B - 一种“两相法”制备形貌可控的BiVO4纳米晶的方法 - Google Patents

一种“两相法”制备形貌可控的BiVO4纳米晶的方法 Download PDF

Info

Publication number
CN108892170B
CN108892170B CN201810882109.0A CN201810882109A CN108892170B CN 108892170 B CN108892170 B CN 108892170B CN 201810882109 A CN201810882109 A CN 201810882109A CN 108892170 B CN108892170 B CN 108892170B
Authority
CN
China
Prior art keywords
bivo
nano
phase
nanocrystalline
prepared
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810882109.0A
Other languages
English (en)
Other versions
CN108892170A (zh
Inventor
刘轶
王子栋
董春伟
王泽�
张皓
杨柏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jilin University
Original Assignee
Jilin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jilin University filed Critical Jilin University
Priority to CN201810882109.0A priority Critical patent/CN108892170B/zh
Publication of CN108892170A publication Critical patent/CN108892170A/zh
Application granted granted Critical
Publication of CN108892170B publication Critical patent/CN108892170B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G31/00Compounds of vanadium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/20Vanadium, niobium or tantalum
    • B01J23/22Vanadium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/10Particle morphology extending in one dimension, e.g. needle-like
    • C01P2004/16Nanowires or nanorods, i.e. solid nanofibres with two nearly equal dimensions between 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/20Particle morphology extending in two dimensions, e.g. plate-like
    • C01P2004/24Nanoplates, i.e. plate-like particles with a thickness from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/32Spheres
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nanotechnology (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

一种“两相法”制备形貌可控的BiVO4纳米晶的方法,属于半导体光催化材料制备技术领域。该方法将铋的前驱体和钒的前驱体分别溶解在有机相和水相中,通过胶体“两相法”制备不同形貌的BiVO4纳米晶,包括球形纳米粒子、纳米棒、纳米片、纳米盘等。该方法具有耗时短、反应温度低、条件温和等优点,整个实验过程操作简便,具有很好的实验重复性,并且有效的降低了制备成本,很适合于纳米晶的工业化生产。其中超薄的BiVO4纳米片展现出了最优异的光催化水氧化的性能,在相同的测试条件下,其产氧的速率是其他传统方法(水热法或共沉淀法)制备的BiVO4样品的三倍以上。对于未来太阳能分解水制氢产业化有着重要的借鉴意义。

Description

一种“两相法”制备形貌可控的BiVO4纳米晶的方法
技术领域
本发明属于半导体光催化材料制备技术领域,具体涉及一种通过胶体“两相法”制备形貌可控的BiVO4纳米晶的方法,通过调节原料用量、表面活性剂用量、反应时间等条件,简便、快速、可控地制备不同形貌的BiVO4纳米晶,包括球形纳米粒子、纳米棒、纳米片、纳米盘等,最终大幅度提高其光催化水氧化的性能。
背景技术
随着全球性能源危机和环境污染问题的日益严重,人们迫切需要开发利用清洁的可再生能源。其中,基于半导体光催化剂的太阳能分解水制氢,可以直接实现太阳能的转换和储存,成为最理想和有效的解决途径之一。因此,高效、稳定的可见光光催化材料的制备与研发,成为目前材料学、化学和环境科学等领域的研究热点。单斜白钨矿型BiVO4拥有较小的禁带宽度(~2.4eV),在可见光范围内有着较强的吸收,并且其晶体结构非常有利于电子空穴对的迁移,可以有效地抑制光生载流子的复合,同时其组成元素地球储量丰富且无毒。因此,BiVO4具有非常优异的光催化水氧化的性能,是一种新型的可见光响应型光催化材料,而BiVO4光催化剂的制备与合成也成为太阳能分解水制氢领域的一个研究热点。
目前BiVO4的制备方法很多,主要有水热或溶剂热反应法,化学共沉淀法,高温固相反应法等。虽然这些方法可以制备纯度和结晶度较高的BiVO4样品,但是这些方法都有着明显的缺点,如能耗高、反应周期长、反应条件比较苛刻,最重要的是制备的BiVO4粒子的尺寸较大(其尺寸一般都是几百纳米甚至是几微米),并且无法对其形貌进行精确的调控。从而限制了BiVO4光催化性能的进一步提升,因此,开发新的合成方法,在纳米尺度上对BiVO4粒子的形貌实现精确的调控,对其光催化性能的提高具有十分重要的意义。
发明内容
本发明的目的就是提供一种简便、快速、可控制备BiVO4纳米晶的方法,在纳米尺度上对其形貌进行精确的调控,最终实现对其光催化水氧化性能的大幅度提高。
本发明是将铋的前驱体和钒的前驱体分别溶解在油相和水相中,通过胶体“两相法”制备不同形貌的BiVO4纳米晶。通过调节原料用量、表面活性剂用量、反应时间等条件,可以制备不同形貌的BiVO4纳米晶,包括球形纳米粒子、纳米棒、纳米片、纳米盘等。该方法具有耗时短、反应温度低、条件温和等优点,整个实验过程操作简便,具有很好的实验重复性,并且有效的降低了制备成本,很适合于纳米晶的工业化生产。其中超薄的BiVO4纳米片展现出了非常优异的光催化水氧化的性能,对于未来太阳能分解水制氢产业化有着重要的借鉴意义。
本发明所述的"两相法"制备形貌可控的BiVO4纳米晶的方法,其特征在于:在室温下将非配位性有机溶剂、油酸、油胺、铋源混合,铋源的用量为0.5~2.0mmol,非配位性有机溶剂的用量为10~20mL,油酸和油胺的用量相同,为1~4mL;在氮气的保护下,加热到160~180℃下,直到铋源完全溶解,然后自然冷却至130~140℃,得到淡黄色透明溶液A(其中铋的浓度为0.025~0.2M);将10~20mL去离子水, 0~2mL浓硝酸(浓度为15~16M),0.5~4.0mmol的钒源混合,通过超声或加热使其溶解,得到黄色透明溶液B(其中钒的浓度为0.025~0.4M);然后将溶液B注入到上述溶液A中,保持反应温度为90~100℃,在空气或氮气的氛围下反应5~60分钟,然后自然冷却至室温;将下层的水溶液去除,向上层的有机相加入5~10mL氯仿、10~20mL乙醇或丙酮,通过离心、干燥即可得到不同形貌的BiVO4纳米晶固体粉末,其质量约为100~500mg。
非配位性有机溶剂可以是1-十八烯、液体石蜡和二卞醚,铋源可以是 Bi(NO3)3·5H2O和BiCl3,钒源可以是NH4VO3和Na3VO4
本发明可以制备不同形貌的BiVO4纳米晶,包括球形纳米粒子、纳米棒、纳米片、纳米盘等。其中超薄的BiVO4纳米片展现出了最优异的光催化水氧化的性能,在相同的测试条件下,其产氧的速率是其他传统方法(水热法或共沉淀法)制备的 BiVO4样品的三倍以上。
附图说明
图1(a):实施例1制备的大尺寸超薄的BiVO4纳米片的透射电镜照片,所得 BiVO4纳米片尺寸均匀,单分散性好,呈现明显的超薄的片状结构,横向尺寸非常大,平均为1.2um;
图1(b):实施例1制备的大尺寸超薄的BiVO4纳米片的XRD谱图,所得BiVO4纳米片无任何杂峰,为纯相的单斜白钨矿晶形;
图1(c)和图1(d):实施例1制备的大尺寸超薄的BiVO4纳米片的原子力显微镜照片和其对应的高度曲线,所得大尺寸超薄的BiVO4纳米片表面较为平滑,并且其厚度非常薄,大约只有2.9nm;
图1(e)和图1(f):实施例1制备的大尺寸超薄的BiVO4纳米片以及传统水热法、共沉淀法制备的BiVO4样品在可见光照射下产氧量随时间的变化曲线和产氧速率,测试条件:20mg光催化剂分散在0.05M的AgNO3水溶液中(50mL),300W氙灯光照(λ>420nm)。超薄的BiVO4纳米片展现出了非常优异的光催化水氧化性能,其产氧速率是传统水热法和共沉淀法制备的BiVO4样品的三倍以上;
图2(a):实施例2制备的小尺寸超薄的BiVO4纳米片的透射电镜照片,所得 BiVO4纳米片尺寸均匀,单分散性好,呈现明显的超薄的片状结构,横向尺寸平均为800nm;
图2(b):实施例2制备的小尺寸超薄的BiVO4纳米片的XRD谱图,所得BiVO4纳米片无任何杂峰,为纯相的单斜白钨矿晶形;
图3(a):实施例3制备的BiVO4纳米盘的透射电镜照片,所得BiVO4纳米盘尺寸均匀,单分散性好,横向尺寸平均为1um;
图3(b):实施例3制备的BiVO4纳米盘的XRD谱图,所得BiVO4纳米盘无任何杂峰,为纯相的单斜白钨矿晶形;
图4(a):实施例4制备的梭状的BiVO4纳米晶的透射电镜照片,所得梭状的 BiVO4纳米晶尺寸均匀,单分散性好,长度平均为1.6um,宽度平均为400nm;
图4(b):实施例4制备的梭状的BiVO4纳米晶的XRD谱图,所得梭状的BiVO4纳米晶无任何杂峰,为纯相的单斜白钨矿晶形;
图5(a):实施例5制备的超大尺寸超薄的BiVO4纳米片的透射电镜照片,所得 BiVO4纳米片呈现明显的超薄的片状结构,其横向尺寸非常大,可以达到2.5um;
图5(b):实施例5制备的超大尺寸超薄的BiVO4纳米片的XRD谱图,所得BiVO4纳米片无任何杂峰,为纯相的单斜白钨矿晶形;
图6(a):实施例6制备的BiVO4纳米粒子的透射电镜照片,所得BiVO4纳米粒子的尺寸均匀,单分散性好,呈现明显的准球形结构,其尺寸非常小,大约只有5nm;
图6(b):实施例6制备的BiVO4纳米粒子的XRD谱图,所得BiVO4纳米粒子无任何杂峰,为纯相的单斜白钨矿晶形;
图7(a):实施例7制备的米状的BiVO4纳米晶的透射电镜照片,所得米状的 BiVO4纳米晶尺寸均匀,单分散性好,呈现明显的米状结构,其尺寸大约为12nm;
图7(b):实施例7制备的米状的BiVO4纳米晶的XRD谱图,所得米状的BiVO4纳米晶无任何杂峰,为纯相的单斜白钨矿晶形;
图8(a):实施例8制备的BiVO4纳米棒的透射电镜照片,所得BiVO4纳米棒尺寸均匀,单分散性好,呈现明显的棒状结构,其长度大约为40nm,直径大约为6nm;
图8(b):实施例8制备的BiVO4纳米棒的XRD谱图,所得BiVO4纳米棒无任何杂峰,为纯相的单斜白钨矿晶形;
具体实施方式
下面结合实施例对本发明做进一步的阐述,而不是要以此对本发明进行限制。
实施例1
将0.5mmol Bi(NO3)3·5H2O、10mL的1-十八烯、1mL油酸和1mL油胺混合,加到同一个三颈烧瓶中。在氮气的保护下,将该烧瓶加热到160℃下,直到 Bi(NO3)3·5H2O完全溶解,得到淡黄色透明溶液,然后关闭加热自然冷却至140℃。在另一个容器中加入10mL去离子水,2mL浓硝酸溶液(浓度为15M),1mmol 的NH4VO3,通过超声使其溶解,得到黄色透明溶液。然后注入上述的三颈烧瓶中,保持反应温度是100℃,在氮气的氛围下反应40分钟,然后关闭加热自然冷却。待温度降到室温后,将下层的水溶液去除,向上层的有机相加入10mL氯仿、20mL 乙醇。通过离心、干燥即可得到大尺寸超薄的BiVO4纳米片的固体粉末,其质量约为140mg。
实施例2
将0.5mmol Bi(NO3)3·5H2O、10mL1-十八烯、1mL油酸和1mL油胺混合,加到同一个三颈烧瓶中。在氮气的保护下,将该烧瓶加热到160℃下,直到 Bi(NO3)3·5H2O完全溶解,得到淡黄色透明溶液,然后关闭加热自然冷却至140℃。在另一个容器中加入10mL去离子水,2mL浓硝酸溶液(浓度为15M),0.55mmol 的NH4VO3,通过超声使其溶解,得到黄色透明溶液。然后注入上述的三颈烧瓶中,保持反应温度是90~100℃,在氮气的氛围下反应50分钟,然后关闭加热自然冷却。待温度降到室温后,将下层的水溶液去除,向上层的有机相加入5mL氯仿、10mL 乙醇。通过离心、干燥即可得到小尺寸超薄的BiVO4纳米片固体粉末,其质量约为 100mg。
实施例3
将0.5mmol Bi(NO3)3·5H2O、10mL1-十八烯、1mL油酸和1mL油胺混合,加到同一个三颈烧瓶中。在氮气的保护下,将该烧瓶加热到160℃下,直到 Bi(NO3)3·5H2O完全溶解,得到淡黄色透明溶液,然后关闭加热自然冷却至140℃。在另一个容器中加入10mL去离子水,2mL浓硝酸溶液(浓度为16M),0.5mmol 的NH4VO3,通过超声使其溶解,得到黄色透明溶液。然后注入上述的三颈烧瓶中,保持反应温度是100℃,在氮气的氛围下反应60分钟,然后关闭加热自然冷却。待温度降到室温后,将下层的水溶液去除,向上层的有机相加入5mL氯仿、10mL 乙醇。通过离心、干燥即可得到的BiVO4纳米盘固体粉末,其质量约为100mg。
实施例4
将0.5mmol Bi(NO3)3·5H2O、10mL1-十八烯、1mL油酸和1mL油胺混合,加到同一个三颈烧瓶中。在氮气的保护下,将该烧瓶加热到160℃下,直到 Bi(NO3)3·5H2O完全溶解,得到淡黄色透明溶液,然后关闭加热自然冷却至140℃。在另一个容器中加入10mL去离子水,1mL浓硝酸溶液(浓度为15M),0.5mmol 的NH4VO3,通过超声使其溶解,得到黄色透明溶液。然后注入上述的三颈烧瓶中,保持反应温度是90℃,在氮气的氛围下反应30分钟,然后关闭加热自然冷却。待温度降到室温后,将下层的水溶液去除,向上层的有机相加入5mL氯仿、10mL乙醇。通过离心、干燥即可得到梭状的BiVO4纳米晶固体粉末,其质量约为150mg。
实施例5
将0.5mmol Bi(NO3)3·5H2O、10mL1-十八烯、1mL油酸和1mL油胺混合,加到同一个三颈烧瓶中。在氮气的保护下,将该烧瓶加热到160℃下,直到 Bi(NO3)3·5H2O完全溶解,得到淡黄色透明溶液,然后关闭加热自然冷却至140℃。在另一个容器中加入10mL去离子水,2mL浓硝酸溶液(浓度为16M),2mmol 的NH4VO3,通过超声使其溶解,得到黄色透明溶液。然后注入上述的三颈烧瓶中,保持反应温度是100℃,在氮气的氛围下反应60分钟,然后关闭加热自然冷却。待温度降到室温后,将下层的水溶液去除,向上层的有机相加入10mL氯仿、20mL 乙醇。通过离心、干燥即可得到超大尺寸的BiVO4纳米片固体粉末,其质量约为150mg。
实施例6
将2mmol Bi(NO3)3·5H2O、20mL液体石蜡、4mL油酸和4mL油胺混合,加到同一个三颈烧瓶中。在氮气的保护下,将该烧瓶加热到180℃下,直到 Bi(NO3)3·5H2O完全溶解,得到淡黄色透明溶液(浓度为15M),然后关闭加热自然冷却至130℃。在另一个容器中加入20mL去离子水,4mmol的Na3VO4,通过加热使其溶解,得到黄色透明溶液。然后注入上述的三颈烧瓶中,保持反应温度是 90℃,在空气中反应5分钟,然后关闭加热自然冷却。待温度降到室温后,将下层的水溶液去除,向上层的有机相加入10mL氯仿、20mL丙酮。通过离心、干燥即可得到球形BiVO4纳米粒子固体粉末,其质量约为500mg。
实施例7
将0.5mmol BiCl3、10mL二卞醚、1mL油酸和1mL油胺混合,加到同一个三颈烧瓶中。在氮气的保护下,将该烧瓶加热到160℃下,直到Bi(NO3)3·5H2O完全溶解,得到淡黄色透明溶液,然后关闭加热自然冷却至130℃。在另一个容器中加入10mL去离子水,0.55mmol的NH4VO3,通过加热使其溶解,得到黄色透明溶液。然后注入上述的三颈烧瓶中,保持反应温度是100℃,在空气中反应30分钟,然后关闭加热自然冷却。待温度降到室温后,将下层的水溶液去除,向上层的有机相加入5mL氯仿、10mL乙醇。通过离心、干燥即可得到米状的BiVO4纳米晶固体粉末,其质量约为100mg。
实施例8
将1mmol Bi(NO3)3·5H2O、10mL1-十八烯、2mL油酸和2mL油胺混合,加到同一个三颈烧瓶中。在氮气的保护下,将该烧瓶加热到180℃下,直到Bi(NO3)3·5H2O 完全溶解,得到淡黄色透明溶液,然后关闭加热自然冷却至130℃。在另一个容器中加入10mL去离子水,1mmol的NH4VO3,通过加热使其溶解,得到黄色透明溶液。然后注入上述的三颈烧瓶中,保持反应温度是100℃,在空气中反应30分钟,然后关闭加热自然冷却。待温度降到室温后,将下层的水溶液去除,向上层的有机相加入10mL氯仿、20mL丙酮。通过离心、干燥即可得到BiVO4纳米棒固体粉末,其质量约为200mg。

Claims (3)

1.一种“两相法”制备形貌可控的BiVO4纳米晶的方法,其特征如下:在室温下将非配位性有机溶剂、油酸、油胺、铋源混合,铋源的用量为0.5~2.0mmol,非配位性有机溶剂的用量为10~20mL,油酸和油胺的用量相同,为1~4mL;在氮气的保护下,加热到160~180℃下,直到铋源完全溶解,然后自然冷却至130~140℃,得到淡黄色透明溶液A;将10~20mL去离子水,0~2mL、浓度为15~16M的浓硝酸,0.5~4.0mmol的钒源混合,通过超声或加热使其溶解,得到黄色透明溶液B;然后将溶液B注入到上述溶液A中,保持反应温度为90~100℃,在空气或氮气的氛围下反应5~60分钟,然后自然冷却至室温;将下层的水溶液去除,向上层的有机相加入5~10mL氯仿、10~20mL乙醇或丙酮,通过离心、干燥即可得到不同形貌的BiVO4纳米晶固体粉末。
2.如权利要求1所述的一种“两相法”制备形貌可控的BiVO4纳米晶的方法,其特征在于:非配位性有机溶剂可以是1-十八烯、液体石蜡或二卞醚,铋源是Bi(NO3)3·5H2O或BiCl3,钒源是NH4VO3或Na3VO4
3.如权利要求1所述的一种“两相法”制备形貌可控的BiVO4纳米晶的方法,其特征在于:制备的BiVO4纳米晶的形貌为球形纳米粒子、纳米棒、超薄纳米片、纳米盘、米状纳米晶或梭状纳米晶。
CN201810882109.0A 2018-08-06 2018-08-06 一种“两相法”制备形貌可控的BiVO4纳米晶的方法 Active CN108892170B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810882109.0A CN108892170B (zh) 2018-08-06 2018-08-06 一种“两相法”制备形貌可控的BiVO4纳米晶的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810882109.0A CN108892170B (zh) 2018-08-06 2018-08-06 一种“两相法”制备形貌可控的BiVO4纳米晶的方法

Publications (2)

Publication Number Publication Date
CN108892170A CN108892170A (zh) 2018-11-27
CN108892170B true CN108892170B (zh) 2020-06-16

Family

ID=64353132

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810882109.0A Active CN108892170B (zh) 2018-08-06 2018-08-06 一种“两相法”制备形貌可控的BiVO4纳米晶的方法

Country Status (1)

Country Link
CN (1) CN108892170B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111302650B (zh) * 2020-03-17 2021-07-09 吉林大学 一种利用纳米粒子溶液旋涂制备钒酸铋光电阳极的方法
CN115194174B (zh) * 2022-06-07 2024-01-02 南方科技大学 一种形貌可控的铋金属纳米晶及其制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101746825B (zh) * 2009-12-18 2011-07-27 北京工业大学 一种制备橄榄球状介孔BiVO4的有机溶剂-水热法

Also Published As

Publication number Publication date
CN108892170A (zh) 2018-11-27

Similar Documents

Publication Publication Date Title
Wang et al. Electrospinning direct synthesis of magnetic ZnFe2O4/ZnO multi-porous nanotubes with enhanced photocatalytic activity
El-Shazly et al. Nanostructured ZnO photocatalysts prepared via surfactant assisted Co-Precipitation method achieving enhanced photocatalytic activity for the degradation of methylene blue dyes
Li et al. Controllable synthesis, optical and photocatalytic properties of CuS nanomaterials with hierarchical structures
Pan et al. Nanophotocatalysts via microwave-assisted solution-phase synthesis for efficient photocatalysis
CN107649150B (zh) 一种富含硫空位的Cd/CdS异质结可见光催化剂的制备方法及其应用
Ai et al. Hierarchical porous quaternary Cu–Fe–Sn–S hollow chain microspheres: rapid microwave nonaqueous synthesis, growth mechanism, and their efficient removal of organic dye pollutant in water
Salavati-Niasari et al. Hierarchical nanostructured nickel sulfide architectures through simple hydrothermal method in the presence of thioglycolic acid
Feng et al. Novel visible light induced Ag2S/g-C3N4/ZnO nanoarrays heterojunction for efficient photocatalytic performance
Zhao et al. Synthesis of one-dimensional α-Fe2O3/Bi2MoO6 heterostructures by electrospinning process with enhanced photocatalytic activity
Hou et al. Controllable synthesis of CuS decorated TiO 2 nanofibers for enhanced photocatalysis
Chen et al. Facile synthesis of ZnS nanoparticles and their excellent photocatalytic performance
Bao et al. Trisodium citrate as bridging and suppressing agent to control synthesis of ZnO hollow hierarchical microspheres and their photocatalytic properties
Zhao et al. Rose-like CuS microflowers and their enhanced visible-light photocatalytic performance
Wang et al. Controllable synthesis of metastable γ-Bi2O3 architectures and optical properties
CN105600825A (zh) 一种由碳纳米管调节氧化钨形貌与尺寸的方法
CN109516492B (zh) 一种Cu2S微纳米晶的制备方法
CN108892170B (zh) 一种“两相法”制备形貌可控的BiVO4纳米晶的方法
Wang et al. Synthesis of hierarchical flower-like SnO2 nanostructures and their photocatalytic properties
Liu et al. FeVO 4 nanobelts: controllable synthesis by electrospinning and visible-light photocatalytic properties
CN107537520B (zh) 一种溴氧化铋-氧化铜纳米复合光催化剂及其制备方法
Duan et al. Characterization of ZnSe microspheres synthesized under different hydrothermal conditions
Moniruddin et al. Nanoassembly of perovskite-based photocatalysts in a nanoconfined system for photocatalytic H2 production under visible light
Jiang et al. A simple and general route to prepare functional mesoporous double-metal oxy (hydroxide)
Wang et al. Free-standing and flexible 0D CeO 2 nanodot/1D La (OH) 3 nanofiber heterojunction net as a novel efficient and easily recyclable photocatalyst
Rabbani et al. Visible-Light-driven Photocatalytic Properties of Copper (I) Oxide (Cu2O) and Its Graphene-based Nanocomposites

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant