CN108886777B - 用于无线网络监测的方法和用于实现该方法的网络节点 - Google Patents

用于无线网络监测的方法和用于实现该方法的网络节点 Download PDF

Info

Publication number
CN108886777B
CN108886777B CN201780020723.XA CN201780020723A CN108886777B CN 108886777 B CN108886777 B CN 108886777B CN 201780020723 A CN201780020723 A CN 201780020723A CN 108886777 B CN108886777 B CN 108886777B
Authority
CN
China
Prior art keywords
estimated
probability
wireless
distribution
time window
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201780020723.XA
Other languages
English (en)
Other versions
CN108886777A (zh
Inventor
N·格雷塞特
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Publication of CN108886777A publication Critical patent/CN108886777A/zh
Application granted granted Critical
Publication of CN108886777B publication Critical patent/CN108886777B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/14Spectrum sharing arrangements between different networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/51Allocation or scheduling criteria for wireless resources based on terminal or device properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L27/00Central railway traffic control systems; Trackside control; Communication systems specially adapted therefor
    • B61L27/40Handling position reports or trackside vehicle data
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L27/00Central railway traffic control systems; Trackside control; Communication systems specially adapted therefor
    • B61L27/70Details of trackside communication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/04Arrangements for maintaining operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • H04W4/42Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P] for mass transport vehicles, e.g. buses, trains or aircraft
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • H04W64/006Locating users or terminals or network equipment for network management purposes, e.g. mobility management with additional information processing, e.g. for direction or speed determination
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/005Discovery of network devices, e.g. terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/005Moving wireless networks

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mechanical Engineering (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Databases & Information Systems (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Train Traffic Observation, Control, And Security (AREA)

Abstract

提供一种用于监测包括无线电接入基础设施和无线装置的无线网络中的传输的方法。所述方法包括:根据无线装置的数量的预定分布,生成无线装置的估计数量;根据轨迹的预定分布,生成估计数量的无线装置中的每个无线装置的估计轨迹;针对估计数量的无线装置中的每个无线装置,利用无线装置的估计轨迹,确定在时间窗期间无线电传输错误的估计概率分布;以及基于针对无线装置在所述时间窗期间无线电传输错误的相应估计概率分布,确定无线网络的品质因数的估计。

Description

用于无线网络监测的方法和用于实现该方法的网络节点
技术领域
本公开涉及无线网络监测领域,具体涉及监测基于通信的列车控制(CBTC)系统中的无线传输质量。
背景技术
近来,在CBTC系统上运行的无线网络被设计用于使用公共无线电频带,以便降低使用无线电资源的成本。具体来说,对于部署在CBTC系统中的无线网络来说,已经考虑使用ISM(工业、科学以及医疗)频带。随着与其它系统(例如,WiFi热点、微波设备)共享频率资源,CBTC无线网络中的无线电传输可能受到这种外部系统的干扰。
实际上,公共频带与可在下行链路(无线网络基础设施到终端设备)或者在上行链路(终端设备到无线装置基础设施)中产生干扰的其它装置共享。当可用资源受到干扰的太严重影响时,许多消息传输可能会失败。然而,在一些CBTC系统中,如果在针对至少一趟列车的预定时段(通常在1秒钟与1.5秒钟之间)期间在上行链路或下行链路中没有接收到消息,那么CBTC管理系统产生列车停止(train stop)。
因为列车停止会影响多趟列车的交通,所以交通运营商通常会将CBTC系统设定为鲁棒性目标,即列车停止每年不应超过一次,每10年一次,甚或每20年一次。如此强大的鲁棒性目标导致了旨在减少给定时间范围内列车停止次数的技术发展。例如,根据干扰测量的数据库动态地选择传输资源(所述数据库例如可以在每个新的列车行程中随着测量而更新),从而允许大幅减少列车停止量。然而,常规技术具有一些局限性,因为它们不能保证极端约束的干扰情况(例如,在使用ISM频带的系统的情况下,由安装在系统的无线接入点附近的WiFi热点引起的干扰)将被克服。
发明内容
因此,需要提供一种致力于解决本领域常规技术的上述缺陷和缺点的用于无线监测的方法和实现该方法的网络节点。
本公开的一个目的是提供一种用于无线监测的改进方法和实现该方法的网络节点。
本公开的另一目的是提供一种用于减轻常规无线监测方案的上述缺陷和缺点的用于无线监测的改进方法和实现该方法的网络节点。
本公开的又一目的是提供一种用于确保符合有关数据传输失败的无线网络鲁棒性要求的用于无线监测的改进方法和实现该方法的网络节点。
为实现这些目的和其它优点并且根据本公开的目的,如在此具体实施和广泛描述的,在本公开的一个方面,提出了一种用于监测包括无线电接入基础设施和无线装置的无线网络中的传输的方法。所述方法包括:根据无线装置的数量的预定分布,生成无线装置的估计数量;根据轨迹的预定分布,生成所述估计数量的无线装置中的每个无线装置的估计轨迹;针对所述估计数量的无线装置中的每个无线装置,利用该无线装置的所述估计轨迹,确定时间窗期间无线电传输错误的估计概率分布;以及基于所述无线装置在所述时间窗期间的无线电传输错误的相应估计概率分布,确定对所述无线网络的品质因数的估计。
所估计的品质因数可以有利地被用作对系统健康状况的测量,使得可以采取校正措施来改善这种系统健康状况。
在一些实施方式中,所述品质因数可以衡量在所述时间窗期间所述无线网络中的无线电传输错误的发生概率。这样的品质因数可以有利地用于监测无线网络(如CBTC无线网络)中的无线电故障,并且具体监测列车停止事件。
在一些实施方式中,所述时间窗的长度可以在0.5秒钟至2秒钟之间选择。可以有利地将所述时间窗的长度选择为与在CBTC系统中触发列车停止事件所基于的时间窗重合或对应。
在一些实施方式中,确定所述无线网络的品质因数估计可以包括:根据所述时间窗期间的无线电传输错误的所述估计概率分布,生成所述时间窗期间的无线电传输错误的估计概率;以及基于所生成的所述时间窗期间的无线电传输错误的估计概率,执行用于在所述无线网络中分配资源的资源分配算法。
在一些实施方式中,用于在无线通信网络中监测传输的方法还可以包括:通过重复上述方法,确定对所述品质因数的分布的估计。这种品质因数分布可以有利地用作不希望事件的预测工具。然后,可以使用对这种不希望事件(例如,列车停止事件)的预测来识别校正措施作为在发生此类事件之前所设计的不希望事件的特定对策。在一些实施方式中,这可以通过识别对于系统来说恶化的参数(利用系统的统计分析)来完成,例如,网络覆盖中发生最大干扰的位置。
在一些实施方式中,确定无线装置的数量估计可以基于无线装置的数量的概率密度函数模型的估计。
在一些实施方式中,确定相应的轨迹估计的步骤可以基于每个无线装置的位置和速度的估计联合概率密度。
在一些实施方式中,其中,确定相应的轨迹估计的步骤可以基于轨迹分布,根据该轨迹分布,每个移动单元的位置在所述时间窗内保持相同。
在一些实施方式中,所述无线网络被包括在基于通信的列车控制CBTC系统中,并且所述无线装置在列车上,并且所述方法还可以包括:基于所述品质因数的所述分布的估计,确定列车停止分布的估计概率,其中,在所述时间窗期间所述无线网络中发生无线电传输错误时,触发列车停止。列车停止分布的这种估计概率可以用于提供列车停止事件的预测,其允许预先为每种不希望的情况设计特定对策。因此,本公开提供了CBTC无线电环境中的无线电故障的预测和监测。
在一些实施方式中,可以构建干扰数据库,其估计关于无线装置的位置的无线电条件的量化。传输质量可以被看作是几个因素的结果,包括列车的位置和资源分配算法。因此,针对干扰的给定实现,当要在小区中服务的列车的位置和数量发生变化时,性能会急剧变化。为了准确预测小区中的列车停止概率,所述系统可以统计地考虑所有可能的部署情况。由于可能性的数量(包括资源分配策略、干扰实现、列车数量以及它们的位置)巨大,因而本公开有利地定义了用于估计表示列车无线电条件的度量的方法,并且设计阈值,高于该阈值发生警报。
即,在这种实施方式中,所述方法还可以包括:确定到下一次列车停止的预期时间的估计概率分布,利用到下一次列车停止的预期时间的所述估计概率分布,计算列车停止值的目标概率,并且响应于列车停止值的所述目标概率超出预定阈值而生成警告。
另外或者另选地,而且在这种实施方式中,所述方法还可以包括:确定到下一次列车停止的预期时间的估计概率分布,利用到所述下一次列车停止的预期时间的所述估计概率分布,计算列车停止值的目标概率,并且确定列车停止概率等于所述列车停止值的目标概率的概率超过预定阈值的列车的临界数量。
本公开还有利地提供了用于识别列车停止事件的主要原因的方案。由于列车停止可能是由许多不同事件的影响造成的,因而过滤针对每个列车停止事件的共同点是令人关注的。有利的是,该过滤可以包括计算可能的列车停止事件中的原因(例如,给定列车位置、列车数量)的参与概率。根据该信息,可以选择对策/防范措施,举例来说,提议部署新的WRU、限制每小区的列车数量、它们在给定位置集群中的最小速度等。
在本公开的另一方面,提出一种无线网络中的网络节点,该网络节点包括:处理器;存储器,其在工作上联接至处理器,其中,所述网络节点被配置成执行根据本公开的用于监测传输的任何所提议方法。
在本公开的又一方面,提出了一种编码有可执行指令的非暂时性计算机可读介质,该可执行指令在执行时使包括在工作上与存储器联接的处理器的网络节点执行根据本公开的用于监测传输的任何所提议方法。
在本公开的又一方面,提出了一种计算机程序产品,所述计算机程序产品包括以有形方式具体实施在计算机可读介质中的计算机程序代码,所述计算机程序代码包括指令,所述指令用于在提供给计算机系统并执行时,使所述计算机执行根据本公开的用于监测传输的任何所提议方法。
在本公开的又一方面,还提出了一种数据集,该数据集例如通过压缩或编码来表示这样的计算机程序。
应当清楚,本发明可以以多种方式来实现和使用,包括但不限于作为处理、装置、系统、设备以及作为用于现在已知和以后开发的应用的方法。本文所公开系统的这些和其它独特特征根据下面的描述和附图将变得更容易清楚。
通过参照附图,结合所附说明书,可以更好理解本公开,并且使本领域技术人员更加明白其许多目的和优点。
附图说明
图1是例示根据一个或更多个实施方式的示例性CBTC网络的示意图;
图2是例示根据一个或更多个实施方式的示例性网络监测处理的流程图;
图3是例示根据一个或更多个实施方式的示例性网络监测处理的流程图;
图4是例示根据一个或更多个实施方式的无线装置轨迹的分布的示意性近似的流程图;
图5是例示根据一个或更多个实施方式的无线装置轨迹的分布的示意性近似的流程图;
图6是例示根据一个或更多个实施方式的示例性网络监测处理的流程图;
图7是例示根据一个或更多个实施方式的、网络节点的示例性功能的框图。
具体实施方式
为简单和清楚例示起见,附图示出了一般构造方式,并且可以省略公知特征和技术的描述和细节,以避免不必要地模糊对所描述本发明实施方式的讨论。另外,图中部件不必按比例绘制。例如,图中的一些部件的尺度以相对于其它部件夸大,以帮助改进对本发明实施方式的理解。某些图可以按理想化方式示出,以便于帮助理解,如在结构被示出具有直线、锐角,和/或平行平面等时,其在真实世界条件下很可能会显著地不太对称和有序。不同图中的相同标号指示相同部件,而相似标号可以但不必指示相似部件。
另外,应当明白,本文的教导可以以多种形式具体实施,并且本文所公开的任何特定结构和/或功能仅仅是代表性的。具体来说,本领域技术人员应当清楚,本文所公开的方面可以独立于任何其它方面来实现,并且可以以各种方式组合几个方面。
下面,参照根据一个或更多个示例性实施方式的方法、系统以及计算机程序的功能、引擎、框图以及流程图例示,对本公开进行描述。各个所述功能、引擎、框图的框以及流程图例示可以按硬件、软件、固件、中间件、微代码,或其任何合适组合来实现。如果按软件来实现,则功能、引擎、框图的框和/或流程图例示可以由计算机程序指令或软件代码来实现,其可以通过计算机可读介质来存储或传送,或者加载到通用计算机、专用计算机或者其它可编程数据处理装置上以生成机器,使得在计算机或其它可编程数据处理装置上执行的计算机程序指令或软件代码创建用于实现本文所述功能的手段。
计算机可读介质的实施方式包括但不限于计算机存储介质和包括易于从一个地点向另一地点传递计算机程序的任何介质的通信介质两者。如本文所使用的,“计算机存储介质”可以是可以通过计算机或处理器存取的任何物理介质。另外,术语“存储器”和“计算机存储介质”包括任何类型的数据存储装置,诸如(但不限于)硬盘驱动器、闪速驱动器或其它闪速存储器装置(例如,存储器密钥(memory key)、存储器棒、密钥驱动器(key drive))、CD-ROM或其它光学存储部、DVD、磁盘存储部或其它磁存储装置、存储器芯片、随机存取存储器(RAM)、只读存储器(ROM)、电可擦除可编程只读存储器(EEPROM)、智能卡,或者可以被用于承载或存储采用可以通过计算机处理器读取的指令或数据结构形式的程序代码的任何其它介质,或其组合。而且,各种形式的计算机可读介质可以向计算机传送或运送指令,包括路由器、网关、服务器或其它传送装置,有线(同轴电缆、光纤、双绞线、DSL电缆)或无线(红外线、无线电、蜂窝、微波)。所述指令可以包括来自任何计算机编程语言的代码,包括但不限于,汇编语言、C、C++、Visual Basic、SQL、PHP及JAVA。
除非另外加以具体规定,应当清楚,贯穿利用诸如“处理(processing)”、“计算(computing)”、“计算(calculating)”、“确定(determining)”等的术语的下列描述讨论是指计算机或计算系统,或者类似电子计算装置的动作和处理,其操纵表示为该计算系统的寄存器或存储器内的物理(如电子)量的数据或将其变换成类似地表示为该计算系统的存储器、寄存器或其它这种信息存储、传送或显示装置内的物理量的其它数据。
术语“包括(comprise)”、“包括(include)”、“具有(have)”及其任何变体旨在覆盖非排它性的包含,使得包括部件列表的处理、方法、物品,或装置不必局限于这些部件,而是可以包括未明确列出的或这种处理、方法、物品,或装置所固有的其它组件。
另外,单词“示例性”在此被用于意指“用作示例,实例或例示”。本文中描述为“示例性”的任何实施方式或设计不必被解释为比其它实施方式或设计优选或有利。
在下面的描述和权利要求书中,可以使用术语“联接(coupled)”和“连接”以及它们的衍生物。在特定实施方式中,“连接”可以被用于指示两个或更多个部件彼此直接物理或电接触。“联接”可能意味着两个或多个部件处于直接物理或电接触。然而,“联接”也可能意味着两个或更多个部件彼此未直接接触,但仍然彼此协作或交互作用。
如本文所使用的,术语“消息”可以包括可以在节点或站之间或跨网络路由或传送的数据单元,并且可以包括帧、协议数据单元或其它数据单元。
应当明白,本发明的实施方式可以被用于多种应用中。尽管本发明不限于此,但本文公开的用于监测无线网络中的传输的方法可以被用在许多装置中,诸如无线网络的任何网络节点或者无线网络的操作和维护中心中。为清楚起见,以下描述集中于提供用于列车单元等上的无线装置的控制的无线传输的无线网络,如CBTC无线网络。然而,本发明的技术特征不限于此。
如这里所使用的,术语“无线装置”可以用于表示能够与无线基础设施网络的网络节点进行无线通信的任何固定或移动的装置,而且根据该无线网络,可以被称为移动站(MS)、移动终端(MT)、移动设备、用户终端、用户站、用户设备(UE)、车载单元(OBU)等。无线装置可以支持语音和数据通信、仅语音通信,或者仅数据通信,如机器至机器(M2M)装置。
如这里所使用的,术语“接入点”可以用于表示能够与无线装置进行无线通信的无线基础设施网络的固定网络节点,而且根据该无线网络,可以被称为基站(BS)、基本收发器站(BTS)、Node-B、演进节点B(eNB)、路边无线电单元(WRU)等。
图1示出了示例性CBTC无线网络10,其包括连接至路边无线电单元(WRU)11a-11b的服务器15,每个WRU连接至路边传输单元(WTU)12a、12b、12c、12d。WTU管理各个地理覆盖区域(称作小区13a、13b、13c、13d)中的无线传输,小区部分交叠以提供两个邻近小区之间的无缝切换。
相关领域的普通技术人员应当清楚,任何合适的网络拓扑(举例来说,如环形拓扑或网格拓扑)可以用于代替仅作为示例给出的网络10的树形拓扑。同样,可以使用任何合适的网络功能架构,以代替仅作为示例给出的网络10的架构。
图1还示出了位于小区中的列车,列车中嵌入了已知为车载单元(OBU)的相应无线通信设备,OBU能够通过对应小区中的WTU与WRU进行无线通信。
相关领域的普通技术人员应当清楚,可以使用任何合适的通信链路(举例来说,如无线通信链路),以代替仅作为示例给出的WTU与WRU之间和/或WRU与服务器之间的有线通信链路。
如图1所示,多种类型的干扰源(interferer)可能会破坏OBU与WRU之间的无线通信,包括列车上的无线网络外部的干扰源、无线网络10的干扰源,以及不在列车上(例如,沿着列车轨道14定位)的无线网络外部的干扰源。
在一些实施方式中,服务器15可以操作任务关键服务,并且通信网络10可以被配置用于控制几个终端。例如,在CBTC(基于通信的列车控制)的情况下,终端位于列车上并与服务器通信。如果服务器与列车之间或列车与服务器之间的通信链路在预定时间量(通常为1秒钟或1.5秒钟)期间故障,则可以配置CBTC系统的应用层,使得CBTC系统应用层请求列车停止。通信链路的故障可能是由各种原因造成的,包括使用无线传输技术时糟糕的无线电条件或干扰,但也可能是由系统过载造成的(例如,在某个时间点碰巧有太多列车在同一区域的情况)。
一些系统可以被配置成使得一个列车停止导致在给定地理区域(甚至在整个铁路系统)中由系统操作的所有列车立即停止。从这个观点来看,可以将系统的品质因数定义为在预定地理区域中发生列车停止的概率,所述预定地理区域通常是由通信网络10覆盖并由服务器15管理的地理区域,例如,与由CBTC服务器应用程序层管理的列车线、列车线路段相对应的地理区域。
在一些实施方式中,如图1所示,由通信网络10覆盖并由服务器15管理的这种地理区域被分割成更小的区域单元,通常为小区13a、13b、13c、13d,部署无线电基础设施以使得由可称作路边传输单元12a、12b、12c、12d的无线电基础设施单元在小区13a、13b、13c、13d中提供无线电覆盖,而小区由连接至对应WTU的、可以被称作路边无线电单元11a、11b的无线电基础设施单元管理。
在一个或更多个实施方式中,管理小区并且特别是控制在小区中使用的无线电资源的无线电基础设施单元能够动态地分配在小区中使用的无线资源,以便动态地参数化小区中的无线电传输。可以配置通信网络10的无线电基础设施单元,使得在每个WRU处与其它WRU无关地执行这种动态无线电资源管理。在这种网络中,由于通信链路故障导致的错误事件可以从一个小区到另一个小区独立地考虑,使得可以通过考虑每个小区中的性能来评估从通信链路故障和/或列车停止的观点来看的系统性能。
在一些实施方式中,可以利用测量列车停止的估计概率(即,在时间窗期间发生传输错误的估计概率)的品质因数来表达小区中系统的性能。
这样的品质因数将取决于变量,诸如在时间窗期间小区中的列车数量、列车的轨迹,以及用于无线电传输的无线电资源分配方案。
如果能够获知列车轨迹的所有可能构形(configuration)并计算针对每个构形的系统性能,则可以估计品质因数的分布。然而,不可能知道列车轨迹的所有构形。因此,本公开提出确定估计品质因数分布的近似值。一旦确定了品质因数的估计分布,为了维护系统并提高其鲁棒性,可以从该估计中提取相关信息(如列车的临界数量、临界区域,和/或系统警报)。
在系统中构建列车停止的概率分布的简单但不准确的方案是记住所述列车停止的所有实现并根据其构建估计概率分布。然而,当执行低错误概率的分析时(例如,接近10-10),用于准确表征系统行为所需的测量量太大。实际上,在平均每周发生列车停止的系统中,基于列车停止的发生,可以构建估计概率分布。这在每10年发生一次列车停止的系统中是不一样的,而且鲁棒性目标是修改该系统,以使每20年发生一次列车停止的概率非常低,例如,低于10%。
相反,本公开提出独立地考虑被识别为涉及品质因数的随机处理的随机变量的子集,以便更准确地执行对罕见事件(如CBTC系统中的列车停止)的估计,并且获得具有极低量的测量的良好准确度。例如,如下所述,可以独立地考虑两个随机变量子集(列车数量;列车位置)和(通道衰落;干扰),以确定对CBTC系统中列车停止发生概率的估计。这允许随着时间的推移更新系统并跟踪系统性能的潜在变化。如下所述,这种分解还具有根据可以被用于监测无线电系统健康的重要变量来分解问题的优点。
可以被考虑用于表征在时间窗内确定的品质因数的随机变量(例如,测量在该时间窗期间无线网络中发生无线电传输错误的概率)可以是该时间窗内每个位置的每个无线电资源的传输错误分布、无线装置的数量及其轨迹。可以将品质因数视为考虑了资源分配策略的这些随机变量的实现的函数。
图2示出了根据本公开的实施方式的、用于监测包括无线电接入基础设施和无线装置的无线网络中的传输的方法。
根据无线装置的数量的预定分布,生成(201)估计数量的无线装置。根据实施方式,可以从概率模型导出无线装置的数量的配置,例如,通过基于概率模型确定无线装置的数量的估计概率分布,或者可以从随时间推移对系统进行的测量的统计分析导出。
根据轨迹的预定分布,生成(202)(所述估计数量的无线装置当中)每个无线装置的估计轨迹。根据实施方式,轨迹分布也可以从概率模型导出,或者从随时间推移对系统进行的测量的统计分析导出。另外,网络的无线装置的潜在位置的集合可以被量化成位置集群,并且无线装置的轨迹可以由与在时间窗开始时该无线装置位于其中的集群相对应的起始集群和无线装置速度来建模。在一些实施方式中,利用对无线装置在系统中的移动的观察,评估和更新无线装置轨迹的联合概率密度函数。在其它实施方式中,假设每个无线装置在时间窗期间保持在同一集群中。例如,这种假设可以对应于将集群定义为大地理区域的模型,并且无线装置与集群的大小相比具有低峰值速度。这可能是例如在郊区列车系统中的情况,其可以覆盖大的地理区域(大城市周围),同时与城际列车相比,利用低速列车运行。
在无线网络是CBTC网络并且无线装置在列车上的示例性情况下,预定轨迹分布还可以包括由部署CBTC网络的列车轨道所定义的预定路径。
然后,利用无线装置的估计轨迹,针对所估计数量的无线装置中的每个无线装置确定(203)在时间窗期间无线电传输错误的估计概率分布,并且基于该无线装置的时间窗期间无线电传输错误的相应估计概率分布,确定(204)无线网络的品质因数估计。
下面对在时间窗期间无线电传输错误的估计概率分布的确定进行描述。
如上所述,可以将测量了系统性能的地理区域分割成小区,并且在一些实施方式中可以针对地理区域(每个地理区域对应于无线网络的小区)来考虑系统性能。
描述在观察时间窗(例如,长度1秒钟、1.5秒钟或2秒钟)内发生在这种小区中的无线电传输的参数可以定义如下:
N表示在该小区中的列车与服务器15之间同时建立的通信链路的总数。假设每个通信链路对应于一列列车,并且具有上行链路或下行链路的链路方向。参照图1的示例性网络,上行链路通信对应于从OBU到服务器15的传输,而下行链路通信对应于沿反向的传输,即,从服务器15到OBU。
可以采用将通信链路的数量与小区中的列车数量相关联的模型,以考虑可以总共建立的通信链路的数量。例如,N个并行通信链路
Figure BDA0001813921860000101
例如可以划分成在下行链路中建立的N/2个通信链路和在上行链路中建立的N/2个通信链路,因此,假设N/2列列车位于小区内。
对于第j个并行通信链路CLj,n(j)表示在时间窗期间进行的消息传输尝试的次数。
利用具有索引rad_res(j,i)的分配无线传输资源来进行这些消息传输尝试{CLj-Messagei}i=1,...,n(j)中的每一个rad_res(j,i)。
根据该实施方式,无线电资源可以由时间的一部分(根据无线网络物理层架构,也可以被称为“时隙”或“传输时间间隔(TTI)”)和该传输系统在时间窗中使用的频带或频带的子带来定义。
PTE(j,rad_res(j,i))表示利用分配无线传输资源rad_res(j,i)在第j个并行通信链路CLj-Messagei上的第i个消息传输尝试的传输错误概率,例如,连续无线电通信信道波动、干扰,和/或移动无线装置位置。
通信链路彼此不同(特别是因为它们具有不同的衰落和路径增益),即使使用相同的无线电传输资源,每个通信链路也都对应于相应的传输错误概率。因此,可以考虑每个并行通信链路的传输错误概率,导致定义函数PTE(j,v),函数PTE(j,v)表示利用可以被分配给第j个并行通信链路CLj上的无线电传输一组无线电传输资源中具有索引v的无线电传输资源CLj在第j个并行通信链路CLj上的无线电传输的传输错误概率PTE(j,v)。
然后,可以定义品质因数(标记为f(.)),以表示观察时间窗内的传输错误概率PTE(j,v)的组合。
在一些实施方式中,可以将表示在观察时间窗内无线网络中发生传输错误(在N个并行通信链路中的任一个上)的概率的品质因数定义为已分配了无线电资源rad_res(j,i)的第j个并行通信链路CLj上的传输错误概率的集合{PTE(j,rad_res(j,i))}i=1,...,n(j)中的集合{{PTE(j,rad_res(j,i))}i=1,...,n(j)}j=1,...,N的函数f(.)。
通过下式1来提供这种品质因数f(.)的示例性定义:
Figure BDA0001813921860000111
在上式中,
Figure BDA0001813921860000112
表示第j个并行通信链路CLj上的传输错误概率,因此
Figure BDA0001813921860000113
表示在第j个并行通信链路CLj上的n(j)个消息的传输不存在传输错误的概率。
由于
Figure BDA0001813921860000114
测量N个并行通信链路中的任一个上没有传输错误的概率,因而,上面定义的品质因数f({{PTE(j,rad_res(j,i))}i=1,...n(j)}j=1,...,N)测量N个并行通信链路中的至少一个上存在至少一个传输错误的概率,即,在观察时间窗内无线网络中发生传输错误(在N个并行通信链路中的任一个上)的概率。
在特定实施方式中,其中,通过测量发生列车停止的概率来确定系统的性能,上面定义的品质因数f({{PTE(j,rad_res(j,i))}i=1,...,n(j)}j=1,...,N)可以被用于测量在地理区域(在本示例中,对应于小区)中发生列车停止的概率。
记号{{PTE(j,rad_res(j,i))}i=1,...n(j)}j=1,...,N表示一组集合,因为在所考虑的时间窗内,每个并行传输不一定具有相同的无线电资源分配(这种无线电资源分配可以由分配用于传输的无线电资源的索引来表示)。例如,如果在地理区域中存在两列列车(N=2),则在时间窗期间5个无线电资源可用于传输消息的情况下,第一列车可以具有分别对应于在该时间窗期间用于消息传输的5个无线电资源的5个传输错误概率{0.1,0.2,0.3,0.4,0.5},并且第二列车可以具有也分别对应于在该时间窗期间用于消息传输的5个无线电资源的5个不同的传输错误概率{0.15,0.25,0.35,0.45,0.55}。用于第j个并行通信链路CLj_Messagei上的每个消息的传输的无线电资源rad_res(j,i)可以作为动态资源分配方案不然就作为确定性资源分配方案的结果来加以分配。例如,{{1,2},{3,4,5}}表示在考虑时间窗期间发生两个并行传输(N=2),第一个传输被分配资源索引1和2,而第二个传输被分配资源索引3、4以及5。利用记号rad_res(j,i),这意指rad_res(j=1,i=1)=1、rad_res(j=1,i=2)=2、rad_res(j=2,i=1)=3、rad_res(j=2,i=2)=4,以及rad_res(j=2,i=3)=5。在上述传输错误的示例性概率的情况下,相应的PTE(j,rad_res(j,i))将具有下列值:PTE(j=1,rad_res(j=1,i=1))=0.1、PTE(j=1,rad_res(j=1,i=2))=0.2、PTE(j=2,rad_res(j=2,i=1))=0.35、PTE(j=2,rad_res(j=2,i=2))=0.45,以及PTE(j=2,rad_res(j=2,i=3))=0.55。
这将导致一组集合{{0.1,0.2};{0.35,0.45,0.55}},其中n(1)=2和n(2)=3,据此可以确定品质因数值为:1-(1-0.1×0.2)×(1-0.35×0.45×0.55)=0.1048925。
在使用确定性资源分配方案的实施方式中,已预先确定用于在第j个并行通信链路CLj-Messagei上传输消息的无线电资源rad_res(j,i),而在其它实施方式中,网络10可以使用动态资源分配方案,如下面描述的方案。相关领域的普通技术人员应当清楚,可以使用任何合适的动态资源分配方案(例如,为利用认知无线电的网络所设计的资源分配方案)来代替仅作为示例给出下述资源分配方案。
在一些实施方式中,可以根据这样一种方案来分配无线电资源,即,该方案在所考虑时间窗中将N个并行通信链路的传输错误概率PTE(j,v)的集合和可以分配给无线电传输的所有可能资源v作为输入。虽然传输错误概率PTE(j,v)与利用所有可用资源当中的具有索引v的资源的通信链路CLj上的传输有关,但上述传输错误概率PTE(j,rad_res(j,i))涉及利用已为这种传输分配的资源rad_res(j,i)在通信链路CLj上的传输。一旦资源分配已经发生并且确定分别分配给通信链路CLj上的传输的一组无线电资源rad_res(j,i),就可以将无线电资源rad_res(j,i)视为具有无线电资源通用索引v的特定值。
无线电资源分配方案可以规定,n(j)个无线电资源rad_res(j,i)被分别分配用于第j个并行通信链路CLj,以优化测量N个并行通信链路上的传输错误概率的品质因数,举例来说,上述品质因数f({{PTE(j,rad_res(j,i))}i=1,...,n(j)}j=1,...,N)。
在一些实施方式中,资源分配优化可能经受无线电资源分配约束(举例来说,假设一个资源可以仅被分配一次,即,达到系统的非自干扰,和/或不在同一时隙中为一个并行传输分配两个无线电资源的约束)。
相关领域的普通技术人员应当清楚,传输错误概率PTE(j,v)的精确值实际上不可能是已知的,并且在本公开的实施方式中,将以取决于实施方式的或多或少的准确度来确定对那些概率的估计。下面,根据上下文,记号PTE(j,v)将被无差别地用于指定传输错误概率或传输错误估计概率。资源分配方案的输出可以是为第j个并行通信链路CLj分配的多个资源n(j)和其中品质因数值最佳的对应分配资源集{rad_res(j,i)}i=1,...,n(j)
在一些实施方式中,可利用函数g({{PTE(j,v)}v∈S0R}j=1,...,N)来执行品质因数的这种优化,其中,可用资源的索引集合被标记为SOR,其被定义为用于分配品质因数的可用资源集合的最优值,诸如上述的品质因数f({{PTE(j,rad_res(j,i))}i=1,...,n(j)}j=1,...,N)。换句话说,在假定针对给定传输窗口中每个并行传输和无线电资源{{PTE(j,v)}v∈SOR}j=1,...,N的已知一组传输错误概率的情况下,g给出系统品质因数的估计最佳值,其中已经分配了无线电资源以便根据所选择的资源分配算法来优化品质因数。
在实施方式中,该函数g可以由下式2定义,其中,可用无线电资源的索引集合标记为SOR:
g({{PTE(j,v)}v∈SOR}j=1,...,N)=Minv∈sOR[f({{PTE(j,v)}v∈SOR}j=1,...,N)]当利用品质因数f(.)的上述示例性定义时,函数g(.)的定义变为如下:
式3:
Figure BDA0001813921860000141
根据该实施方式,可以实现不同的优化方案以确定最佳资源分配。相关领域的普通技术人员应当清楚,可以使用任何合适的优化算法(举例来说,如遗传算法)来代替仅作为示例给出的下述最佳资源分配确定方案。
在实施方式中,可以通过制成并行传输中的所有可能资源分配的穷举列表,针对每个选定的分配计算品质因数f({{PTE(j,v)}v∈Selected Allocation}j=1,...,N)并保留最佳的一个分配,来确定最佳资源分配。
另选地,可以通过制成并行传输中的可能资源分配的随机列表,针对每个选定的分配计算品质因数f({{PTE(j,v)}v∈Selected Allocation}j=1,...,N)并保留最佳的一个分配,来确定最佳资源分配。
如上所述,在一些实施方式中,可以根据这样一种方案来分配无线电资源,即,该方案在所考虑时间窗中将N个并行通信链路
Figure BDA0001813921860000142
的传输错误概率PTE(j,v)和所有可能资源v作为输入。
可以通过利用有关与每个资源v相关联的传输信道的知识,在发送器处估计通信链路的传输错误的概率。一旦获得PTE(j,v)的估计,就可以确定g({{PTE(j,v)}v∈SOR}j=1,...,N)的估计。遗憾的是,在一些系统中,这种知识对于快速移动的无线装置来说非常有限。实际上,其通常通过在接收器侧发出针对所考虑资源v的无线电信道探测,并利用针对发送器的反馈机制来构建。根据系统的实现,在考虑移动中的无线装置时,无线电信道的变化可能比反馈周期快,这会劣化基于反馈的信道估计技术的性能,特别是效率。
另一方面,可以假定网络中的给定位置的传输信道的长期统计是非常稳定的,即,在时间上低变化或静止,以使得它们可以使用很长时间并考虑到传输错误率根据用于传输的无线电资源v和传输中涉及的无线装置的位置而变化的事实来加以更新。
因此,在一些实施方式中,为了预测传输的性能(通过发生传输错误的概率来测量,即,使用无线电资源v传输消息失败),可以构建干扰数据库,所述数据库存储针对(所考虑小区中)网络中的无线装置的每个潜在位置和每个频率资源的(消息的)所估计的错误传输概率PTE(j,v)的估计分布。
另选地,干扰数据库可以存储针对(所考虑小区中)网络中的无线装置的每个潜在位置和每个信道的估计的干扰分布。
在一些实施方式中,存储在干扰数据库中的信息可以用于根据本公开中描述的示例性方案来执行资源分配。在这种情况下,在确定品质因数时,针对该目的,使用为资源分配而执行的处理以及存储在干扰数据库中的信息可能是有利的。在这点上,对于系统性能预测来说,还有利的是,针对系统监测使用与系统操作模式相同的资源分配方案。
该网络中的无线装置的每个可能位置还可以基于获知或估计的无线装置轨迹而与时刻、时隙或TTI相关联,并且可以评估对应的传输错误概率。实际上,由于无线电资源r(j,i)对应于频率资源和时间资源(时刻、时隙、TTI)以供在该时间资源期间执行第j个并行通信链路CLj的第i个消息传输,因而,该时间资源可以与轨迹相关联,以便确定对应位置。这种位置又对应于存储在干扰数据库中的传输错误概率。
根据实施方式,可以将网络中的无线装置的一组可能位置量化成位置集群,在这种情况下,干扰数据库可以存储针对每个集群和针对每个频率资源的传输错误分布估计。
可以使用干扰数据库中针对所估计的传输错误分布的各种格式的存储。
例如,可以定义与传输错误分布的给定模型相对应的函数的参数,并将其存储在数据库中。这提供了最小化存储的数据量并促进数据库更新的优点,因为可以利用测量反馈来执行这些参数的初始测量和随后的更新,所述测量反馈是用于创建和更新干扰数据库的学习处理的一部分,如下所述。例如,当假定传输错误概率的对数的高斯分布时,可以存储平均值和方差以完全描述整个分布。
另选地,传输错误分布的存储格式可以是直方图,其可以是规则的(条(bin)具有相同的宽度),或不规则的(条的中心与它们各自的宽度一起存储)。因为直方图表示分布,所以使直方图归一化以使直方图表示的积分等于1可能是令人关注的。
现有技术可以用于对离散分布(如直方图)执行统计操作,所述离散分布导致确定针对连续分布执行的对应操作的估计:根据所估计的离散分布计算随机变量函数的数学期望值;计算累积密度函数;根据所估计的离散分布生成随机实现(例如,Monte Carlo采样技术,或Gibbs采样)。下面,我们将无差别地考虑所估计的分布的连续或离散表示,并且无限制地使用连续分布的常见记号(例如,E()用于数学期望值)。
发送器和接收器处于的天线图差异(在它们各自的发送功率方面,以及在接收器周围的干扰源方面)与下行链路传输相反,可能影响系统对上行链路传输的性能。在一些实施方式中,可以通过定义用于下行链路传输和用于上行链路传输的不同位置集群,来考虑取决于每个传输(下行链路或上行链路)的类型的这种不同性能。换句话说,可以为同一地理区域定义两个集群,一个集群对应于来自该集群中的无线装置位置的上行链路传输,另一个集群对应于针对位于该集群中的无线装置的下行链路传输。在这些实施方式中,可以这样选择与给定位置相对应的集群,即,该集群具有所述给定位置和去往/来自位于该给定位置的无线装置的所考虑的传输的下行链路/上行链路性质。
因此,如果给定了无线装置的位置x(j,i)和与第j个并行通信链路CLj的第i个传输相关联的下行链路/上行链路性质,可以确定对应的集群索引u,使得位置x(j,i)属于第u个集群,并且遵守在位置x(j,i)处发生的第j个并行通信链路CLj的第i个传输的下行链路/上行链路性质。
所估计的(消息的)错误传输概率PTE(j,v)的估计分布可以通过执行学习处理来获得,在该学习处理期间,在接收器处针对第j个并行通信链路CLj、对应集群索引u以及资源索引v,反复地执行信道测量。根据实施方式,这些信道测量可以输出各种信道质量度量,诸如错误率、信噪比(SNR)、信号干扰加噪声比(SINR)等。
这些信道测量可以用于确定与集群u和资源v相关联的传输错误概率PTE(j,v)的估计CPTE(u,v)。每个CPTE(u,v)都可以看作是与利用在索引为u的集群中的索引为v的资源的传输错误概率PTE(j,v)相关的随机变量的实现。然后,可以将集合CPTE(u,v)用于构建和更新集群u和资源v的传输错误概率的估计分布(在一些实施方式中,存储在上述干扰数据库中),例如,通过计算估计CPTE(u,v)的直方图。
所获得的集群u和资源v的传输错误概率的估计分布(标记为epd(u,v,w))表示当无线装置位于集群u中并使用资源v时经历(消息的)传输错误概率y(w)的概率,其中,y是针对一次传输的错误概率的函数(连续模型)或矢量(直方图)。根据实施方式,所估计的概率分布可以采用一组直方图的形式(对于该组来说,u,v,对于条来说,w)或一组连续函数(在这种情况下,u和v是离散的,而不是w)。
在一些实施方式中,可以将不同集群和不同资源的传输错误的估计概率分布集存储在干扰数据库中,使得可以从数据库中提取它们以确定品质因数的估计。
在一些实施方式中,可以使用先前估计的概率分布epd(u,v,w),通过针对Q(j,v)(其是遵循估计的概率分布epd(u(j,i),v,w)实现的随机变量(与PTE(j,v)相关))执行的确定的资源分配函数.9({{Q(j,v)}}),并且在给定了无线装置的数量和用于这些无线装置的相应轨迹的情况下,获得品质因数的估计。
图3示出了例示根据一个或更多个实施方式的品质因数估计的示意性确定的流程图。
对于每个并行通信链路CLj的给定数量n(j)的传输(例如,考虑属于观察时间窗的所有资源)和每个传输i(i=1,...,n(j)),确定(301)执行传输i的无线装置所属于的集群索引u(j,i)。
一旦确定了执行每个通信链路的每个传输的无线装置所属于的集群的索引,就确定(302)集群u(j,i)和资源v的传输错误的估计概率分布(标记为epd(u(j,i),v,w)),其表示当无线装置位于集群u(j,i)中并使用资源v时经历(消息的)传输错误概率y(w)的估计概率分布,其中,v是每个集群中的资源索引的索引。
利用所估计的概率分布epd(u(j,i),v,w)(例如,从干扰数据库中提取的),确定(303)对品质因数的期望值。
在一些实施方式中,可以通过计算g({{Q(j,v)}})的期望值(即,E[g({{Q(j,v)}})])来确定品质因数g(.)的期望值,其中,Q(j,v)是遵循所估计的概率分布epd(u(j,i),v,w)的随机变量(与PTE(j,v)相关)的实现。
在一些实施方式中,通信链路
Figure BDA0001813921860000171
的数量N可以与该系统的所考虑的监测区域中的无线装置的数量相关联。例如,在CBTC系统中就是这样的情况,对于该CBTC系统来说,可以采用这样的传输模型,即,根据该传输模型,N/2列列车在观察时间窗期间各自建立上行链路中的通信链路和下行链路中的通信链路,如上所述。
因此,该系统的性能可以基于所估计的概率分布epd(u,v,w)、给定并行通信链路的数量(其可以根据系统监控范围中的无线装置的数量中得出)、分别与这些通信链路相关联的无线装置的相应轨迹,以及资源分配策略来确定。
本公开提出了利用可用于表征在时间窗内确定的品质因数的一组随机变量,并且包括该时间窗内的每个位置的每个无线电资源的传输错误分布、无线装置的数量及其轨迹,来监测系统健康。
图4示出了例示根据一个或更多个实施方式的无线装置轨迹的分布的示意性近似的流程图。
可以根据对在该系统中移动的无线装置的观察,来评估和更新无线装置轨迹的概率密度函数。然而,问题的维数非常高,因此需要大量的测量以便以高准确度获得对无线装置轨迹分布的估计。
通过在有限跨度的观察时间窗(例如,持续时间为1秒钟)内考虑无线装置的轨迹,可以通过少量测量来实现良好的准确度。另外,在一些实施方式中,可以将观察时间窗内小区中的无线装置的轨迹的简化表示定义为对应于轨迹起始点以及无线装置在该起始点的速度的集群索引(在观察时间窗的开始处)。
在一些实施方式中,可以利用随机变量Init_Cluster来描述在观察时间窗内的系统的给定小区中的无线装置的分布,该随机变量表示其中无线装置(在该观察时间窗期间存在于小区中的无线装置当中)位于该观察时间窗口的开始处的集群,称为无线装置的“初始集群”。初始集群的数量将对应于观察时间窗开始时小区中存在的无线装置的数量。
作为随机变量的实现,在观察时间窗开始时存在于小区中的无线装置的轨迹的表示可以考虑两个随机变量的联合概率,一个变量是表示初始集群的随机变量Init_Cluster,而另一个变量是表示位于初始集群中的无线装置的速度(标记为Speed)。
因此,系统中的存在于该小区中的无线装置的分布可以由针对一组集群索引定义的集群中的无线装置的重新分区的联合概率JP_Traj({Init_Cluster},{Speed})来表示。按该定义,{Init_Cluster}是对应于观察时间窗开始时存在于小区中的无线装置的数量的大小|Init_Cluster|的集合,其包含(可能已排序的)初始集群索引。{Speed}是大小与{Init_Cluster}相同的集合,其包含分别对应于集合{Init_Cluster}中的初始集群中存在的无线装置的速度。
在一些实施方式中,可以通过对小区的测量来获取和更新集群中的无线装置的重新分区的联合概率JP_Traj({Init_Cluster},{Speed})的估计分布。例如,值JP_Traj({},{})=0.8可以被解释为表示80%的时间,在观察时间窗的开始处,在所考虑的小区中没有无线装置。值JP_Traj({1,2},{10,20})=0.1可以被解释为表示集群1中具有10km/h的第一无线装置并且集群2中具有20km/h的第二无线装置的概率是10%。
在一些实施方式中,无线装置在时间窗内的完整轨迹可以由与无线装置在连续时隙(例如,在一些实施方式中,传输时间间隔)的相应位置相对应的一系列集群表示。
在无线装置遵循相应预定路径的实施方式中(例如,列车上的无线装置就是这样的情况),表示无线装置在时间窗内的完整轨迹的集群序列可以基于时间窗开始时的初始小区和无线装置的速度,根据无线装置在观察时间窗内沿着无线装置的预定路径的每个传输时间间隔的外推位置来确定。
因此,在一些实施方式中,在时间窗开始时存在于小区中的每个无线装置在该时间窗内的轨迹可以由与在所考虑的时间窗内建立在无线装置与网络之间的每个并行通信链路j的每个资源v相关联的集群的一组集群索引{ci(j,v)}来表示。
在一些实施方式中,可以获得如图4所示的集群索引{ci(j,v)}的实现。
随机变量Init_Cluster和Speed的随机的实现根据集群中的无线装置的重新分区的联合概率JP_Traj({Init_Cluster},{Speed})的估计分布来生成(401)。
如上所述,Init_Cluster随机变量的实现产生一组初始集群,其对应于分别存在于初始集群中的一组无线装置。这些无线装置中的每一个还对应于一个或更多个并行通信链路CLj
针对每个并行通信链路CLj,随机选择(402)对应无线装置在对应初始集群内的初始位置。然后,利用对应于无线装置的速度随机变量的实现来确定(403)在该时间窗内无线装置在该初始位置开始的轨迹。
针对所考虑的时间窗内的每个无线装置和每个可能的资源索引v,无线装置在与第v个资源相对应的时间所属于的集群的索引ci(j,v)根据先前估计的无线装置的轨迹来确定(404)。
图5示出了例示根据一个或更多个实施方式的无线装置轨迹的分布的另一示意性近似的流程图。
在一些实施方式中,通过假定每个无线装置在观察时间窗期间停留在同一集群中,可以进一步简化对无线装置轨迹分布的近似。
这对应于无线装置具有低速度的假定,并且考虑最坏情况(较高速度提供对于干扰的更大鲁棒性)。
在这种情况下,上述Speed速度随机变量可以被认为是确定性的,并且在观察时间窗内针对小区中存在的每个无线装置设定成零值。
因此,无线装置轨迹的概率密度函数可以根据集群之中的无线装置位置的分布和无线装置的数量来表示,该函数可以被估计、更新并且使用以生成初始集群随机变量Init_Cluster的实现并且确定集群索引{ci(j,v)}的实现,如上所述。可以注意,在假定无线装置在观察时段内没有改变集群的情况下,定义无线装置j的轨迹的所有集群索引将是相同的。
在这种情况下,基于小区中的每个无线装置的位置彼此独立的假定,利用小区中无线装置的数量的估计概率分布(标记为N(n)(n是无线装置的数量)),并且利用一个装置在集群u中花费的估计时间比例(标记为T(u)),来近似估计集群中无线装置的重新分区的联合概率JP_Traj({Init_Cluster},{Speed})。
在一些实施方式中,可以通过利用式4来近似估计集群中的无线装置的重新分区的估计联合概率JP_Traj({Init_Cluster},{Speed}):
式4:
Figure BDA0001813921860000201
在一些实施方式中,可以利用集群中无线装置的重新分区的估计概率JP_Traj({Init_Cluster},{Speed})来获得集群索引{ci(j,v)}的实现,如图5所示。
随机变量Init_Cluster的随机实现根据集群JP_Traj({Init_Cluster},{Speed})中无线装置的重新分区的联合概率的估计分布来生成(501)。
随机变量Init_Cluster的实现生成一组初始集群,该组初始集群对应于分别存在于初始集群中的一组无线装置。这些无线装置中的每一个还对应于一个或更多个并行通信链路CLj
针对每个并行通信链路CLj,随机选择(502)对应无线装置在对应初始集群内的初始位置。
针对所考虑的时间窗内的每个并行通信链路CLj和每个可能的资源索引v,确定(503)无线装置在与第v个资源相对应的时间所属于的集群的索引ci(j,v)。
图6示出了根据本公开的实施方式的、用于监测包括无线电接入基础设施和无线装置的无线网络中的传输的方法。
通过利用如上所述对无线装置轨迹分布的近似来生成(601)随机变量{ci(j,v)}的实现,生成无线装置的估计数量和每个无线装置的估计轨迹。
针对每个无线装置,通过根据估计的传输概率分布epd(ci(j,v),v,w)(其表示当无线装置位于集群ci(j,v)中并使用资源v时经历(消息的)传输错误概率的概率y(w)的估计分布)生成(602)Q(j,v)的实现,来确定与第j个并行通信链路和每个无线电传输资源v相关联的无线电传输错误随机变量Q(j,v)的估计概率。
一旦随机选择了每个无线装置的每个资源v上的错误传输概率Q(j,v),通过确定(603)所确定的集合Q(j,v)的品质因数函数g(.)的值(即,g({{Q(j,v)}}))来确定对无线网络的品质因数的估计。
在品质因数函数g(.)对应于在无线网络中使用的资源分配方案的实施方式中,g({{Q(j,v)}})的确定可以包括针对实现的集合{{Q(j,v)}}执行资源分配算法。
在一些实施方式中,可以通过执行图6所示的处理的几次迭代来获得对品质因数分布的估计。然后,可以通过用于组合随机变量实现分布的各种统计方法(举例来说,如Monte-Carlo模拟)来获得对品质因数分布的估计。
在CBTC网络的非限制性背景下,在一些实施方式中可以将品质因数定义为表示列车停止的概率,即,在观察时间窗期间,系统中的至少一列列车存在至少一个传输错误的概率。
在这种情况下,上述处理和图6所示的反复迭代可以用于执行Monte-Carlo模拟,以构建列车停止概率的估计概率密度函数EPTS(pts),其中,pts是系统的列车停止概率。
在一些实施方式中,可以基于无线电链路质量测量值与预定阈值之间的比较来生成警报,其中,利用列车停止分布概率EPTS(pts)确定无线电链路质量测量值。可以利用列车停止分布概率EPTS(pts)来计算下一个错误(列车停止)的估计预期时间,并且还可以利用EPTS(pts)来计算到下一个错误的预期时间的累积密度函数。
例如,在未来20年内没有错误的概率是无线电链路质量的良好指标。如果该概率超出给定阈值(例如,10%),则可以向CBTC网络的操作员生成警报。
根据该实施方式,所生成的警报可以采取各种形式,举例来说,诸如消息、信号和/或操作员屏幕上的显示等。
例如,如果定义列车停止所基于的观察时间窗的长度是TWL,则列车停止的目标概率TPTS可以计算为TPTS=TWL/TWTS,其中,TWTS是没有列车停止的目标时间(例如,20年或大约0.63e9s)。
小区中的列车数量越多,可以分配给每个列车通信的资源量就越少,并且每个传输对干扰的鲁棒性就越小。因此,改善对干扰的鲁棒性的一种方法是限制小区中的列车的数量。限制小区中的列车的数量可以通过调整小区覆盖范围或者通过调整小区中的列车交通量来完成。第一选项是长期方法,而第二选项可以是反应性方法。在一些实施方式中,通过利用列车停止分布概率EPTS(pts)确定小区中的列车临界数量,增强了小区中的对干扰的鲁棒性。
根据实施方式,可以根据小区中的列车的数量来存储列车停止概率分布,并且分解列车的每个数量在目标列车停止性能中的贡献(例如,列车停止的目标概率,如每20年一次列车停止)。这允许计算达到所要求性能的列车的临界数量,并通知操作员。然后可以根据该信息调整列车交通量。
在一些实施方式中,可以将Monte Carlo模拟用于估计列车的临界数量。可以有利地使用确定上述和图5中所示的无线装置的估计分布的方法,因为其将随机数的列车与它们在小区中的相应位置分开。在计算所确定的集合Q(j,v)的品质因数估计(即,g({{Q(j,v)}}))时,这样的值g({{Q(j,v)}})可以存储在专用于所述随机数量的列车的存储器中。然后,可以针对列车的每个最大数量计算具有等于列车停止目标概率TPTS的列车停止概率的概率,并且超出预定阈值(例如,10%)的概率可以定义列车的临界数量。
在一些严重的干扰情况下,给定位置可能会危及整个系统的性能。为此,确定这些局部化干扰位置并向网络运营商强调它们可能是令人关注的,网络运营商可以尝试在现场识别和解决该问题(例如,寻找非法利用ISM频段的装置,例如,未遵守标准占空度),或者部署新的网络接入点,以提高这些位置的系统性能。
然而,如果集群具有高的路旁干扰源密度,但列车通常在该集群中速度很快,那么这种路旁干扰源对系统整体性能的影响很小(因为速度是对路边干扰的良好防护)。另一方面,如果一个集群具有平均干扰水平,但列车通常停在那里,而且可能远离最近的WRU,则这个集群在列车停止中影响可能会很高。而且,如果小区总体上高负载,则这进一步限制了CBTC的无线电性能。因此,临界位置不仅由周围的干扰给出,而且由其它性能因素给出。这可以通过从列车停止的概率密度函数中提取临界位置(即,系统性能低的位置)来解决。
在一些实施方式中,列车停止的概率分布可以与在ci(i,j)中涉及的集群一起存储。然后,可以评估每个集群的贡献(例如,利用边缘化技术),并且从局部性能的观点识别为临界的集群可以突出显示给网络运营商。然后,可以在网络中实施校正解决方案,诸如重新定义小区的覆盖/切换,或者部署新的WRU。
在计算所确定的集合Q(j,v)的品质因数的估计(即,g({{Q(j,v)}}))时,这样的值g({{Q(j,v)}})可以存储在专用于出现在ci(i,j)中的每个集群的存储器中,并且权重是所述集群在ci(i,j)中出现的比率。另选地,针对值g({{Q(j,v)}})的每个实现,其存储在专用于出现在ci(i,j)的关联实现中每个集群的存储器中,而值0存储在未出现在ci(i,j)的关联实现中的每个集群的存储器中。然后,可以针对每个集群计算具有等于列车停止的目标概率TPTS的列车停止概率的概率,并且对其进行排序以突出显示最临界的集群。
在其它实施方式中,可以使用边缘化技术来隔离其它参数,诸如联合获知的所涉及集群和列车数。
在其它实施方式中,可以考虑列车速度并给出关于建议通过集群的最小速度的指示。如果在该决定与集群中的典型速度之间检测到差异,则这可能需要另一类型的对策,诸如部署新的接入点。
返回参照图1,服务器15可以实现根据本公开的实施方式的无线网络监测功能。相关领域的普通技术人员应当清楚,本公开的方法可以按任何其它合适方式来实现,举例来说,如在无线网络的运行和维护(O&M)中心。
图7例示了被配置成实现根据本公开的实施方式的无线网络监测特征的示例性网络节点100。
网络节点100包括:控制引擎101、网络无线电测量引擎103、无线装置数量引擎104、无线装置轨迹引擎105、无线电传输错误概率分布引擎106、性能预测引擎107、警报管理引擎108以及存储器102。
在图7所示的架构中,网络无线电测量引擎103、无线装置数量引擎104、无线装置轨迹引擎105、无线电传输错误概率分布引擎106、性能预测引擎107、警报管理引擎108以及存储器102全部通过控制引擎101在工作上彼此联接。
网络无线电测量引擎103可以提供无线电测量功能,该功能处理(包括在存储器102中存储)从无线装置或无线基础设施节点接收到的无线电测量。由网络无线电测量引擎103接收到的无线电测量可以包括与无线电传输错误、无线电传输错误率,和/或任何其它无线电链路质量参数测量(诸如SNR、S1NR等)有关的信息。这种无线电测量可以由无线电传输错误概率分布引擎106使用。
无线装置数量引擎104可以提供无线装置数量估计功能,以根据预定分布(诸如估计概率分布)生成无线装置的估计数量。
无线装置轨迹引擎105可以提供无线装置轨迹估计功能,以根据预定分布(诸如估计概率分布)生成无线装置的相应估计轨迹。
无线电传输错误概率分布引擎106可以提供无线电传输错误概率分布估计功能,以针对所估计的数量的无线装置中的每个无线装置确定在时间窗期间的无线电传输错误概率的估计分布。如上所述,在一些实施方式中,针对在无线装置与网络基础设施之间的通信链路j上的第i个消息传输,这可能需要在无线装置位于集群u(j,i)中并使用资源v时确定经历给定传输错误概率y(w)的估计概率分布epd(u(j,i),v,w)。
性能预测引擎107可以提供性能预测估计功能,以基于无线装置在时间窗期间无线电传输错误的相应估计概率分布,确定无线网络的品质因数估计。
警报管理引擎108可以提供警报管理功能,以计算网络的关键参数值(例如,在观察时间窗内的目标传输错误概率(针对CBTC网络的目标列车停止概率),针对给定目标传输错误概率的小区中的无线装置(CBTC网络中的列车)的最大数量),并将这些值与用于向网络运营商生成警报的阈值进行比较。
控制引擎101包括处理器,所述处理器可以是任何合适的微处理器、微控制器、现场可编程门阵列(FPGA)、专用集成电路(ASIC)、数字信号处理芯片,和/或状态机,或它们的组合。控制引擎101还可以包括能够存储计算机程序指令或软件代码的计算机存储介质或者可以与其通信(诸如但不限于存储器102),该计算机程序指令或软件代码在由处理器执行时,使处理器执行本文所述的要素。另外,存储器102可以是联接至控制引擎101并且能够存储学习阶段的无线电测量结果和/或如本文针对一些实施方式描述的干扰数据库的任何类型的数据存储计算机存储介质。
应当清楚,参照图7示出和描述的网络节点100仅仅作为示例提供。许多其它架构、操作环境,以及配置都是可能的。节点的其它实施方式可以包括更少或更多数量的组件,并且可以并入参照图7所示的网络节点组件描述的一些或全部功能。因此,尽管控制引擎101、网络无线电测量引擎103、无线装置数量引擎104、无线装置轨迹引擎105、无线电传输错误概率分布引擎106、性能预测引擎107、警报管理引擎108,以及存储器102被例示为网络节点100的一部分,但对组件101-108的位置和控制未加以限制。具体来说,在其它实施方式中,组件101-108可以是不同实体或计算系统的一部分。
虽然已经关于优选实施方式对本发明进行了描述,但本领域技术人员将容易地清楚,在不脱离如由所附权利要求书限定的本发明的精神或范围的情况下,可以对本发明进行各种改变和/或修改。
尽管已经在某些优选实施方式背景下公开了本发明,但应当明白,可以在多种其它实施方式中实现该系统、装置,以及方法的某些优点、特征以及方面。另外,预期本文所述各个方面和特征可以单独实践,组合在一起,或者彼此替代,并且可以进行所述特征和方面的各种组合和子组合并且仍落入本发明的范围内。而且,上述系统和装置不需要包括优选实施方式中描述的所有模块和功能。
本文所述信息和信号可以利用多种不同技术(technology)和工艺(technique)中的任一种来表示。例如,数据、指令、命令、信息、信号、比特、符号以及码片(chip)可以通过电压、电流、电磁波、磁场或磁性粒子、光场或光学粒子,或其任何组合来表示。
根据实施方式,本文所述任何方法的某些动作、事件或功能可以按不同顺序执行,可以一起添加、合并,或排除(例如,不是所有描述的动作或事件都必需用于该方法的实践)。此外,在某些实施方式中,动作或事件可以同时执行而不是顺序执行。
[工业应用]
本申请的这些发明适用于各种领域的无线网络。

Claims (12)

1.一种用于监测无线网络中的传输的方法,所述无线网络包括无线电接入基础设施和无线装置,所述方法包括:
根据无线装置的数量的预定分布,生成无线装置的估计数量;
根据轨迹的预定分布,生成所述估计数量的无线装置中的每个无线装置的估计轨迹;
针对所述估计数量的无线装置中的每个无线装置,利用该无线装置的所述估计轨迹,确定在时间窗期间无线电传输错误的估计概率分布;以及
基于所述无线装置在所述时间窗期间的无线电传输错误的相应估计概率分布,确定对所述无线网络的品质因数的估计,
其中,所述预定分布由概率模型导出或者从随时间推移对系统进行的测量的统计分析导出,所述品质因数衡量在所述时间窗期间所述无线网络中的无线电传输错误的发生概率。
2.根据权利要求1所述的方法,其中,所述时间窗的长度处于0.5秒钟至2秒钟之间。
3.根据前述权利要求1或2所述的方法,其中,确定对所述无线网络的品质因数的估计的步骤包括:
根据所述时间窗期间的无线电传输错误的所述估计概率分布,生成所述时间窗期间的无线电传输错误的估计概率;以及
基于所生成的所述时间窗期间的无线电传输错误的估计概率,执行用于在所述无线网络中分配资源的资源分配算法。
4.根据前述权利要求1或2所述的方法,所述方法还包括:通过重复权利要求1所述的方法来确定对所述品质因数的分布的估计。
5.根据前述权利要求1或2所述的方法,其中,确定对无线装置的数量的估计的步骤基于对无线装置的数量的概率密度函数模型的估计。
6.根据前述权利要求1或2所述的方法,其中,确定相应的估计轨迹的步骤基于所述无线装置中的每一个无线装置的位置和速度的估计联合概率密度。
7.根据权利要求1或2所述的方法,其中,确定相应的估计轨迹的步骤基于轨迹分布,根据所述轨迹分布,每个移动单元的位置在所述时间窗内保持相同。
8.根据权利要求4所述的方法,其中,所述无线网络被包括在基于通信的列车控制CBTC系统中,并且所述无线装置在列车上,所述方法还包括:基于对所述品质因数的分布的估计,确定列车停止分布的估计概率,其中,在所述时间窗期间所述无线网络中发生无线电传输错误时,触发列车停止。
9.根据权利要求8所述的方法,所述方法还包括:确定到下一次列车停止的预期时间的估计概率分布,利用到下一次列车停止的预期时间的所述估计概率分布来计算列车停止值的目标概率,并且响应于列车停止值的所述目标概率超出预定阈值而生成警告。
10.根据权利要求8所述的方法,所述方法还包括:确定到下一次列车停止的预期时间的估计概率分布,利用到下一次列车停止的预期时间的所述估计概率分布来计算列车停止值的目标概率,并且确定列车停止概率等于所述列车停止值的目标概率的概率超过预定阈值的列车的临界数量。
11.一种无线网络中的网络节点,所述网络节点包括:处理器;存储器,所述存储器在工作上联接至所述处理器,其中,所述网络节点被配置成执行根据权利要求1至10中任一项所述的方法。
12.一种非暂时性计算机可读介质,所述非暂时性计算机可读介质上存储有程序,所述程序包括计算机程序代码,所述计算机程序代码包括指令,所述指令用于在提供给计算机系统并执行时使所述计算机系统执行根据权利要求1至10中任一项所述的方法。
CN201780020723.XA 2016-04-12 2017-03-29 用于无线网络监测的方法和用于实现该方法的网络节点 Active CN108886777B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP16305429.9 2016-04-12
EP16305429.9A EP3232721B1 (en) 2016-04-12 2016-04-12 Method for wireless network monitoring and network node for implementing the same
PCT/JP2017/014163 WO2017179462A1 (en) 2016-04-12 2017-03-29 Method for wireless network monitoring and network node for implementing the same

Publications (2)

Publication Number Publication Date
CN108886777A CN108886777A (zh) 2018-11-23
CN108886777B true CN108886777B (zh) 2023-03-28

Family

ID=55809052

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201780020723.XA Active CN108886777B (zh) 2016-04-12 2017-03-29 用于无线网络监测的方法和用于实现该方法的网络节点

Country Status (5)

Country Link
US (1) US10893416B2 (zh)
EP (1) EP3232721B1 (zh)
JP (1) JP6556356B2 (zh)
CN (1) CN108886777B (zh)
WO (1) WO2017179462A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7084890B2 (ja) * 2019-03-11 2022-06-15 株式会社日立製作所 評価システム、及び評価方法
US11558097B2 (en) * 2019-11-08 2023-01-17 Qualcomm Incorporated Enhancements to channel state information reporting
EP3836621B1 (en) * 2019-12-13 2023-10-18 Fluidmesh Networks S.r.l. Antenna keyhole management in wireless radio communication
CN111246506B (zh) * 2020-01-15 2023-04-07 四川众合智控科技有限公司 基于rssi数据的图型化分析方法
US12034620B2 (en) * 2020-03-06 2024-07-09 Nokia Solutions And Networks Oy Forward error correction
IT202000010204A1 (it) * 2020-05-07 2021-11-07 Nidec Asi S P A Sistema per la trasmissione di dati in un impianto di trasporto e corrispondente sistema di trasporto
EP3919344B1 (en) * 2020-06-05 2024-08-28 Mitsubishi Electric R&D Centre Europe B.V. Method for geolocating an interference source in a communication-based transport system
GB2604097A (en) * 2021-02-10 2022-08-31 British Telecomm Resource capacity management
CN114900856A (zh) * 2022-04-20 2022-08-12 上海伽易信息技术有限公司 一种轨道交通车地无线智能监测方法、系统及装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3461167B2 (ja) * 2001-02-07 2003-10-27 株式会社日立製作所 位置計算方法及び位置算出装置
US8391248B2 (en) * 2003-11-28 2013-03-05 Telecom Italia S.P.A. Method for evaluating the performances of a mobile telephony network
JP4818210B2 (ja) * 2007-07-03 2011-11-16 三菱電機株式会社 無線データ通信シミュレーション装置
US8775065B2 (en) * 2010-04-05 2014-07-08 Qualcomm Incorporated Radio model updating
EP2679044B1 (en) * 2011-02-21 2016-04-20 Telefonaktiebolaget LM Ericsson (publ) Service problem diagnosis for mobile wireless networks
US8737225B2 (en) * 2012-02-17 2014-05-27 City University Of Hong Kong Mobile internet service system for long distance trains
EP2688351B1 (en) * 2012-07-20 2018-10-24 Mitsubishi Electric R&D Centre Europe B.V. Method and device for allocating resources for a downlink communication on a frequency selective channel
CN103686818B (zh) * 2012-08-30 2017-05-24 电信科学技术研究院 一种仿真测试方法及设备
CN105009475B (zh) * 2012-12-13 2019-01-18 华为技术有限公司 考虑到用户设备(ue)移动性的用于准入控制和资源可用性预测的方法和系统
EP2744141B1 (en) * 2012-12-17 2017-09-06 Mitsubishi Electric R&D Centre Europe B.V. Method and device for allocating time and frequency resources for at least one data transmission via a fast fading frequency selective channel
EP2936739B1 (en) * 2012-12-21 2017-12-13 Telefonaktiebolaget LM Ericsson (publ) Method and node arrangement for providing more accurate estimation of data path conditions
EP2916604B1 (en) * 2014-03-06 2018-06-06 Mitsubishi Electric R&D Centre Europe B.V. Method for determining time and frequency resources to be used for performing k individual transmissions over n successive frames in a wireless communications network
US20150341832A1 (en) * 2014-05-21 2015-11-26 Qualcomm Incorporated Mobility robustness optimization for heterogeneous and small cell networks
JP6198933B2 (ja) * 2014-09-05 2017-09-20 三菱電機株式会社 自動列車運行システム及びブレーキ制御装置

Also Published As

Publication number Publication date
WO2017179462A1 (en) 2017-10-19
EP3232721B1 (en) 2019-08-14
CN108886777A (zh) 2018-11-23
US10893416B2 (en) 2021-01-12
EP3232721A1 (en) 2017-10-18
JP2019503109A (ja) 2019-01-31
US20200120510A1 (en) 2020-04-16
JP6556356B2 (ja) 2019-08-07

Similar Documents

Publication Publication Date Title
CN108886777B (zh) 用于无线网络监测的方法和用于实现该方法的网络节点
Saleem et al. Primary radio user activity models for cognitive radio networks: A survey
CN113630797B (zh) 管理移动基站的设备和方法
Yatagan et al. Smart spreading factor assignment for lorawans
US9756518B1 (en) Method and apparatus for detecting a traffic suppression turning point in a cellular network
Elderini et al. Channel quality estimation metrics in cognitive radio networks: a survey
WO2009101537A2 (en) Robust cooperative spectrum sensing for cognitive radios
JP2014123939A (ja) 無線通信ネットワークにおいて動作するトランシーバ、無線通信ネットワークにおける送信システムおよび方法
GB2505888A (en) Distinguishing between congestion and interference by applying cluster analysis to sets of network traffic measurements
Torres-Figueroa et al. QoS evaluation and prediction for C-V2X communication in commercially-deployed LTE and mobile edge networks
CN104320784B (zh) 一种频点的规划方法及装置
CN113301600A (zh) 卫星与无线通信融合网络性能的异常数据检测方法和装置
Nashiruddin et al. Coverage and capacity analysis of LoRa WAN deployment for massive IoT in urban and suburban scenario
Han et al. Software-defined radio implementation of age-of-information-oriented random access
Fakhrudeen et al. Comprehensive survey on quality of service provisioning approaches in cognitive radio networks: Part one
US10491350B2 (en) Adaptive reference signal patterns
US10375701B2 (en) Controlling adaptive reference signal patterns
EP2747505A1 (en) Clustering of wireless sensor networks based on hidden node detection
Tomé et al. Joint sampling-communication strategies for smart-meters to aggregator link as secondary users
Yalçın An artificial intelligence‐based spectrum sensing methodology for LoRa and cognitive radio networks
Zhu et al. User correlation and double threshold based cooperative spectrum sensing in dense cognitive vehicular networks
JP6461736B2 (ja) Csma/ca通信品質管理システムおよび方法
EP3114872B1 (en) Method and wireless device for managing probe messages
Ide et al. Forecasting cellular connectivity for cyber-physical systems: A machine learning approach
Zhou et al. Joint energy-efficiency communication optimization and perimeter traffic flow control for multi-region lte-v2v networks

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TG01 Patent term adjustment
TG01 Patent term adjustment