CN108886445A - 针对未授权载波的srs设计 - Google Patents

针对未授权载波的srs设计 Download PDF

Info

Publication number
CN108886445A
CN108886445A CN201780018608.9A CN201780018608A CN108886445A CN 108886445 A CN108886445 A CN 108886445A CN 201780018608 A CN201780018608 A CN 201780018608A CN 108886445 A CN108886445 A CN 108886445A
Authority
CN
China
Prior art keywords
terminal
transmission
signaling
pusch
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201780018608.9A
Other languages
English (en)
Other versions
CN108886445B (zh
Inventor
王萌
阿米塔夫·穆克吉
F·林德齐维斯特
郑荣富
亨利克·萨林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Telefonaktiebolaget LM Ericsson AB
Original Assignee
Telefonaktiebolaget LM Ericsson AB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Telefonaktiebolaget LM Ericsson AB filed Critical Telefonaktiebolaget LM Ericsson AB
Priority to CN202111628356.6A priority Critical patent/CN114189941A/zh
Publication of CN108886445A publication Critical patent/CN108886445A/zh
Application granted granted Critical
Publication of CN108886445B publication Critical patent/CN108886445B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/0006Assessment of spectral gaps suitable for allocating digitally modulated signals, e.g. for carrier allocation in cognitive radio
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0224Channel estimation using sounding signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0808Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA]

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

公开了一种用于无线通信网络的终端,所述终端适于执行针对一个或多个传输带宽的先听后说LBT过程。所述终端适于在一个或多个传输带宽内的一个或多个交织上的物理上行链路共享信道PUSCH子帧中发送PUSCH信令,其中,所述终端还适于在所述PUSCH子帧中的一个或多个交织上发送探测参考信令。

Description

针对未授权载波的SRS设计
技术领域
本公开涉及无线通信技术,具体涉及可以用于未授权载波的参考信号,例如探测参考信号。
背景技术
正在进行的独立LTE-U论坛和关于上行链路授权辅助接入(LAA)的未来3GPP Rel-14工作项旨在允许LTE UE在未授权的5GHz或授权共享的3.5GHz无线电频谱中的上行链路上进行发送。针对独立LTE-U(分别为MulteFire(MF)项目)的情况,初始随机接入和随后的UL传输完全发生在未授权频谱上。监管要求在没有先前的信道侦听的情况下可能不允许在未授权频谱中进行传输。由于未授权频谱必须与类似或不类似的无线技术的其他无线电共享,需要将所谓的先听后说(LBT)方法应用于信道侦听。LBT包括在预定义的最短时间内侦听介质,并且如果信道繁忙则回退。因此,独立LTE-U的初始随机接入(RA)过程应该包括尽可能少的传输并且还具有低时延,使得可以最小化LBT操作的数量然后可以尽快完成RA过程。
今天,未授权的5GHz频谱主要用于实现IEEE 802.11无线局域网(WLAN)标准的设备,该标准在其营销品牌下也称为“Wi-Fi”。
发明内容
本公开的一个目的是在利用基于LBT的方法接入的载波或频率范围的上下文中提供针对参考信令的改进方法。
因此,公开了一种用于无线通信网络的终端。所述终端适于执行针对一个或多个传输带宽的先听后说(LBT)过程。此外,所述终端适于在一个或多个传输带宽内的一个或多个交织上的物理上行链路共享信道PUSCH子帧中发送PUSCH信令。所述终端还适于在所述PUSCH子帧中的所述一个或多个交织上发送探测参考信令(SRS)。所述终端可以包括相应的处理和/或控制电路、和/或无线电电路(例如,发射机)。备选地或附加地,所述终端可以包括一个或多个相应的模块,例如,LBT模块和/或PUSCH模块和/或SRS模块。
具体地,可以考虑用于MuLTEFire无线通信网络的用户设备(UE)。该用户设备包括处理电路和发射机。该用户设备适于利用处理电路和发射机来执行以下操作:执行针对一个或多个传输带宽的先听后说LBT过程,以及在一个或多个传输带宽内的一个或多个交织上的物理上行链路共享信道PUSCH子帧中发送PUSCH信令,并在所述PUSCH子帧中的所述一个或多个交织上发送探测参考信令。
此外,描述了一种在无线通信网络中操作终端的方法,所述终端适于执行针对一个或多个传输带宽的先听后说LBT过程。所述方法包括:在一个或多个传输带宽内的一个或多个交织上的物理上行链路共享信道PUSCH子帧中发送PUSCH信令,以及在所述PUSCH子帧中的所述一个或多个交织上发送探测参考信令。
具体地,可以考虑一种用于在MuLTEFire无线通信网络中操作用户设备的方法。所述方法包括:执行针对一个或多个传输带宽的先听后说LBT过程;在一个或多个传输带宽内的一个或多个交织上的物理上行链路共享信道PUSCH子帧中发送PUSCH信令;以及在所述PUSCH子帧中的所述一个或多个交织上发送探测参考信令。
可以认为发送PUSCH信令和/或参考信令(特别是SRS)是基于LBT过程的。具体地,如果LBT过程成功,则可以执行相应的传输(与传输带宽有关)。通常,发送PUSCH信令和/或参考信令/SRS可以基于配置。可以认为发送PUSCH信令和参考信令/SRS是基于相同的LBT过程的。通常可以在例如PUSCH信令和/或SRS的相关发送之前执行LBT过程。通常,PUSCH信令和参考信令可以认为是上行链路信令。对于不同的传输带宽,可以执行不同的LBT过程,例如,使得每个LBT过程都独立于其他过程(例如,就可能的结果而言,和/或关于不同的传输带宽)。不同的传输带宽可以是相邻的传输带宽和/或非重叠的传输带宽。
通常,发送探测参考信令可以包括经由频分和/或基于循环移位对不同天线端口上发送的探测参考信令进行复用。可以认为天线端口与发送终端相关联。
可以认为发送探测参考信令包括在PUSCH子帧的结尾(在时域中)(具体地,在PUSCH子帧的最后符号中)发送探测参考信令。最后符号可以是SC-FDMA(单载波频分多址)符号,或者在一些情况下(例如,在3GPP新无线电(NR)之类的5G技术的上下文中)是OFDMA(正交频分多址)符号。探测参考信令可以覆盖(仅)最后的符号或最后两个符号。备选地或附加地,探测参考信令可以在频域中覆盖与PUSCH信令和/或其一部分相同的频率和/或子载波,例如,根据一个或多个交织所定义的。
还考虑一种用于无线通信网络的网络节点。所述网络节点适于基于从至少一个终端接收的探测参考信令来估计信道条件。接收探测参考信令包括在一个或多个交织上的物理上行链路共享信道PUSCH子帧中接收PUSCH信令,以及在所述PUSCH子帧中的所述一个或多个交织上接收探测参考信令。网络节点可以包括相应的处理或控制电路、和/或相应的无线电电路(例如,接收机)。备选地或附加地,网络节点可以包括一个或多个相应的模块,例如,估计模块和/或接收模块和/或SRS接收模块和/或PUSCH接收模块。
具体地,描述了一种用于MuLTEFire无线通信网络的接入点,所述接入点包括处理电路和接收机。所述接入点适于利用处理电路和接收机基于从用于MuLTEFire无线通信网络的至少一个用户设备接收的探测参考信令来估计信道条件;其中接收探测参考信令包括:在一个或多个交织上的物理上行链路共享信道PUSCH子帧中接收PUSCH信令,以及在所述PUSCH子帧中的所述一个或多个交织上接收探测参考信令。
讨论了一种用于在无线通信网络中操作网络节点的方法。所述方法包括:基于从至少一个终端接收的探测参考信令来估计信道条件,其中,接收探测参考信令包括:在一个或多个交织上的PUSCH子帧中接收物理上行链路共享信道PUSCH信令,以及在所述PUSCH子帧中的所述一个或多个交织上接收探测参考信令。
此外,提出了一种用于在MuLTEFire无线通信网络中操作接入点的方法。所述方法包括:基于从至少一个用于MuLTEFire无线通信网络的用户设备接收的探测参考信令来估计信道条件。接收探测参考信令包括在一个或多个交织上的物理上行链路共享信道PUSCH子帧中接收PUSCH信令,以及在所述PUSCH子帧中的所述一个或多个交织上接收探测参考信令。
接收PUSCH信令和/或SRS可以基于配置,该配置可以由网络节点提供和/或配置到发送终端。具体地,接收机和/或网络节点(分别为其电路)可以被配置为根据所描述的信令的发送结构来接收和/或解调和/或解码和/或解释接收到的信令。
可以认为在PUSCH子帧的结尾(在时域中)(具体地,在PUSCH子帧的最后符号中)发送探测参考信令。-最后符号可以是SC-FDMA(单载波频分多址)符号,或者在一些情况下(例如,在3GPP新无线电(NR)之类的5G技术的上下文中)是OFDMA(正交频分多址)符号。探测参考信令可以覆盖(仅)最后的符号或最后两个符号。备选地或附加地,探测参考信令可以在频域中覆盖与PUSCH信令和/或其一部分相同的频率和/或子载波,例如,根据一个或多个交织所定义的。
通常,在不同天线端口上和/或由不同用户发送的探测参考信令可以经由频分和/或基于循环移位进行复用。这种复用可以基于例如由网络节点确定和/或配置的配置。可以认为给终端进行配置的网络节点知道相应的配置。应注意,接收机的传输带宽是其进行接收的带宽(但表示发射机进行发送的带宽)。此外,可以对来自不同发射机的接收机信令进行复用,例如,使得接收机可以确定哪个信令来自哪个发射机。由网络节点或接收机确定和/或提供的配置可以例如针对每个单独的终端和/或针对包括一个以上的终端的组指示这种复用。
还可以考虑一种包括能够由控制电路(或处理电路)执行的代码在内的程序产品,所述代码使得所述处理或控制电路执行和/或控制本文所述的任一方法。
还公开了一种承载和/或存储本文所述的程序产品的承载介质。
本文描述的方法允许在上下文中(例如,在相同的频率资源(例如子载波)上)将参考信令作为PUSCH信令传输,而不需要执行附加的LBT过程。这提高了可靠性并允许受制于LBT接入的资源的改进使用。
可以认为终端被实现为用户设备,特别是MuLTEFire的用户设备。网络节点可以实现为MuLTEFire的基站,其可以被称为接入点。
传输带宽可以表示频率带宽和/或范围。传输带宽可以例如是系统带宽、和/或载波和/或载波聚合的带宽、和/或例如根据规则为了接入而必须执行LBT过程的带宽。交织通常可以表示传输带宽内的带宽,和/或可以被认为包含在带宽内、和/或表示带宽的一部分。交织可以包括特别是针对一个终端的(例如调度的和/或预期的和/或预留的)传输(例如,PUSCH上的传输和/或针对SRS之类的参考信令)的频率范围(例如,连续范围和/或两个或更多个不连续范围)。在一些变型中,交织可以附加地包括被(由相同的UE或终端)(例如,调度的和/或预期的和/或预留的)传输阻止和/或免于(由相同的UE或终端)(例如,调度的和/或预期的和/或预留的)传输的频率范围(例如,连续范围和/或两个或更多个不连续范围)。这并不排除其他终端或设备可以利用被上述传输阻止和/或免于上述传输的频率范围。通常,交织可以是基于块的。
探测参考信令可以是与PUSCH信令不相关的参考信令,例如,未预期和/或用于解调和/或解码,和/或独立于PUSCH信令进行调制和/或编码。
通常可以认为,作为发送PUSCH信令的备选或附加,sPUCCH(缩短的PUCCH)信令例如在一个或多个交织中发送、和/或以与关于PUSCH信令所描述的类似方式发送。对于sPUCCH,探测参考信令可以在时域中覆盖一个、两个、三个或四个符号,和/或在频域中覆盖用于传输sPUCCH的子载波和/或其一部分。在一些情况下,SRS信令可以替换和/或表示sPUCCH信令。sPUCCH SRS结构可以取决于sPUCCH和PUSCH之间的LBT间隙的存在,例如,取决于是否必须在sPUCCH信令和PUSCH信令的传输之间执行LBT过程。
PUSCH子帧可以被认为是调度和/或配置和/或预期PUSCH信令的子帧。网络节点可以适于和/或可以例如使用UL许可信令和/或使用隐式调度配置这种子帧来配置这种子帧。
估计信道或信道条件可以包括确定与信道和/或用于估计的信令相关联的定时和/或路径损耗和/或干扰。
附图说明
提供附图是为了说明本文描述的概念和方法,并且除非另外特别说明,否则不旨在限制它们的范围。
附图包括:
图1示出了LTE下行链路物理资源;
图2示出了LTE时域结构;
图3示出了Rel-12上行链路子帧;
图4示出了示例性的对未授权频谱的授权辅助接入(LAA);
图5示出了一个第一交织的分配;
图6示出了SRS设计的示例;
图7示出了SRS设计的示例;
图8示出了SRS设计的示例;
图9示出了sPUCCH中的示例性SRS;
图10示意性地示出了终端;以及
图11示意性地示出了网络节点。
具体实施方式
下面讨论长期演进(LTE)。应当注意,在本描述的上下文中,可以将LTE视为使用LBT来接入载波或频谱和/或使用SRS之类的参考信令的无线通信网络的代表,但是本文描述的方法不一定限于LTE,而是可以用于其他技术,例如窄带和/或MulteFire。
LTE描述了在下行链路中使用OFDM并且在上行链路中使用DFT扩展OFDM(也称为单载波FDMA、SC-FDMA)的电信标准。因此可以将基本的LTE下行链路物理资源视为图中所示的时间-频率栅格,其中,每个资源元素(RE)对应于一个OFDM符号间隔期间的一个OFDM子载波。上行链路子帧具有与下行链路相同的子载波间隔以及与下行链路中的OFDM符号相同数量的时域中的SC-FDMA符号。
图1示出了LTE下行链路物理资源。
在时域中,LTE下行链路传输被组织为10ms的无线电帧,每一个无线电帧由十个长度为Tsubframe=1ms的大小相等的子帧构成,如图1中所示。每个子帧包括两个持续时间为0.5ms的时隙,并且帧内的时隙编号范围为0到19。对于正常循环前缀,一个子帧由14个OFDM符号组成。每个符号的持续时间为约71.4μs(包括循环前缀)。
图2示出了LTE时域结构。
此外,通常以资源块(RB)来描述LTE中的资源分配,其中,RB在频域中对应于12个连续子载波。在频域中在系统带宽的一端从0开始对资源块进行编号。
在LTE中,上行链路传输被动态地调度,即,在下行链路子帧中,基站发送与哪些终端应在后续子帧中向eNB发送数据以及在哪些资源块上发送数据有关的控制信息。上行链路资源网格包括PUSCH中的数据和上行链路控制信息、PUCCH中的上行链路控制信息、以及诸如解调参考信号(DMRS)和探测参考信号(SRS)之类的各种参考信号。图3中示出了示例上行链路子帧。
值得注意的是,UL DMRS和SRS被时分复用到UL子帧中,并且总是在正常UL子帧的最后符号中发送SRS。DMRS用于PUSCH和PUCCH数据的相干解调。针对具有正常循环前缀的子帧,PUSCH DMRS每个时隙发送一次,并且位于第四和第十一SC-FDMA符号中。SRS不直接与其他数据或控制信息相关联,但是为了频率选择性调度的目的,通常可以(由接收网络节点,例如eNodeB)使用SRS来估计上行链路信道质量。为了实现此目的,来自不同UE的具有不同探测带宽的SRS必须能够重叠。如图3所示,交织的FDMA用于具有重复因子2的SRS,这意味着在配置的SRS带宽中,SRS将以梳状方式映射到每个其他子载波。
图3示出了Rel-12上行链路子帧。
在下面讨论在该示例中使用(但不限于)LTE对未授权频谱的授权辅助接入(LAA)。
到目前为止,LTE使用的频谱专用于LTE。其优点是,LTE系统不需要关心共存问题并且可以最大化频谱效率。然而,分配给LTE的频谱是有限的,这不能满足来自应用/服务的对更大吞吐量的不断增长的需求。因此,在3GPP中已经启动了关于扩展LTE的新的研究项目,以便利用除授权频谱之外的未授权频谱。根据定义,未授权频谱可以被多种不同的技术同时使用。因此,LTE需要考虑与诸如IEEE 802.11(Wi-Fi)的其他系统的共存问题。在未授权频谱中以与在授权频谱中相同的方式操作的LTE可能严重地降低Wi-Fi的性能,这是因为一旦Wi-Fi检测到信道被占用,则它将不进行发送。
此外,可靠地利用未授权频谱的一种方式是在授权载波上发送必要的控制信号和信道。也就是说,如图4所示,UE在授权频带中连接到PCell并且在未授权频带中连接到一个或多个SCell。在本申请中,未授权频谱中的辅小区被表示为授权辅助接入辅小区(LAASCell)。
图4示出了使用LTE载波聚合对未授权频谱的授权辅助接入(LAA)。
下面讨论未授权频谱中的独立LTE。
已经启动了一个新的行业论坛,将LTE扩展为在独立模式下完全在未授权频谱上操作,在市场营销方面被称为“MulteFire”。没有授权载波用于基本控制信号传输和控制信道。因此,所有传输都需要在未授权频谱上进行,而没有有保证的信道接入可用性,并且还满足对未授权频谱的监管要求。
针对不同的设备,在未授权频谱中使用载波应当以公平和平等的方式进行。确保此公平共享的一个组成部分是对如何通过系统带宽分配传输的要求。这里,在规则中通常找到关于至少二个不同条件/参数的要求,即涉及:
1.占用信道带宽
2.最大功率谱密度(PSD)
例如,根据ETSI 301 893,对5GHz载波强制要求这二个参数,而美国针对5GHz的规则仅强制要求最大PSD。
占用带宽要求以包含99%信号功率的带宽应在声明的标称信道带宽的80%和100%之间的形式表示。目前对该要求的理解是在超过一个子帧(1ms)的时间间隔上对其进行测试(平均)。因此,一个UE的频率分配必须以满足该要求的方式在子帧之间变化。如果针对仅在单个子帧(例如PRACH或具有单个PUSCH)中发送的UE需要满足该要求,则其仍然是未决问题。
许多不同区域都存在最大PSD要求。对于大多数情况,用1MHz的分辨率带宽表述该要求。例如,针对5150-5350MHz,ETSI 301 893规范要求10dBm/MHz。PSD要求对物理层设计的影响是,没有适当的设计的情况下,具有小传输带宽的信号将受限于传输功率。这可能会对操作的覆盖范围产生负面影响。也就是说,最大PSD要求是需要改变未授权频谱中的UL传输的绑定条件。
可以考虑sPUCCH与后续PUSCH子帧之间的LBT间隙,其中sPUCCH的长度在4至6个符号之间并且跟随部分DL子帧。如果不存在间隙,则在仅针对下一子帧中的PUSCH/ePUCCH调度的sPUCCH期间用户应当发送什么是相关的未决问题。
通常,应注意,术语“未授权”或“未授权载波”或“未授权频谱”或“未授权带宽”可以指使用LBT过程接入的载波/频谱,并且除非另外特别说明,否则在本公开中的任何地方,术语“LBT接入”、“LBT接入载波”或“LBT接入频谱”、“LBT接入带宽”可以与这些术语交换使用。在该上下文中,LBT接入可以指仅在执行了成功的LBT过程之后可接入和/或接入传输(例如,根据规则和/或标准)的带宽/载波/频率/频谱,其中成功的LBT过程可以允许接入传输(即,允许传输)给定的时间量,例如,可以由规则或标准来定义。具体地,该时间量可以覆盖一个或多个子帧的持续时间(LTE的1个子帧具有1ms的持续时间)。
以下讨论针对UL传输的交织设计。
交织传输可以被认为是在需要时给予LAA(或者通常地,使用LBT/信道侦听的载波/频谱上的UL信号)UL信号小BW、更高传输功率(并且,在较小程度上,满足传输BW要求)的手段。可以在PRB(物理资源块)的基础上进行交织传输。在具有大的频率偏移或具有大于循环前缀的延迟扩展的场景下,基于子载波的交织可能产生经受ICI(载波间干扰)的传输。该设计也称为块交织FDMA(B-IFDMA)。
图5中示出了一个交织,图5是用于20MHz系统带宽(最多100个RB可用于传输)的示例的具有5个交织的设计。如图5所示,可以考虑RB的均匀扩展,即均匀交织,其中每个交织包含100/5=20个RB。右图显示了相同分配的前1.2MHz。较暗的线表示PSD要求测量间隔的示例边界(1MHz分辨率带宽)。浅色条纹表示所分配的针对该交织的RB。
图5示出了一个第一交织的分配,图5是用于20MHz带宽(即,每个交织100/5=20个RB)的示例的具有5个交织的设计。右图显示了相同分配的前1.2MHz。较暗的线表示PSD要求测量间隔的边界(1MHz分辨率带宽)。浅色条纹表示所分配的针对该交织的RB。
在LAA/独立LTE-U上行链路中,最初在授权频谱上针对LTE设计的SRS不能被重用。
1.在未授权载波上,信道接入(用于传输)基于LBT机制进行操作。无法保证在未授权载波上发送SRS的信道接入可用性。
2.在授权LTE中,SRS部分地用于信道探测以允许UL中的频率选择性调度。为此,SRS旨在跨越整个带宽。在具有交织的UL资源分配的未授权频带中,频率选择性调度不能提供太多增益,因为来自不同UE的PUSCH传输可以在频谱上均匀分布。因此,针对未授权载波的SRS设计主要用于满足诸如UL MIMO探测和上行链路定时估计的要求。
本公开的针对LBT接入上行链路传输(特别是针对LAA/独立的LTE-U上行链路)的SRS的物理层设计包括若干设计选项和示例。在所提出的设计中,SRS可以与PUSCH信令一起发送(例如,为了避免额外的LBT)。SRS可以占用UL子帧中的最后一个(SC-FDMA)符号,例如,其中在RB基础上交织的PUSCH跨越整个传输带宽。在每个交织中,可以从经由频分和/或循环移位复用的不同用户/天线端口发送SRS。
本文描述的方法提供以下中的至少一个:
1.无需额外LBT即可启用未授权载波上的SRS传输。
2.可以保持与授权LTE中的SRS类似的功能。
3.SRS测量和多个子帧许可二个方面可以从将SRS放置在子帧的最后一个符号中受益。
将通过多个示例性实施例来更详细地说明这些方法。应当注意,提出的方法可以应用于无线通信系统的不同变体,例如,在未授权频谱中操作的LTE(例如LAA和独立LTE-UUL)。
以下设计选项描述了LTE和使用SRS的上下文中的参考信号样式的不同示例。然而,这种样式可用于(例如,在MulteFire系统中,其中可以由接入点提供eNodeB的功能)在LBT接入带宽上的其他(UL/SL)参考信令。
以下描述示例性SRS设计选项1。
为了避免额外的LBT,仅在相同的子帧中与PUSCH一起发送SRS,其中PUSCH可以通过交织跨越整个带宽(例如,载波、和/或规则或标准允许和/或规定的带宽)。
如图6所示,在一个交织(例如,交织#0)内,SRS占用最后的(SC-FDMA)符号。在频域中,SRS跨越整个带宽(例如,通过交织)。从每个UE的多个天线端口和/或多个用户发送的SRS的复用可以基于循环移位(具体地,仅基于循环移位)。
图6示出了SRS设计选项1的示例。
以下描述示例性SRS设计选项2。
在另一个选项中,在一个交织的每个子帧内,除了循环移位之外,SRS可以在频域中复用,即以梳状方式复用(在每个其他子载波上发送)。图7中示出了一个示例,其中偶数天线端口上的SRS在偶数子载波上发送,而奇数天线端口的SRS在奇数子载波上发送(2-梳),或者以相反的方式进行发送。
图7示出了SRS设计选项2的示例。
以下描述示例性SRS设计选项3。
在该选项中,其可以是对选项2的补充和/或基于选项2,通过频分和循环移位在一个交织的每个子帧中进行复用是高度灵活和可配置的。例如,梳使用(即每个用户或天线端口的子载波映射)可以是可配置的。可以由eNodeB或接入点在UL许可和/或更高层信令中指示配置信息。在另一示例中,梳使用因子可以不限于2(占据每个其他子载波)。可以使用更高的梳使用因子(例如,4-梳)来复用更多用户。
通常,可以通过频分和循环移位的各种组合来执行复用多个用户和/或天线端口。例如,为了在一个交织内复用4个天线端口,针对天线1/3和2/4,分别采用没有循环移位的4梳和具有二个不同的循环移位的2梳是二种典型的选项。
以下描述示例性SRS设计选项4。
在该选项中,每个用户/终端的SRS传输涉及二个交织,并且在每个交织中使用2-梳。如图8所示,在所指派的交织x(图中的交织#0)中的偶数子载波上和交织mod(x+5,10)(图中的交织#5)中的奇数子载波上发送SRS。
备选地,另一示例是,如果x<5,则在交织x和交织mod(x+5,10)的偶数子载波上发送SRS,而如果x>=5,则在奇数子载波上发送SRS。
注意,如果为UE指派一半的交织,则其SRS将覆盖系统BW中的每个PRB。当为两个UE各自被指派一半的交织时,它们的SRS信号在信道BW中的所有子载波上被复用。
上述设计选项可以扩展到更一般的选项。每个用户/终端的SRS传输可以涉及m(>=2)个交织,并且在每个交织中使用n(>=2)-梳。在一个示例中,仅在频域中发生复用,即,在特定的交织集上和每个这种交织中的特定梳上发送每个用户/天线端口的SRS。这种SRS传输的配置是灵活的。在另一示例中,除了最后一个示例之外,可以使用循环移位来进一步增强复用容量。
图8示出了SRS设计选项4的示例。
以下描述示例性SRS设计选项5。
该选项解决了在MulteFire sPUCCH中没有ACK/NACK或CSI传输、并且针对sPUCCH之后紧随的PUSCH或ePUCCH传输而调度的用户应当发送的内容。作为示例,在sPUCCH中发送反馈的用户和在sPUCCH之后在UL子帧中调度的用户均可以在sPUCCH开始之前执行UL LBT,并且在sPUCCH和下一个UL子帧之间不存在附加的LBT间隙。在这种情况下,SRS被sPUCCH期间不发送反馈的用户/终端用作初始信号。除了MIMO探测之外,该SRS还可以在eNB处用于定时和频率估计。
图9示出了sPUCCH中的SRS。
图9中示出了非限制性示例,其中在预先指定的交织上在时间上跨sPUCCH区域上重复SRS信号,其中在所有四个符号中具有相同的循环移位。可以为sPUCCH中不发送反馈的所有用户指派针对其基于SRS的初始信号的相同交织。在另一种情况下,可以针对特定用户在每个符号中配置不同的循环移位或梳。在其他示例中,SRS的频域分配可以基于先前描述的SRS设计选项中的一个或多个。
图10示意性地示出了在本示例中可以实施为用户设备的终端10。终端10包括控制电路20,其可以包括连接到存储器的控制器。接收模块和/或发射模块和/或控制或处理模块和/或CIS接收模块和/或调度模块可以在控制电路20中实现和/或可由控制电路20执行,具体地被实现为控制器中的模块。终端10还包括提供接收和发送或收发功能的无线电电路22,无线电电路22连接到或可连接到控制电路。终端10的天线电路24连接到或可连接到无线电电路22以收集或发送和/或放大信号。-无线电电路22和控制它的控制电路20被配置用于具体地利用如本文所述的E-UTRAN/LTE资源在第一小区/载波和第二小区/载波上与网络进行蜂窝通信。终端10可以适于执行用于操作本文公开的终端的任何方法;具体地,它可以包括相应的电路,例如控制电路。
图11示意性地示出了网络节点或基站100,其具体可以是eNodeB或MuLTEFire接入点。网络节点100包括控制电路120,其可以包括连接到存储器的控制器。接收模块和/或发送模块和/或控制或处理模块和/或调度模块和/或CIS接收模块,可以在控制电路120中实现和/或可由其执行。控制电路连接到网络节点100的控制无线电电路122,该网络节点100提供接收机和发射机和/或收发机功能。天线电路124可以连接到或可连接到无线电电路122以提供信号接收或发送和/或放大。网络节点100可以适于执行本文公开的用于操作网络节点的任何方法;具体地,它可以包括相应的电路,例如控制电路。
本公开描述了针对未授权载波上的SRS传输的SRS设计的若干选项。SRS可以占用最后的多载波符号(即,最后的OFDM/B-IFDMA符号),例如,在每个UL子帧或交织的子载波中。所提出的设计选项描述了可以复用从不同用户/天线端口发送的SRS的各种机制。
通常,可以考虑用于无线通信网络的终端。终端可以适于和/或包括LBT模块,用于针对一个或多个(传输)带宽执行LBT过程和/或LBT接入。终端可以适于和/或被配置用于和/或包括:用于具体基于关于带宽执行的(成功的)LBT过程和/或LBT接入而经由带宽发送参考信令的发送模块。该发送可以基于配置。终端可以适于被配置和/或包括用于相应地配置的配置模块。
可以考虑用于在无线通信网络中和/或在无线通信网络中操作终端的方法。该方法可以包括针对一个或多个(传输)带宽执行LBT过程和/或LBT接入。通常,该方法可以包括:具体基于关于带宽执行的(成功的)LBT过程和/或LBT接入,经由(传输带宽)发送参考信令。该发送可以基于配置。该方法可以包括例如从网络节点接收相应的配置。
可以考虑用于无线通信网络的网络节点。该网络节点可以适于和/或包括配置模块,用于给终端配置用于发送参考信令的配置,具体地,该配置可以涉及基于由终端执行的(成功的)LBT过程或接入而(针对终端)接入和/或可接入的(传输)带宽上的参考信令。网络节点可以适于和/或包括接收模块,用于基于该配置接收参考信令。备选地或附加地,网络节点可以适于和/或包括估计模块,用于基于接收到的参考信令估计信道条件。
此外,可以考虑用于操作无线通信网络的网络节点和/或无线通信网络中的网络节点的方法。该方法可以包括:给终端配置用于发送参考信令的配置,具体地,该配置可以涉及基于由终端执行的(成功的)LBT过程或接入而(针对终端)接入和/或可接入的(传输)带宽上的参考信令。该方法可以包括基于配置接收参考信令。备选地或附加地,该方法可以包括基于接收到的参考信令估计信道条件。
参考信令通常可以包括一个或多个参考信号(具体地,SRS)。通常可以认为参考信号覆盖和/或出现在(仅)一个资源元素中和/或被定义为(仅)一个资源元素。多个参考信号可以覆盖和/或出现在多于一个资源元素中,其可以以一个或多个交织和/或传输带宽中的(参考信号)样式进行布置。
发送参考信令可以是以下内容的一部分和/或包括以下内容:交织带宽和/或使用覆盖带宽和/或包括在带宽中的一个或多个交织。备选地或附加地,可以基于(参考信号)样式来执行发送参考信令。发送参考信令可以在侧链路和/或上行链路上。
样式,特别是参考信号样式和/或交织样式,可以是可配置的和/或基于配置的。该配置可以由eNodeB之类的网络节点配置,该网络节点具体可以是作为参考信令的预期接收机的节点。参考信号样式具体可以是梳样式、和/或本文描述的(具体是关于设计1至5的)样式之一。
针对不同的交织,可能存在不同的参考信令样式,例如,基于相应的配置。
样式的参考信号通常可以与如用于(UL)传输的子帧之类的时间结构的最后符号相关联,例如,如果参考信号是在子载波/资源元素中发送或要发送的话。信号与时间单元(例如,符号)相关联可以指在与时间单元或符号相关联和/或被定义的时间或时间间隔发送的信号。
梳可以被认为是可以定义布置(具体地,关于频率)的样式,其中在发送/要发送参考信号的(每)两个子载波/资源元素之间存在至少一个用于其他信令的传输的子载波/资源元素(在频域中),例如用于信道传输,具体是在PUCCH(物理上行链路控制信道)、sPUCCH(缩短的PUCCH,用于缩短的传输时间间隔)、ePUCCH(增强的PUCCH),PUSCH等上的传输。备选地,梳可以定义一种布置,其中在发送/要发送与(第一)天线元件或天线端口或天线子阵列或虚拟天线相关联的参考信号的每两个子载波/资源元素之间存在至少一个子载波/资源元素(在频域中),其用于发送与至少一个其他(第二)天线元件或天线端口或天线子阵列或虚拟天线传输相关联的参考信令。
通常,梳可以定义一种样式,其中在用于参考信令的两个相邻(在频率方面具有彼此最近的距离)的子载波/RE之间布置了用于其他信令的一个或多个其他子载波/RE,其中其他信令可以包括利用不同/其他天线子布置的特定信道上的信令和/或参考信令。
针对n-梳,在用于发送和/或分配用于(与(第一)天线元件/端口/子阵列或虚拟天线相关联的)参考信令的两个子载波和/或资源元素之间,可能存在n-1个其他子载波/资源元素。其他子载波/资源元素可以指与不同种类的信令和/或不同的天线子布置和/或不同的天线端口相关联的子载波/资源元素。天线子布置可以指天线布置或天线阵列的子划分,其中子布置可以包括(物理)天线元件、可以具有一个或多个物理天线元件和/或虚拟天线(可以与一个或多个物理天线元件相关联)的子阵列8、和/或可以涉及相关联的天线端口。天线端口通常可以是用于向天线子布置提供信号以使用天线子布置的(物理)天线元件进行传输的接口。可以认为天线端口提供信令(特别是参考信令)到天线元件的映射。
可以例如根据配置调度样式。调度和/或分配样式可以包括和/或对应于给终端配置样式。样式通常可以指用于上行链路和/或侧链路传输的资源。可以针对传输带宽的不同交织配置不同的样式。带宽可以包括多个交织和/或由多个交织覆盖。
执行与带宽有关的LBT过程和/或LBT接入可以指执行LBT过程或接入以接入用于传输的带宽。
参考信令可以包括一个或多个参考信号(特别是SRS)。
配置通常可以指示和/或规定样式,例如,参考信号样式和/或交织样式,和/或相应地调度和/或分配(上行链路和/或侧链路)资源。值得注意的是,当使用LBT过程时,单独分配用于传输和/或相应配置的资源不允许或不必使资源可用于传输。
可以考虑适于执行本文描述的用于操作网络节点的任何一种方法的网络节点。
可以考虑适于执行本文描述的用于操作终端的任何一种方法的终端。
无线发射机可以是终端或网络节点。
还公开了一种包括可由控制电路执行的代码在内的程序产品,具体地,如果在控制电路(可以是如本文所述的终端或网络节点的控制电路)上执行,则该代码使控制电路执行和/或控制如本文所述的用于操作终端或网络节点的任何一种方法。
此外,公开了一种承载和/或存储本文描述的程序产品和/或可由控制电路执行的代码中的至少任何一个的载波介质,所述代码使控制电路执行和/或控制本文描述的至少任何一种方法。通常,载波介质可以由控制电路接入和/或读取和/或接收。存储数据和/或程序产品和/或代码可被视为承载数据和/或程序产品和/或代码的一部分。载波介质通常可以包括引导/传输介质和/或存储介质。引导/传输介质可以适于承载和/或携带和/或存储信号,特别是电磁信号和/或电信号和/或磁信号和/或光信号。载波介质(特别是引导/传输介质)可以适于引导并承载这些信号。载波介质(特别是引导/传输介质)可以包括电磁场(例如无线电波或微波)、和/或光学透射材料(例如玻璃纤维和/或电缆)。存储介质可以包括可以是易失性或非易失性的存储器、缓冲器、高速缓存、光盘、磁存储器、闪存等中的至少一个。
(传输)带宽可以指基于LBT(特别是基于成功的LBT过程)可接入进行传输的频率范围或频带或频谱。带宽可以覆盖从较低边界频率至较高边界频率的连续频率范围。带宽或频带或频谱的宽度(频率上)和/或由带宽或频带或频谱覆盖的频率(的范围)可以被定义和/或基于规则和/或标准。具体地,在频率上带宽可以覆盖多个子载波和/或资源块(分别地,载波)。可以认为带宽可以根据LTE之类的标准被分配给时间/频率结构。带宽可以被指派给子帧结构之类的时间结构和/或被分为例如与资源块和/或资源元素相关联的子帧和/或频率单元。可以通过规则和/或标准来定义在成功的LBT接入之后传输的(最大)持续时间和/或可用于传输的带宽。实际的传输持续时间可能取决于要传输的数据量。在两个传输事件之间,可能需要成功的LBT过程和/或退避时段或非传输间隙的执行。
带宽可以是交织的,使得仅部分带宽用于传输(如果根据LBT被允许)。用于传输的带宽的一部分可以被指派给特定信道,特别是例如PUSCH或PUCCH之类的物理信道。可以将带宽的不同部分(和/或不同带宽)指派给不同(物理)信道。信道可以根据标准定义,特别是根据LTE定义。可以由(带宽)样式覆盖带宽。该样式可以描述/规定如何使用用于传输的带宽部分(例如,子载波),例如,用于传输的带宽的哪些部分被指派给特定信号(例如,SRS之类的参考信号)和/或用于其他信令(例如,根据信道)。该样式可以基于由网络(特别是eNodeB之类的网络节点)进行配置的配置。与参考信号(SRS)有关的样式和/或描述带宽中的参考信号(SRS)的位置的样式可以被称为参考信号样式。可以将带宽的不同部分分配给不同的天线元件/天线端口/天线(例如,虚拟天线)以用于传输,例如,在MIMO系统中。因此,带宽中的资源可以与不同的天线元件和/或不同的天线子阵列相关联。(参考信号)样式可以叠加在交织样式上。
终端和/或网络节点可以包括和/或连接到或可连接(例如,用于传输)到天线阵列,该天线阵列可以包括一个或多个(物理)天线元件。(物理)天线元件可以在不同的子阵列和/或虚拟天线元件中布置(和/或配置或可配置)。
在本描述的上下文中,无线通信可以是经由电磁波和/或空中接口(特别是无线电波,例如在无线通信网络中和/或利用无线电接入技术(RAT))的通信(特别是数据的发送和/或接收)。通信可以涉及连接到无线通信网络的一个或多于一个的终端和/或无线通信网络的和/或无线通信网络中的多于一个的节点。可以设想,在通信中或用于通信和/或在无线通信网络中、无线通信网络的或用于无线通信网络的节点适于利用一个或多个RAT(特别是LTE/E-UTRA)进行通信。通信通常可以涉及发送和/或接收消息(特别是以分组数据的形式)。消息或分组可以包括控制和/或配置数据和/或有效载荷数据和/或表示和/或包括一批物理层传输。控制和/或配置数据可以指与通信的过程和/或通信的节点和/或终端有关的数据。它可以例如在报头中例如包括涉及通信节点或终端的地址数据和/或关于传输模式和/或频谱配置和/或频率和/或编码和/或定时和/或带宽的数据,作为与通信或传输的过程相关的数据。
通信中所涉及的每个节点或终端可以包括无线电电路和/或控制电路和/或天线电路,其可以布置为利用和/或实现一种或多于一种无线电接入技术。节点或终端的无线电电路通常可适于无线电波的发送和/或接收,且特别地可以包括可以连接到或可连接到天线电路和/或控制电路的相应的发射机和/或接收机和/或收发机。节点或终端的控制电路(通常被称为处理电路)可以包括控制器和/或存储器,所述存储器被布置为可以被控制器接入以进行读和/或写接入。控制器可以被配置为控制通信和/或无线电电路和/或提供附加服务。节点或终端的电路(特别是控制电路或处理电路,例如控制器)可以被编程以提供本文描述的功能。相应的程序代码可以存储在相关联的存储器和/或存储介质中和/或硬连线和/或提供为固件和/或软件和/或在硬件中。控制器通常可以包括处理器和/或微处理器和/或微控制器和/或FPGA(现场可编程门阵列)器件和/或ASIC(专用集成电路)器件。更具体地,可以认为,控制电路包括或可以连接或可连接到存储器,所述存储器可以适于可被控制器和/或控制电路接入以进行读取和/或写入。无线电接入技术通常可以包括例如蓝牙和/或Wi-Fi和/或WIMAX和/或cdma2000和/或GERAN和/或UTRAN和/或特别是E-Utran和/或LTE和/或NR。通信可以具体包括物理层(PHY)发送和/或接收,在其上可以对逻辑信道和/或逻辑发送和/或接收进行印记或分层。
无线发射机可以是(或者包括在)无线通信网络的节点和/或可以实现为终端和/或用户设备和/或网络节点和/或基站和/或中继节点和/或总体上适于在无线通信网络(特别是蜂窝通信)中通信的任何设备。
蜂窝网络可以包括网络节点(特别是无线电网络节点),其可以连接或可连接到核心网络(例如,具有例如根据LTE或NR的演进网络核心的核心网络)。网络节点可以例如是基站。网络节点与核心网络/网络核心之间的连接可以至少部分地基于电缆/陆线连接。涉及核心网络的一部分(特别是基站或eNB上方的层)和/或通过由基站或eNB提供的预定义小区结构的信号的操作和/或通信和/或交换可以被视为具有蜂窝性质或称为蜂窝操作。在不涉及基站上方的层和/或不利用由基站或eNB提供的预定义小区结构的情况下的信号的操作和/或通信和/或交换可以被视为D2D通信或操作(特别是,如果其利用针对蜂窝操作提供和/或使用的特别是载波和/或频率和/或设备(例如,无线电电路和/或天线电路之类的电路,特别是发射机和/或接收机和/或收发机)的无线电资源)。可以认为网络节点被实现为接入点,特别是MuLTEFire接入点(MF接入点)。
终端可以被实现为用户设备。终端或用户设备(UE)通常可以是被配置用于无线设备到设备通信的设备和/或用于无线和/或蜂窝网络的终端,具体地,例如移动电话、智能电话、平板、PDA等的移动终端。如果用户设备或终端接管另一个终端或节点的一些控制和/或中继功能,则该用户设备或终端可以是如本文所述的无线通信网络的节点或用于无线通信网络的节点。可以设想,终端或用户设备适于一个或多个RAT(特别是LTE/E-UTRA或NR)。终端或用户设备通常可以具有接近服务(ProSe)的能力,这可以意味着其是具有D2D能力的或启用了D2D。可以认为终端或用户设备包括用于无线通信的无线电电路和/控制电路。无线电电路可以包括例如接收机或接收机设备和/或发射机或发射机设备和/或收发机设备。控制电路可以包括控制器,其可以包括微处理器和/或微控制器和/或FPGA(现场可编程门阵列)器件和/或ASIC(专用集成电路)器件。可以认为,控制电路包括或可以连接或可连接到存储器,所述存储器可以适于可被控制器和/或控制电路接入以进行读取和/或写入。可以认为,终端用户设备配置为是适于LTE/E-UTRAN的终端或用户设备。
网络节点或基站可以是适于服务一个或多个终端或用户设备的无线和/或蜂窝网络的任何类型的基站。可以认为基站是无线通信网络的节点或网络节点。网络节点或基站可以适于提供和/或定义和/或服务于该网络的一个或多个小区,和/或为网络的一个或多个节点或终端分配用于通信的频率和/或时间资源。通常,适于提供这种功能的任何节点可以被视为基站。可以认为基站或更一般地网络节点(特别是无线电网络节点)包括用于无线通信的无线电电路和/或控制电路。可以设想,基站或网络节点适于一个或多个RAT(特别是LTE/E-UTRA或NR)。无线电电路可以包括例如接收机设备和/或发射机设备和/或收发机设备。控制电路可以包括控制器,其可以包括微处理器和/或微控制器和/或FPGA(现场可编程门阵列)器件和/或ASIC(专用集成电路)器件。可以认为,控制电路包括或可以连接或可连接到存储器,所述存储器可以适于可被控制器和/或控制电路接入以进行读取和/或写入。基站可以被布置为无线通信网络的节点(特别是配置为用于和/或使能和/或促进和/或参与蜂窝通信,例如作为直接涉及的设备或者作为辅助和/或协调节点)。通常,基站可以被布置为与核心网络通信和/或向一个或多个用户设备提供服务和/或控制一个或多个用户设备和/或在一个或多个用户设备与核心网络和/或另一基站之间中继和/或传输通信和/或数据和/或具有接近服务的能力。例如,根据LTE标准,可以将eNodeB(eNB)设想为基站的示例。基站通常可以具有接近服务能力和/或提供相应的服务。可以认为,基站被配置为演进分组核心(EPC)或者连接或可连接到演进分组核心(EPC)和/或提供相应功能和/或与相应功能连接。基站的功能和/或多个不同功能可以分布在一个或多个不同的设备和/或物理位置和/或节点上。基站可以被视为无线通信网络的节点。通常,基站可以被视为配置为协调节点和/或具体地为蜂窝网络的两个节点(特别是两个用户设备)之间的蜂窝通信分配资源。
可以认为,对于蜂窝通信,例如,经由和/或定义可以由网络节点(特别是基站或eNodeB)提供的小区,提供至少一个上行链路(UL)连接和/或信道和/或载波以及至少一个下行链路(DL)连接和/或信道和/或载波。上行链路方向可以指从终端到网络节点(例如,基站和/或中继站)的数据传输方向。下行链路方向可以指从网络节点(例如,基站和/或中继节点)到终端的数据传输方向。UL和DL可以与不同的频率资源(例如,载波和/或频谱带)相关联。小区可以包括可具有不同频带的至少一个上行链路载波和至少一个下行链路载波。网络节点(例如基站或eNodeB)可以适于提供和/或定义和/或控制一个或多个小区,例如,PCell和/或LA小区。
网络节点(特别是基站)和/或终端(特别是UE)可适于在LTE授权和/或定义的频谱带(频带)中进行通信。此外,网络节点(特别是基站)和/或终端(特别是UE)可适于在自由可用和/或非授权/LTE非授权频谱带(频带)(例如,约5GHz)中进行通信。
LBT载波可以指在发送之前要在其上(特别是在未授权频谱或频带中)执行LBT过程的载波或小区。表述LBT载波可以与LA SCell或未授权小区或未授权载波互换使用。载波可以与频谱和/或频带和/或信道相关联。小区可以与至少一个信道或载波相关联;可以认为小区包括用于上行链路或下行链路的不同载波或信道。针对每个数据传输方向(上行链路和下行链路),小区可以包括一个或多于一个频带(例如,子载波)和/或信道。上行链路和下行链路可能存在不同数量的信道或频带。
LBT过程通常可以指确定传输是否可以或可允许(具体地,针对执行LBT的节点或终端)在给定频谱或频带或小区或载波(具体地,LA SCell或LBT载波)中发送的过程,和/或是否正在进行另一传输(这将指示不可能进行自己的传输)的过程。
LBT过程可以包括监听信道和/或频谱和/或频带和/或载波,在该信道和/或频谱和/或频带和/或载波上可以执行可以预期用于的传输(特别是监听来自另一源和/或发射机的传输),其可以包括接收和/或检测该信道和/或频谱和/或频带中的传输或辐射的能量或功率。LBT过程的失败可以指示已经检测到信道或小区或频带上的传输,可以认为它被另一发射机阻止或针对另一发射机而被阻止(例如,由于检测到预定能量或功率水平)。可以认为LBT过程的失败等同于确定信道/频谱/频带/载波为忙碌。
成功的LBT过程可以指示信道/频谱/频带/载波是空闲的。通常,可以在传输之前和/或在调度的传输之前执行LBT过程。可以认为基于帧和/或基于子帧和/或与小区(特别是PCell)的定时结构同步执行LBT过程。LBT过程可以包括一个或多个CCA过程。
监听和/或执行CCA可以包括确定和/或测量在预定时间内监听(和/或在其上执行CCA)的信道/频谱/频带/载波上的功率和/或能量。可以将经测量的功率或能量与阈值进行比较以确定忙碌或空闲状态。
存储介质可以适于存储可由控制电路和/或计算设备执行的数据和/或存储可由控制电路和/或计算设备执行的指令,当由控制电路和/或计算设备执行时,所述指令使得控制电路和/或计算设备执行和/或控制本文所述的方法中的任一个。存储介质通常可以是计算机可读的,例如光盘和/或磁存储器和/或易失性或非易失性存储器和/或闪存和/或RAM和/或ROM和/或EPROM和/或EEPROM和/或缓冲存储器和/或高速缓冲存储器和/或数据库。
资源或通信资源或无线电资源通常可以是频率和/或时间资源(其可以被称为时间/频率资源)。分配或调度的资源可以包括和/或指频率相关信息(特别是关于一个或多个载波和/或带宽和/或子载波和/或时间相关信息,特别是关于帧和/或时隙和/或子帧,和/或关于资源块和/或时间/跳频信息)。分配的资源可以特别指UL资源(例如用于第一无线设备向第二无线设备发送和/或用于第二无线设备的UL资源)。在所分配的资源上发送和/或使用所分配的资源可以包括在所分配的资源上(例如在所指示的频率和/或子载波和/或载波和/或时隙或子帧上)发送数据。通常可以认为可以释放和/或解除分配所分配的资源。网络或网络的节点(例如分配或网络节点)可以适于向一个或多个无线设备(特别是第一无线设备)确定和/或发送指示资源的释放或解除分配的相应分配数据。
分配数据可以认为是调度和/或指示和/或许可由控制或分配节点分配的资源的数据(特别是标识或指示为无线设备或终端的通信预留或分配哪些资源和/或无线设备或终端可以使用哪些资源以用于通信的数据)和/或指示(特别是关于上行链路和/下行链路资源的)资源许可或释放的数据。许可或资源或调度许可或调度数据(特别地,可以涉及关于和/或表示和/或指示资源调度的信息)可以认为是分配数据的一个示例。分配数据可以特别地包括关于配置和/或用于配置终端的信息和/或指令,例如指示要使用的测量配置。可以认为,分配节点或网络节点适于将分配数据直接发送给节点或无线设备,和/或经由中继节点和/或另一节点或基站间接地发送给节点或无线设备。
分配数据可以包括控制数据和/或是消息的一部分或者形成消息(具体地,根据预定义格式,例如DCI格式,其可以在标准(例如LTE)中定义)。分配数据可以包括配置数据,其可以包括用于将用户设备配置和/或设置为例如与接收机和/或发射机和/或收发机的使用和/或关于发送(例如,TM)和/或接收模式的使用相关的特定操作模式(特别是测量模式)的指令,和/或所述分配数据可以包括调度数据(例如要用于发送和/或接收的许可资源和/或指示资源)。调度指派可以被视为表示调度数据和/或被视为分配数据的示例。调度指派可以特别地涉及和/或指示要用于通信或操作的资源。配置或分配数据可以包括用于配置终端以进行交织的指示(特别是可以对其执行交织的可用的资源),例如交织集和/或如何交织和/或用于交织的映射和/或在其上执行交织的频率范围,其中频率范围可以对应于由交织集覆盖的频率范围。
配置终端或无线设备或节点可以包括指示和/或使终端无线设备或节点改变其配置,例如,至少一个设置和/或寄存器条目和/或操作模式。终端或无线设备或节点可以适于例如根据终端或无线设备的存储器中的信息或数据配置自身。由另一设备或节点或网络来配置节点或终端或无线设备可以指和/或包括由另一设备或节点或网络向所述无线设备或节点发送信息和/或数据和/或指令,例如,分配数据或配置数据和/或调度数据和/或调度许可。配置终端可以包括向终端发送指示要使用哪种调制和/或编码的分配数据。终端可以配置有和/或用于调度数据和/或使用调度的和/或分配的上行链路资源例如用于传输,和/或使用调度的和/或分配的下行链路资源例如用于接收。可以利用分配或配置数据调度上行链路资源和/或下行链路资源,和/或上行链路资源和/或下行链路资源可以被提供有分配或配置数据。
第一小区通常可以是授权蜂窝网络(例如,LTE)的小区。它可以是预期携带(特别是针对PCell和/或第二小区(例如是LA SCell)的)控制和命令信息的PCell和/或小区。
第二小区和/或第二上行链路载波(分别地,第二下行链路载波)通常可以是非授权网络的小区和/或上行链路载波(分别地,下行链路载波)和/或在传输数据之前必须执行/已经执行LBT过程的小区和/或上行链路载波(分别地,下行链路载波),具体地,LASCell。可以在第一小区上发送用于第二小区的控制信息/调度,例如,以提供授权辅助控制和调度。
上行链路载波通常可以是或指示预期和/或用于上行链路传输的载波和/或频带。
下行链路载波通常可以是或指示预期和/或用于下行链路传输的载波和/或频带。
载波通常可以是未授权载波和/或基于成功的LBT过程和/或在成功的LBT过程之后被接入以进行传输。信道通常可以是物理信道和/或通过包括和/或与一个或多个(无线电和/或时间/频率)资源(特别是资源元素或资源块)相关联来定义。
交织通常可以包括在资源上进行发送,使得发送设备在由一个或多个频率单元(例如,最小频率单元,或者特别是由资源块覆盖的频率范围)分开的频率或频率资源上进行发送。分离单元可以是无线发射机不在其上进行发射(除了可能由于物理原因而出现的不期望的泄漏或干扰)的频率单元。通常,交织可以具体地涉及关于资源块定义的交织(分别是由RB覆盖的相应频率范围)。交织可以包括发送一个或多个交织和/或在一个或多个交织上发送。
通常,交织可以包括在资源(可以是调度的资源)上映射和/或调度一个或多个交织。可以由无线发射机调度和/或配置调度的资源,例如用于下行链路或上行链路传输。调度的资源可以关于一个或多个资源单元(特别是资源块)和/或覆盖多个频率单元(例如,载波(包括多个子载波))。对于上行链路传输,可以由另一无线发射机(例如,网络节点)配置调度的资源。通常可以由无线发射机本身例如基于调度的资源来执行映射,例如,网络节点或终端可以(例如,经由映射模块)自己执行映射。备选地,可以由配置发射机(例如,网络节点)执行映射(在这种情况下,可以经由分配和/或配置数据指示映射,和/或交织可以包括根据调度的资源和/或基于所指示的映射进行发送)。
可以定义关于频率结构和/或相关联的资源结构的交织,使得交织包括和/或覆盖多个频率单元(和/或相关联的资源单元),例如,Nu个单元,其中一个单元用于和/或可以用于传输,其中一个或多个其他单元(例如,Nu-1个)不用于传输。具体地,这些单元可以是资源块。例如,Nu可以是6或大于6。
交织的频率单元在频率上可以是连续的和/或邻接的。可以认为,通常关于频率宽度而不是特定频率范围来定义交织(尽管可能为不同的频率范围定义了不同的交织(例如,由于规则定义的保护间隔不同),和/或可能将定义特定的交织和/或将交织结构映射到特定频率范围)。特别地,交织可以覆盖连续的或邻接的频率范围,其可以被称为交织范围。
用于传输的交织的频率单元可以称为传输单元,其他单元可以称为非传输单元。交织的单元具体可以是资源块,频率单元可以分别对应于资源块的相关联的频率范围。通常,交织可以包括发送一个或多个交织(例如,连续的和/或邻接的交织),因此可以包括在与交织的数量相对应的多个传输单元上进行发送。
可以认为,对于交织,传输单元位于交织所覆盖的频率范围的边界之一,例如,在交织的最高或最低频率处。交织中的传输单元的相同布置可以用于不同的交织(覆盖不同的频率范围)以执行交织。可以认为交织的传输单元被布置为使得(例如,系统带宽的)每个保护间隔包括至多一个传输单元(传输资源块)。
由于用于传输或针对传输调度的传输单元(用于传输或针对传输调度的频率或资源单元)和/或资源在不用于传输或不是针对传输调度的传输单元和/或资源之间聚集,可以认为交织或交织集(分别对应资源)表示资源聚集。在此上下文中,在不是针对传输调度的频率或资源单元之间(关于相邻频率或子载波之类的频率单元)布置单个传输单元或资源或多于一个传输单元或资源可被视为聚集(clustering)。通常,聚集可以至少部分地涉及在一频率范围上(特别是一个或多个资源块所覆盖的范围上)将传输单元(特别是子载波)布置为与其他传输单元不连续(至少在一侧上)。
调度资源和/或资源分配可以指示和/或包括交织样式。资源或分配可以是传输资源(特别是上行链路传输资源),和/或可以与特定设备相关联或分配给特定设备,该特定设备例如是终端之类的无线发射机(其可能已经由eNodeB之类的网络节点或可能已经将资源分配给自身的网络节点分配了资源)。样式可以包括一个或多个交织集。一个或多个(特别是每个)集和/或样式可以是具体在传输单元(具体地,子载波)或频率上的资源的位置和/或布置方面周期性的和/或准周期性的。可以认为,集和/或样式是块状(block-wise)周期性的或准周期性的。块状(准)周期性可以指特定样式的传输单元(特别是子载波)在频率范围内(在频域上)重复多次(两次或更多次,特别是5次或更多次)。如果重复样式仅覆盖调度资源或资源分配的交织样式的一部分,则(准)周期性可以认为是块状的。
交织样式可以包括多个重复样式,特别是块状重复样式。各个重复样式可以不同。重复样式可以与交织样式包括的交织和/或交织集相关联和/或取决于交织样式包括的交织和/或交织集。通常可以基于交织指示或交织集指示(其可以由配置数据或分配数据表示)来定义和/或配置交织样式。如果一个或多个传输单元(特别是子载波)从频域中的周期性轻微移位,则可以将重复样式视为准周期性的。轻微移位可以是传输单元宽度(特别是子载波宽度)向上或向下的一个或两个宽度的移位、和/或低于重复样式所覆盖的总频率范围的10%或5%的距离(在频域上)的移位。周期性或准周期性的重复样式可以具有等距布置(关于频域)的相邻或连续布置的传输单元的聚集(特别是子载波或子载波的块或聚集)或传输单元。频域中的距离可以例如是频率或频率单元,特别是在子载波(和/或最小频率单元)中。
交织通常可以包括对要发送的信号执行DFT-OFDM调制(特别是基于调度资源或资源分配),其可以包括或指示交织样式。执行调制可以包括和/或基于例如QAM调制信号的RB到子载波映射。调度资源或资源分配上的DFT-OFDM调制信号。调制可以是聚集调制和/或DFT-S-OFDM(DFT-扩展-OFDM)调制。可以如本文所述执行调制。无线发射机可以适于执行这种调制和/或包括用于这种调制的调制模块。如果和/或当在聚集资源上执行DFT-OFDM调制时,DFT-OFDM调制可以被认为是聚集的,例如,如本文所述的交织样式。
交织样式通常可以包括和/或指示一个或多个交织集。样式可以指示或包括可用于传输和/或调度用于传输的频率单元(例如,子载波)和/或资源,例如,资源块和/或一个或多个传输单元(例如,子载波)。可以由配置数据和/或分配数据指示样式。
无线发射机(特别是网络节点)可以配置和/或适于配置和/或包括用于配置一个或多个无线发射机(例如,终端)以执行交织、和/或利用交织集进行发送的配置模块,例如通过向终端分配或配置与交织集相对应的资源,例如通过发送相应的配置或分配数据。
基于频率结构和/或资源结构执行交织和/或发送可以指在发送时遵循和/或利用该结构。
交织和/或(特别是在交织的上下文中的)发送可以包括执行LBT过程,和/或可以取决于成功的LBT过程,例如,针对传输单元和/或包括传输单元的交织的LBT过程。交织和/或(特别是在交织的上下文中的)发送可以包括发送,使得在交织的每个发送单元/发送资源块中,使用用于保护间隔的最大允许功率或PSD和/或达到最大允许功率或PSD的功率进行传输。可以认为交织或发送包括发送,使得平均在交织的发送单元/发送资源块中预定数量的时间单元(例如,与资源结构或资源单元相关联的时隙和/或子帧和/或时间单元)上,使用用于保护间隔的最大允许功率或PSD和/或达到最大允许功率或PSD的功率进行传输。该最大功率/PSD可以被定义为保护间隔的需求或条件,其中在所述保护间隔中通过交织布置和/或覆盖发送单元。
探测参考信号通常可以是参考信号,其可以被提供,例如,以估计信道状态和/或信道质量和/或定时/同步。这种参考信号的接收机通常可以知道传输功率和/或参考信号的预期定时,并且适于将该传输功率与用于这种估计的接收功率进行比较。
可以认为参考信号(特别是SRS)是可以用于eNodeB之类的网络节点的上行链路信号,和/或可以用于另一终端的侧链路信号。网络和/或网络节点可以适于给发送参考信号/SRS的终端配置传输功率,和/或该传输功率可以由标准定义。可能存在不同种类的参考信号/SRS,例如,特定于小区的信号或特定于终端/UE的信号。终端可以配置用于参考信号/SRS传输,和/或eNodeB之类的网络节点可以适用用于这种配置和/或执行这种配置。配置用于参考信号传输可以包括配置定时(例如,在子帧或时隙之类的时间结构中,要发送SRS),和/或传输频率(执行传输的频率/其中要执行传输的时间间隔)和/或用于传输的资源(资源元素)。
资源元素可以被认为是时间/频率资源的形式,特别是为这种资源定义的最小单元。资源元素具体可以包括一个子载波(在频域中)和一个符号(在时域中)。
一些有用的缩写包括:
缩略语 解释
SRS 探测参考信号
DMRS 解调参考信号
eNB 演进的NodeB、基站
UE 用户设备
UL 上行链路
LAA 授权辅助接入
RS 参考信号
Scell 辅小区
LBT 先听后说
LTE-U 未授权频谱中的LTE
PUSCH 物理上行链路共享信道
PUCCH 物理上行链路控制信道
CA 载波聚合
CoMP 协作多点发送和接收
CQI 信道质量信息
CRS 小区特定参考信号
CIS 信道状态信息
CIS-RS CIS参考信号
D2D 设备到设备
DL 下行链路
EPDCCH 增强物理DL控制信道
DL 下行链路;通常是指更远离网络核心(物理上和/或逻辑上)的节点/方向的数据的传输;特别是从基站或eNodeB到D2D使能节点或UE;经常使用不同于UL的指定频谱/带宽(例如,LTE)
eNB 演进的NodeB;基站的一种形式,也称为eNodeB
E-UTRA/N 演进的UMTS陆地无线电接入/网络,RAT的示例
FDD 频分双工
ID 标识
L1 层1
L2 层2
LTE 长期演进,电信标准
MAC 媒体接入控制
MBSFN 多广播单频网络
MDT 最小化路测
NW 网络
OFDM 正交频分复用
O&M 操作和维护
OSS 操作支持系统
PC 功率控制
PDCCH 物理DL控制信道
PH 功率余量
PHR 功率余量报告
PSS 主同步信号
PUSCH 物理上行链路共享信道
R1,R2,...,Rn 资源,特别是时间-频率资源,特别是指派给相应的载波f1,f2,...,fn的资源
RA 随机接入
PACH 随机接入信道
RAT 无线电接入技术
RE 资源元素
RB 资源块
RRH 远程无线电头端
RRM 无线电资源管理
RRU 远程无线电单元
RSRQ 参考信号接收质量
RSRP 参考信号接收功率
RSSI 接收信号强度指示符
RX 接收/接收机,接收相关
SA 调度指派
SL 侧链路,涉及终端之间的D2D传输(设备到设备),可以由网络支持或独立于网络;SL可以使用UL载波/带宽(特别是FDD)
SINR/SNR 信号与噪声和干扰比;信噪比
SFN 单频网络
SON 自组织网络
SSS 辅同步信号
TPC 发射功率控制
TX 发射/发射机,发射相关
TDD 时分双工
UE 用户设备
UL 上行链路;通常是指向更靠近网络核心(物理上和/或逻辑上)的节点/方向的数据的传输;特别是从D2D使能节点或UE到基站或eNodeB;在D2D的上下文中,其可以指用于在D2D中发送的频谱/带宽,其可以同样用于蜂窝通信中的到eNB的UL通信;在一些D2D变型中,涉及D2D通信的所有设备的传输在一些变型中通常可以在UL频谱/带宽/载波/频率中
可以根据LTE或相关标准解释这些缩写。

Claims (10)

1.一种用于无线通信网络的终端,所述终端适于执行针对一个或多个传输带宽的先听后说LBT过程;所述终端还适于:
在一个或多个传输带宽内的一个或多个交织上的物理上行链路共享信道PUSCH子帧中发送PUSCH信令,其中,所述终端还适于在所述PUSCH子帧中的所述一个或多个交织上发送探测参考信令。
2.根据权利要求1所述的终端,其中,发送探测参考信令包括:经由频分和/或基于循环移位对不同天线端口上发送的探测参考信令进行复用。
3.一种在无线通信网络中操作终端的方法,所述终端适于执行针对一个或多个传输带宽的先听后说LBT过程;所述方法包括:
在一个或多个传输带宽内的一个或多个交织上的物理上行链路共享信道PUSCH子帧中发送PUSCH信令,以及
在所述PUSCH子帧中的一个或多个交织上发送探测参考信令。
4.根据权利要求3所述的方法,其中,所述发送探测参考信令包括:经由频分和/或基于循环移位对不同天线端口上发送的探测参考信令进行复用。
5.一种用于无线网络通信的网络节点,所述网络节点适于基于从至少一个终端接收的探测参考信令来估计信道条件,其中,接收探测参考信令包括:在一个或多个交织上的物理上行链路共享信道PUSCH子帧中接收PUSCH信令,以及在所述PUSCH子帧中的所述一个或多个交织上接收探测参考信令。
6.根据权利要求5所述的网络节点,其中,在不同天线端口上和/或由不同用户发送的探测参考信令经由频分和/或基于循环移位进行复用。
7.一种用于在无线通信网络中操作网络节点的方法,所述方法包括:基于从至少一个终端接收的探测参考信令来估计信道条件,其中,接收探测参考信令包括:在一个或多个交织上的物理上行链路共享信道PUSCH子帧中接收PUSCH信令,以及在所述PUSCH子帧中的所述一个或多个交织上接收探测参考信令。
8.根据权利要求7所述的方法,其中,在不同天线端口上和/或由不同用户发送的探测参考信令经由频分和/或基于循环移位进行复用。
9.一种包括能够由控制电路执行的代码在内的程序产品,所述代码使得所述控制电路执行和/或控制根据权利要求3、4、7或8中的一项所述的方法。
10.一种承载介质,用于承载和/或存储根据权利要求9所述的程序产品。
CN201780018608.9A 2016-02-05 2017-02-06 针对未授权载波的srs设计方法和装置 Active CN108886445B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111628356.6A CN114189941A (zh) 2016-02-05 2017-02-06 用于MulteFire无线通信网络的用户设备、接入点及其操作方法

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201662291897P 2016-02-05 2016-02-05
US62/291,897 2016-02-05
PCT/SE2017/050105 WO2017135886A1 (en) 2016-02-05 2017-02-06 Srs design for unlicensed carriers

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN202111628356.6A Division CN114189941A (zh) 2016-02-05 2017-02-06 用于MulteFire无线通信网络的用户设备、接入点及其操作方法

Publications (2)

Publication Number Publication Date
CN108886445A true CN108886445A (zh) 2018-11-23
CN108886445B CN108886445B (zh) 2022-01-14

Family

ID=58057201

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201780018608.9A Active CN108886445B (zh) 2016-02-05 2017-02-06 针对未授权载波的srs设计方法和装置
CN202111628356.6A Pending CN114189941A (zh) 2016-02-05 2017-02-06 用于MulteFire无线通信网络的用户设备、接入点及其操作方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN202111628356.6A Pending CN114189941A (zh) 2016-02-05 2017-02-06 用于MulteFire无线通信网络的用户设备、接入点及其操作方法

Country Status (7)

Country Link
US (4) US9848424B2 (zh)
EP (2) EP3780473A1 (zh)
CN (2) CN108886445B (zh)
ES (1) ES2835050T3 (zh)
PL (1) PL3411995T3 (zh)
RU (1) RU2703448C1 (zh)
WO (1) WO2017135886A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111586844A (zh) * 2019-02-15 2020-08-25 华为技术有限公司 一种通信方法及装置

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106465303B (zh) * 2014-05-15 2019-07-02 Lg电子株式会社 在未经许可的带中控制功率
CN107135053B (zh) * 2016-02-26 2019-08-16 北京佰才邦技术有限公司 探测参考信号的传输方法、装置及终端
US10070425B2 (en) * 2016-02-26 2018-09-04 Telefonaktiebolaget Lm Ericsson (Publ) Multi-subframe grant with scheduling of both data and control channels
US10412755B2 (en) * 2016-03-25 2019-09-10 Qualcomm Incorporated Techniques for configuring uplink transmissions in a shared radio frequency spectrum band
WO2017171347A1 (ko) * 2016-03-28 2017-10-05 엘지전자 주식회사 비면허 대역을 지원하는 무선 통신 시스템에서 상향링크 제어 정보를 전송하는 방법 및 이를 지원하는 장치
US10506662B2 (en) * 2016-05-10 2019-12-10 Qualcomm Incorporated Internet-of-Things design for unlicensed spectrum
US10862727B2 (en) * 2016-06-16 2020-12-08 Lg Electronics Inc. Method for transmitting and receiving physical uplink control channel in wireless communication system, and device for supporting same
US10517021B2 (en) 2016-06-30 2019-12-24 Evolve Cellular Inc. Long term evolution-primary WiFi (LTE-PW)
US10142074B2 (en) * 2016-11-03 2018-11-27 Qualcomm Incorporated Techniques and apparatuses for common uplink burst
CN108574953B (zh) 2017-03-09 2020-06-09 华为技术有限公司 一种信道接入方法、装置及计算机存储介质
WO2018174543A1 (ko) * 2017-03-21 2018-09-27 엘지전자 주식회사 무선 통신 시스템에서 참조 신호 자원 할당 방법 및 이를 위한 장치
CN109392072B (zh) * 2017-08-14 2021-08-03 普天信息技术有限公司 功率余量的计算方法
EP3689056A4 (en) * 2017-09-28 2021-04-28 Lenovo (Beijing) Limited METHOD AND DEVICE FOR SOUND REFERENCE SIGNAL TRANSMISSION ON SIDELINK
US10931483B2 (en) * 2017-11-06 2021-02-23 Qualcomm Incorporated Device-to-device (D2D) communication management techniques
US11582000B2 (en) * 2018-05-11 2023-02-14 Qualcomm Incorporated Front loaded sounding reference signal and physical random access channel signal
WO2019227316A1 (en) * 2018-05-29 2019-12-05 Nokia Shanghai Bell Co., Ltd. Sounding reference signal transmission in unlicensed spectrum
EP3811550A1 (en) * 2018-06-21 2021-04-28 Qualcomm Incorporated Device-to-device (d2d) channel measurement techniques
US11570821B2 (en) * 2018-06-29 2023-01-31 Panasonic Intellectual Property Corporation Of America Transmission apparatus, reception apparatus, transmission method, and reception method
CN110740018B (zh) * 2018-07-18 2021-12-14 维沃移动通信有限公司 非授权频段上的调度方法、侦听方法和设备
WO2020024298A1 (zh) * 2018-08-03 2020-02-06 富士通株式会社 资源调度指示方法及其装置、通信系统
US11121891B2 (en) 2019-02-28 2021-09-14 Electronics And Telecommunications Research Institute Method and apparatus for transmitting sounding reference signal
US11245552B2 (en) 2019-03-29 2022-02-08 Skyworks Solutions, Inc. Sounding reference signal switching
US11432106B2 (en) * 2020-01-28 2022-08-30 Huawei Technologies Co., Ltd. Side link resource management
US20220014215A1 (en) * 2020-07-10 2022-01-13 Semiconductor Components Industries, Llc Wireless data transmission
US20220407571A1 (en) 2021-06-14 2022-12-22 Skyworks Solutions, Inc. Fast antenna swapping

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150085797A1 (en) * 2013-09-23 2015-03-26 Qualcomm Incorporated Lte-u uplink waveform and variable multi-subframe scheduling
CN104488213A (zh) * 2012-05-11 2015-04-01 光学无线技术有限责任公司 用于特殊子帧配置的参考信号设计
US20150358826A1 (en) * 2014-06-10 2015-12-10 Qualcomm Incorporated Channel usage beacon signal transmissions based on uplink transmissions over an unlicensed radio frequency spectrum band

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9392504B2 (en) * 2007-06-19 2016-07-12 Qualcomm Incorporated Delivery of handover command
EP2286613B1 (en) * 2008-06-19 2019-02-20 Huawei Technologies Co., Ltd. Improved method and apparatus for carrier aggregation in radio communication system
WO2014109707A1 (en) * 2013-01-14 2014-07-17 Telefonaktiebolaget L M Ericsson (Publ) Handling uplink transmit power reporting
US9730105B2 (en) * 2013-05-20 2017-08-08 Qualcomm Incorporated Listen-before-talk reservation scheme for wireless communications over unlicensed spectrum
WO2016108505A1 (ko) * 2015-01-02 2016-07-07 엘지전자 주식회사 무선 통신 시스템에서 채널 상태 보고 방법 및 이를 위한 장치
US10084577B2 (en) * 2015-01-30 2018-09-25 Motorola Mobility Llc Method and apparatus for signaling aperiodic channel state indication reference signals for LTE operation
US10136452B2 (en) * 2015-02-24 2018-11-20 Qualcomm Incorporated Enhanced PRACH for standalone contention based communications including unlicensed spectrum
US9930654B2 (en) * 2015-03-17 2018-03-27 Motorola Mobility Llc Method and apparatus for scheduling user equipment uplink transmissions on an unlicensed carrier
US10051617B2 (en) * 2015-03-17 2018-08-14 Motorola Mobility Llc Method and apparatus for scheduling user equipment uplink transmissions on an unlicensed carrier
US10524236B2 (en) * 2015-03-23 2019-12-31 Qualcomm Incorporated Uplink transmission control with clear channel assessment
US10251197B2 (en) * 2015-07-23 2019-04-02 Qualcomm Incorporated Transmitting uplink control channel information when a clear channel assessment of an unlicensed carrier fails
US10624112B2 (en) * 2015-09-23 2020-04-14 Qualcomm Incorporated Location and listen-before-schedule based resource allocation for vehicle-to-vehicle communication
US10355830B2 (en) * 2015-12-07 2019-07-16 Telefonaktiebolaget Lm Ericsson (Publ) Uplink mac protocol aspects
US10079657B2 (en) * 2015-12-16 2018-09-18 Qualcomm Incorporated Techniques for HARQ retransmission skipping
KR20170078530A (ko) * 2015-12-29 2017-07-07 한국전자통신연구원 비면허 대역의 무선 통신 시스템에서 사운딩 참조 신호를 전송하는 방법 및 장치, 그리고 사운딩 참조 신호의 전송을 트리거하는 방법 및 장치
KR20180104644A (ko) * 2016-01-06 2018-09-21 노키아 솔루션스 앤드 네트웍스 오와이 비면허 대역 동작을 위한 업링크 커버리지 확장
US11228462B2 (en) * 2016-01-19 2022-01-18 Lg Electronics Inc. Method for transmitting or receiving sounding reference signal in wireless communication system supporting unlicensed band, and device for supporting same
US9980236B2 (en) * 2016-01-29 2018-05-22 Ofinno Technologies, Llc Wireless device transmission power management
US10348543B2 (en) * 2016-01-29 2019-07-09 Ofinno, Llc Uplink transmission in a wireless device and wireless network
JP2019054314A (ja) * 2016-02-02 2019-04-04 シャープ株式会社 端末装置および方法
US10841881B2 (en) * 2016-02-02 2020-11-17 Sharp Kabushiki Kaisha Terminal apparatus and communication system
US10477528B2 (en) * 2016-02-02 2019-11-12 Ofinno, Llc Downlink control information in a wireless device and wireless network
US10856328B2 (en) * 2016-02-04 2020-12-01 Electronics And Telecommunications Research Institute Method for communicating in network supporting licensed and unlicensed bands

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104488213A (zh) * 2012-05-11 2015-04-01 光学无线技术有限责任公司 用于特殊子帧配置的参考信号设计
US20150085797A1 (en) * 2013-09-23 2015-03-26 Qualcomm Incorporated Lte-u uplink waveform and variable multi-subframe scheduling
US20150358826A1 (en) * 2014-06-10 2015-12-10 Qualcomm Incorporated Channel usage beacon signal transmissions based on uplink transmissions over an unlicensed radio frequency spectrum band

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
3GPP: "《3GPP TSG RAN WG1 #80bis R1-151407》", 11 April 2015 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111586844A (zh) * 2019-02-15 2020-08-25 华为技术有限公司 一种通信方法及装置
CN111586844B (zh) * 2019-02-15 2024-01-05 华为技术有限公司 一种通信方法及装置

Also Published As

Publication number Publication date
US9848424B2 (en) 2017-12-19
EP3411995A1 (en) 2018-12-12
RU2703448C1 (ru) 2019-10-17
EP3411995B1 (en) 2020-11-18
US20220150891A1 (en) 2022-05-12
US20170230972A1 (en) 2017-08-10
ES2835050T3 (es) 2021-06-21
US11259296B2 (en) 2022-02-22
US10225836B2 (en) 2019-03-05
CN114189941A (zh) 2022-03-15
US20180070355A1 (en) 2018-03-08
PL3411995T3 (pl) 2021-05-31
US20190200353A1 (en) 2019-06-27
US11985637B2 (en) 2024-05-14
EP3780473A1 (en) 2021-02-17
WO2017135886A1 (en) 2017-08-10
CN108886445B (zh) 2022-01-14

Similar Documents

Publication Publication Date Title
US11985637B2 (en) SRS design for unlicensed carriers
US11212802B2 (en) Coexistence of interleaved and contiguous uplink transmissions
KR102520327B1 (ko) 비면허 대역에서의 채널 액세스 방법, 장치 및 시스템
CN104937866B (zh) 在无线通信系统中收发参考信号的方法和设备
US10841811B2 (en) Base station apparatus, terminal apparatus, and communication method
EP3259950B1 (en) Lbt patterns for wireless communication
CN110100405A (zh) 设计用于无线通信系统中的nr的广播信道的方法和设备
CN108353061A (zh) 用于在非授权带中传输信号的方法、装置、和系统
CN107113878A (zh) 无线电接入节点、通信终端及其中执行的方法
CN107836093A (zh) 用于接收下行链路信号的方法和用户设备以及用于发送下行链路信号的方法和基站
US11304065B2 (en) Base station apparatus, terminal apparatus, and communication method
CN106538017A (zh) 用于缩放无执照射频谱带的带宽的技术
CN108352958A (zh) 用于在非授权带中传输信号的方法、装置、和系统
CN108476525A (zh) 用于非授权带中的信道访问的方法、装置、和系统
EP3387778B1 (en) Interlace pattern selection for low cm/papr transmission
CN105103479B (zh) 用于小区发现另一个小区的方法和设备

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1261862

Country of ref document: HK

GR01 Patent grant
GR01 Patent grant