CN108880001B - 一种基于磁耦共振的无线能量发射装置 - Google Patents

一种基于磁耦共振的无线能量发射装置 Download PDF

Info

Publication number
CN108880001B
CN108880001B CN201810888846.1A CN201810888846A CN108880001B CN 108880001 B CN108880001 B CN 108880001B CN 201810888846 A CN201810888846 A CN 201810888846A CN 108880001 B CN108880001 B CN 108880001B
Authority
CN
China
Prior art keywords
resistor
circuit
triode
relay
capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810888846.1A
Other languages
English (en)
Other versions
CN108880001A (zh
Inventor
高博
刘明耘
霍佳雨
刘佳林
张馨予
吴戈
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jilin University
Original Assignee
Jilin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jilin University filed Critical Jilin University
Priority to CN201810888846.1A priority Critical patent/CN108880001B/zh
Publication of CN108880001A publication Critical patent/CN108880001A/zh
Application granted granted Critical
Publication of CN108880001B publication Critical patent/CN108880001B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type

Abstract

本发明的一种基于磁耦共振的无线能量发射装置属于电子技术的技术领域,其结构有交直流转换电路(1),高频逆变电路(2),电容补偿电路(3),开关控制电路(4),单片机(5),幅度检测电路(6),模数转换电路(7)。本发明具有负载适应范围宽、传输效率高、使用灵活、系统稳定性和可靠性高等优点。

Description

一种基于磁耦共振的无线能量发射装置
技术领域
本发明属于电子技术的技术领域。特别涉及一种基于磁耦共振的无线能量发射装置。
背景技术
自电力进入人类生活后,电线作为传输电能的媒质几乎无处不在,为我们的生活日常带来很多便利。但有线能量传输方式会受限于空间占用、用电设备接触带来潜在的安全隐患等问题。而无线能量传输系统中不存在直接电气连接,可实现无线设备不受空间限制的能量供给,且具有无接插环节、无裸露导体、无漏电触电危险等优势。毫无疑问,无线电能传输正逐渐在诸如电动汽车、手机、平板电脑、生物医学等用电设备的充电或供电方面发挥越来越重要的作用。
在无线充电技术中,磁耦合共振的方式因其传输效率高、功率大、结构方便等优点而被广泛关注。其原理是先将220V/50Hz的市电整流成直流稳压电,再由高频逆变电路逆变成50kHz的高频交流电,发射线圈(呈电感性)配合适当的电容进行选频谐振,将电能转换成磁能,再通过磁耦合共振的方式由接收线圈接收能量,最终再由接收线圈后续的整流滤波电路将线圈接收的能量转换成恒压或恒流为接收端的设备进行供电或为蓄电池进行充电。为了保证传输效率和功率,上述系统要求发射线圈所在的初级回路必须谐振,接收线圈所在的次级回路也要谐振。众所周知,当发射线圈和接收线圈进行耦合时,次级回路对初级回路会产生影响,其影响可等效成一个反射阻抗串联在初级回路中,该反射阻抗包括反射电阻和反射电抗,其中反射电抗(呈电感性或电容性)对初级回路的谐振程度会产生严重影响,因此在设计发射系统时必须考接收系统的参数影响。
目前的磁耦合共振无线传输系统一般都是针对固定的接收回路进行设计的,一旦接收回路的参数发生变化时,其在发射回路中等效的反射阻抗也会发生变化,原本发射回路的谐振状态便会遭到破坏,出现失谐的现象,导致发射回路的电流、功率、效率等重要参数迅速变差。而事实上即使在同一类的用电设备中,其接收电路也会由于产品型号、生产厂家的不同而参数各异,因此目前现有的无线能量传输系统兼容性普遍存在兼容性差的问题,一个发射系统只能为同一个固定型号的产品提供能量传输。
综上,为了扩宽对不同用电产品的适应范围,提高系统的兼容性,保证系统的传输效率,现有的无线能量传输系统还需要进行改进。
发明内容
本发明要解决的技术问题是,针对现有技术存在的缺点,提供一种基于磁耦共振的无线能量发射装置。该装置能够根据接收回路的不同,自动调整发射回路的参数,以达到自动匹配不同的负载、提高传输效率的目的。
本发明的目的通过以下技术方案实现:
一种基于磁耦共振的无线能量发射装置,其结构有,交直流转换电路1,高频逆变电路2,单片机5,其特征在于,结构还有,电容补偿电路3,开关控制电路4,幅度检测电路6,模数转换电路7;所述的交直流转换电路1的输入端与市电相连,交直流转换电路1的输出端与高频逆变电路2的电源输入端相连,高频逆变电路2的取样输出端与幅度检测电路6的输入端相连,幅度检测电路6 的输出端与模数转换电路7的输入端相连,模数转换电路7的输出端与单片机5 相连,单片机5还分别与高频逆变电路2的控制输入端和开关控制电路4的输入端相连,开关控制电路4的输出端分别与电容补偿电路3的输入端、幅度检测电路6的使能控制端相连,电容补偿电路3的输出端与高频逆变电路2的补偿输入端相连;
所述的高频逆变电路2的结构为,二极管D1的阳极与+12V的电源相连,二极管D1的阴极与电阻R1的一端、三极管Q1的发射极以及电容C1的一端相连,电阻R1的另一端与三极管Q1的基极及三极管Q2的集电极相连,三极管Q2的基极与电阻R2的一端相连,电阻R2的另一端与 +5V直流电源相连,三极管Q2的发射极与电阻R3的一端相连,电阻R3的另一端作为高频逆变电路 2的第一个控制输入端,记为端口MCU-in1,与单片机5相连,三极管Q1的集电极与二极管D2的阳极、三极管Q3的基极及电阻R4的一端相连,电阻R4 的另一端与电容C1的另一端、三极管Q3的集电极、稳压二极管D3的阳极、场效应管Q8的漏极、电感L的一端及场效应管Q4的源极相连,三极管Q3的发射极与二极管D2的阴极、稳压二极管D3的阴极及场效应管Q4的栅极相连,场效应管Q4的漏极与场效应管Q9的漏极相连,作为高频逆变电路2的电源输入端,记为端口Vs-in,与交直流转换电路1的直流电压输出端相连,场效应管 Q8的栅极与电阻R8的一端及三极管Q7的集电极相连,电阻R8的另一端与三极管Q5的集电极相连,三极管Q5的发射极与电阻R5的一端及+12V直流电源相连,电阻R5的另一端与三极管Q5的基极及三极管Q6的集电极相连,三极管Q6的基极与电阻R6的一端相连,电阻R6的另一端与+5V电源相连,三极管Q6的发射极与电阻R7的一端相连,电阻R7的另一端与电阻R9的一端相连,作为高频逆变电路2的第二个控制输入端,记为端口MCU-in2,与单片机5 相连,电阻R9的另一端与三极管Q7的基极相连,三极管Q7的发射极与场效应管Q8的源极、Q13的源极、Q14的发射极相连,作为高频逆变电路2的取样输出端,记为Rs-out,与幅度检测电路6的端口Rs-in相连,电感L的另一端与电容Cs的一端相连,作为高频逆变电路2的一个补偿输入端,记为端口Cadj-in1,与电容补偿电路3的端口Cadj-out1相连,电容Cs的另一端与场效应管Q13的漏极、场效应管Q9的源极、稳压二极管D4的阳极、三极管Q10 的集电极、电阻R10的一端及电容C2的一端相连,作为高频逆变电路2的另一个补偿输入端,记为端口Cadj-in2,该端口与电容补偿电路3的端口Cadj-out2 相连,场效应管Q9的栅极与稳压二极管D4的阴极、三极管Q10的发射极及二极管D5的阴极相连,三极管Q10的基极与电阻R10的另一端、二极管D5的阳极及三极管Q11的集电极相连,三极管Q11的发射极与电容C2的另一端、电阻R11的一端及二极管D6的阴极相连,二极管D6的阳极与+12V直流电源相连,三极管Q11的基极与电阻R11的另一端及三极管Q12的集电极相连,三极管Q12的基极与电阻R12的一端相连,电阻R12的另一端与+5V直流电源相连,三极管Q12的发射极与电阻R13的一端相连,电阻R13的另一端作为高频逆变电路2的第三个控制输入端,记为端口MCU-in3,与单片机5相连;场效应管Q13的栅极与电阻R14的一端及三极管Q14的集电极相连,三极管Q14 的基极与电阻R15的一端相连,电阻R15的另一端与电阻R17的一端相连,作为高频逆变电路2的第四个控制输入端,记为端口MCU-in4,与单片机5相连,电阻R14的另一端与三极管Q15的集电极相连,三极管Q15的发射极与电阻 R16的一端及+12V直流电源相连,三极管Q15的基极与电阻R16的另一端及三极管Q16的集电极相连,三极管Q16的发射极与电阻R17的另一端相连,三极管Q16的基极与电阻R18的一端相连,电阻R18的另一端与+5V直流电源相连;
所述的幅度检测电路6的结构为,取样电阻Rs的一端与继电器Ks的动触点及运放U1的同相输入端相连,作为幅度检测电路6的输入端,记为端口Rs-in,与高频逆变电路2的端口Rs-out相连;电阻Rs的另一端和继电器Ks的静触点接地,继电器线圈的一端接地,继电器线圈的另一端作为幅度检测电路6的使能控制端,记为端口Rins,与开关控制电路4中的第九继电器驱动电路的输出端口Rout相连;运放U1正电源输入端与+5V直流电源相连,运放U1的负电源输入端与-5V直流电源相连,运放U1的反相输入端与电阻R20的一端、电阻 R22的一端及电阻R23的一端相连,电阻R20的另一端与电阻R21的一端、运放U2的反相输入端及电阻R19的一端相连,电阻R21的另一端与电阻R22的另一端及运放U2的输出端相连,电阻R19的另一端接地,运放U2正电源输入端与+5V直流电源相连,运放U2的负电源输入端与-5V直流电源相连,运放 U2的同相输入端接地;运放U1的输出端与电阻R23的另一端及电阻R24的一端相连;电阻R24的另一端与运放U3的同相输入端相连,运放U3正电源输入端与+5V直流电源相连,运放U3的负电源输入端与-5V直流电源相连,运放 U3的反相输入端与电阻R25的一端相连、电阻R26的一端及二极管D7的阳极相连,电阻R25的另一端接地,电阻R26的另一端与电容C3的一端、电阻R27 的一端及二极管D8的阴极相连,作为幅度检测电路6的输出端,记为端口 Amp-out,与模数转换电路7的模拟信号输入端相连;电容C3的另一端及电阻R27的另一端接地,二极管D8的阳极与二极管D7的阴极及运放U3的输出端相连;
所述的电容补偿电路3的结构为,继电器K1、K2、K3、K4、K5、K6、K7、 K8的线圈的一端均接地,另一端作为电容补偿电路3的八个输入端,依次记为端口Rin1、Rin2、Rin3、Rin4、Rin5、Rin6、Rin7、Rin8,分别与开关控制电路(4)中第一继电器驱动电路~第八继电器驱动电路的八个输出端相连,电容 C5、C6、C7、C8的一端相连,还与继电器K8的静触点相连,电容C5、C6、 C7、C8的另一端依次与继电器K1、K2、K3、K4的动触点相连,电容C4的一端与继电器K1、K2、K3、K4的静触点均相连,作为电容补偿电路3的一个输出端,记为端口Cadj-out1,与高频逆变电路2的端口Cadj-in1相连,电容C4 的另一端与电容C9的一端及继电器K5的动触点相连,电容C9的另一端与电容C10的一端、继电器K5的静触点及继电器K6的动触点相连,电容C10的另一端与电容C11的一端、继电器K6的静触点及继电器K7的动触点相连,电容C11的另一端与电容C12的一端、继电器K7的静触点及继电器K8的动触点相连,电容C12的另一端与继电器K8的静触点相连,作为电容补偿电路3的另一个输出端,记为端口Cadj-out2,与高频逆变电路2的端口Cadj-in2相连;
所述的开关控制电路4由第一继电器驱动电路~第九继电器驱动电路共9个继电器驱动电路构成,其中,第一继电器驱动电路~第八继电器驱动电路的输出端分别与电容补偿电路3的八个输入端相连,第九继电器驱动电路的输出端与幅度检测电路6的使能控制端相连,第一继电器驱动电路~第九继电器驱动电路的输入端分别与单片机5的九个不同的I/O口相连;
所述的第一继电器驱动电路~第九继电器驱动电路的结构均相同,具体结构为,电阻R28的一端与+5V直流电源相连,另一端与光耦U4中发光二极管的阳极相连,光耦U4中发光二极管的阴极作为继电器驱动电路的输入端,记为端口MCU-in,与单片机5相连;光耦U4中光电三极管的发射极接地,集电极与电阻R29的一端及电阻R30的一端相连,电阻R29的另一端接+12V电源,电阻R30的另一端与三极管Q17的基极相连,三极管Q17的发射极接+12V电源,集电极与二极管D9的阴极相连,作为继电器驱动电路的输出端,记为端口Rout,二极管D9的阳极接地。
在高频逆变电路2中,电感L的取值优选285uH,耐压400V,电容Cs的取值优选30nF,耐压400V。
在幅度检测电路6中取样电阻Rs的阻值优选1欧姆。
在电容补偿电路3中,各电容的取值优选为,电容C4~电容C6:1uF,电容C7:2nF,电容C8:5nF,电容C9:250pF,电容C10:680pF,电容C11: 1.5nF,电容C12:4nF。
所述的交直流转换电路1是现有技术,可以是任意能将220V市电转换成直流电压输出的电路,优选输出直流电压为200V。
所述模数转换电路7为现有技术,是能将模拟信号转换为数字信号的电路。
本发明一种基于磁耦共振的无线能量发射装置有以下有益效果:
1、本发明通过幅度检测判断系统对负载的谐振程度,进而自动调整补偿电抗,使系统对不同的接收电路进行能量传输时均能保持实时谐振,大大提高了系统的工作效率以及对负载的适应范围。
2、本发明在高频逆变电路中对功率管采用了特殊的驱动设计,减小了转换过程中的能量损失,可提高整个系统的功率和效率。
3、本发明在电容补偿电路中,巧妙设计了电容补偿网络,用少量的元器件实现了多种不同电容值的选择。
4、本发明设计的幅度检测电路采取高阻抗差分处理,对主回路的影响小。
5、本发明在继电器驱动电路中,采用光耦对单片机和主回路进行隔离,使得系统的信号电和功率电互不影响,提高了系统的稳定性和可靠性。
6、本发明对取样电阻及幅度检测电路设计了使能控制功能,在初始化完成后可以使取样电阻及幅度检测电路与主回路脱离,减小了充电过程中取样电阻对主回路的影响,进一步提高了效率。
附图说明
图1是本发明的总体结构框图。
图2是本发明的开关控制电路4的结构框图。
图3是高频逆变电路2的原理电路图。
图4是幅度检测电路6的原理电路图。
图5是电容补偿电路3的原理电路图。
图6是继电器的原理电路图。
具体实施方式
下面结合附图通过具体实施例对本发明的工作原理作进一步说明,附图中所标示的元器件参数是各实施例的优选参数,但不是对本发明实施的限制。
实施例1本发明的整体结构
本发明的整体结构如图1所示,包括交直流转换电路1,高频逆变电路2,电容补偿电路3,开关控制电路4,单片机5,幅度检测电路6,模数转换电路7;所述的交直流转换电路1的输入端与市电相连,交直流转换电路1的输出端与高频逆变电路2的电源输入端相连,高频逆变电路2的取样输出端与幅度检测电路6的输入端相连,幅度检测电路6的输出端与模数转换电路7的输入端相连,模数转换电路7的输出端与单片机5相连,单片机5还分别与高频逆变电路2的控制输入端和开关控制电路4的输入端相连,开关控制电路4的输出端分别与电容补偿电路3的输入端、幅度检测电路6的使能控制端相连,电容补偿电路3的输出端与高频逆变电路2的补偿输入端相连。
实施例2本发明的高频逆变电路
本发明中采用的高频逆变电路2如图3所示,具体结构为,二极管D1的阳极与+12V的电源相连,二极管D1的阴极与电阻R1的一端、三极管Q1的发射极以及电容C1的一端相连,电阻R1的另一端与三极管Q1的基极及三极管Q2 的集电极相连,三极管Q2的基极与电阻R2的一端相连,电阻R2的另一端与 +5V 直流电源相连,三极管Q2的发射极与电阻R3的一端相连,电阻R3的另一端作为高频逆变电路2的第一个控制输入端,记为端口MCU-in1,与单片机5相连,三极管Q1的集电极与二极管D2的阳极、三极管Q3的基极及电阻R4的一端相连,电阻R4的另一端与电容C1的另一端、三极管Q3的集电极、稳压二极管D3的阳极、场效应管Q8的漏极、电感L的一端及场效应管Q4的源极相连,三极管Q3的发射极与二极管D2的阴极、稳压二极管D3的阴极及场效应管Q4的栅极相连,场效应管Q4的漏极与场效应管Q9的漏极相连,作为高频逆变电路2的电源输入端,记为端口Vs-in,与交直流转换电路1的直流电压输出端相连,场效应管Q8的栅极与电阻R8的一端及三极管Q7的集电极相连,电阻R8的另一端与三极管Q5的集电极相连,三极管Q5的发射极与电阻R5 的一端及+12V直流电源相连,电阻R5的另一端与三极管Q5的基极及三极管 Q6的集电极相连,三极管Q6的基极与电阻R6的一端相连,电阻R6的另一端与+5V电源相连,三极管Q6的发射极与电阻R7的一端相连,电阻R7的另一端与电阻R9的一端相连,作为高频逆变电路2的第二个控制输入端,记为端口 MCU-in2,与单片机5相连,电阻R9的另一端与三极管Q7的基极相连,三极管Q7的发射极与场效应管Q8的源极、Q13的源极、Q14的发射极相连,作为高频逆变电路2的取样输出端,记为Rs-out,与幅度检测电路6的端口Rs-in 相连,电感L的另一端与电容Cs的一端相连,作为高频逆变电路2的一个补偿输入端,记为端口Cadj-in1,与电容补偿电路3的端口Cadj-out1相连,电容 Cs的另一端与场效应管Q13的漏极、场效应管Q9的源极、稳压二极管D4 的阳极、三极管Q10的集电极、电阻R10的一端及电容C2的一端相连,作为高频逆变电路2的另一个补偿输入端,记为端口Cadj-in2,该端口与电容补偿电路3的端口Cadj-out2相连,场效应管Q9的栅极与稳压二极管D4的阴极、三极管Q10的发射极及二极管D5的阴极相连,三极管Q10的基极与电阻R10的另一端、二极管D5的阳极及三极管Q11的集电极相连,三极管Q11的发射极与电容C2的另一端、电阻R11的一端及二极管D6的阴极相连,二极管D6的阳极与+12V直流电源相连,三极管Q11的基极与电阻R11的另一端及三极管 Q12的集电极相连,三极管Q12的基极与电阻R12的一端相连,电阻R12的另一端与+5V直流电源相连,三极管Q12的发射极与电阻R13的一端相连,电阻R13的另一端作为高频逆变电路2的第三个控制输入端,记为端口MCU-in3,与单片机5相连;场效应管Q13的栅极与电阻R14的一端及三极管Q14的集电极相连,三极管Q14的基极与电阻R15的一端相连,电阻R15的另一端与电阻R17的一端相连,作为高频逆变电路2的第四个控制输入端,记为端口 MCU-in4,与单片机5相连,电阻R14的另一端与三极管Q15的集电极相连,三极管Q15的发射极与电阻R16的一端及+12V直流电源相连,三极管Q15的基极与电阻R16的另一端及三极管Q16的集电极相连,三极管Q16的发射极与电阻R17的另一端相连,三极管Q16的基极与电阻R18的一端相连,电阻 R18的另一端与+5V直流电源相连;
该结构中,4个场效应管Q4、Q8、Q9、Q13构成逆变电桥,用来将交直流转换电路1输出的直流信号逆变成高频交流信号,用于为发射线圈(即图中的电感L)提供能量,每个场效应管的栅极还采用了特殊设计的驱动电路,可减小转换过程中的能量衰减,保证系统可以达到很高的输出功率和效率。
实施例3本发明的幅度检测电路
本发明的幅度检测电路6的原理电路如图4所示,取样电阻Rs的一端与继电器Ks的动触点及运放U1的同相输入端相连,作为幅度检测电路6的输入端,记为端口Rs-in,与高频逆变电路2的端口Rs-out相连;电阻Rs的另一端和继电器Ks的静触点接地,继电器线圈的一端接地,继电器线圈的另一端作为幅度检测电路6的使能控制端,记为端口Rins,与开关控制电路4中的第九继电器驱动电路的输出端口Rout相连;运放U1正电源输入端与+5V直流电源相连,运放U1的负电源输入端与-5V直流电源相连,运放U1的反相输入端与电阻R20 的一端、电阻R22的一端及电阻R23的一端相连,电阻R20的另一端与电阻 R21的一端、运放U2的反相输入端及电阻R19的一端相连,电阻R21的另一端与电阻R22的另一端及运放U2的输出端相连,电阻R19的另一端接地,运放U2正电源输入端与+5V直流电源相连,运放U2的负电源输入端与-5V直流电源相连,运放U2的同相输入端接地;运放U1的输出端与电阻R23的另一端及电阻R24的一端相连;电阻R24的另一端与运放U3的同相输入端相连,运放U3正电源输入端与+5V直流电源相连,运放U3的负电源输入端与-5V直流电源相连,运放U3的反相输入端与电阻R25的一端相连、电阻R26的一端及二极管D7的阳极相连,电阻R25的另一端接地,电阻R26的另一端与电容 C3的一端、电阻R27的一端及二极管D8的阴极相连,作为幅度检测电路6的输出端,记为端口Amp-out,与模数转换电路7的模拟信号输入端相连;电容 C3的另一端及电阻R27的另一端接地,二极管D8的阳极与二极管D7的阴极及运放U3的输出端相连。
该检测电路用来检测取样电阻两端交流电压的振幅,检测结果由后级的模数转换电路7再转换成数字信号后送入单片机5存储。取样电阻Rs是一个大功率、小阻值的精密电阻,可以保证在取样的过程不会消耗过多能量。本发明的幅度检测电路在输入端还采取了高阻抗差分的处理,使Rs两端的信号更便于幅度检测,且最大程度减小了幅度检测电路6对高频逆变电路2中主电桥的影响。同时,该幅度检测电路6采取双二极管有源峰值检波结构,使输出的直流电压更接近输入的交流电压的峰值,有效提高了检测精度。
为了使本发明使用更加灵活,在幅度检测电路6中还利用继电器Ks实现使能控制功能,在系统初始化阶段,为了检测发射回路的谐振情况,继电器Ks的开关会打开,取样电阻Rs有效,幅度检测电路进行检测,在初始化完成之后系统根据检测结果选择好合适的补偿电容后开始正常工作,由于已不需要再进行检测,继电器Ks的开关闭合,将取样电阻Rs连同后面的幅度检测电路6一起短路掉,以避免工作过程中取样电阻继续消耗能量,进一步提高了系统的传输效率。
实施例4本发明的电容补偿电路
电容补偿电路3的结构如图5所示,继电器K1、K2、K3、K4、K5、K6、 K7、K8的线圈的一端均接地,另一端作为电容补偿电路3的八个输入端,依次记为端口Rin1、Rin2、Rin3、Rin4、Rin5、Rin6、Rin7、Rin8,分别与开关控制电路4中第一继电器驱动电路~第八继电器驱动电路的八个输出端相连,电容 C5、C6、C7、C8的一端相连,还与继电器K8的静触点相连,电容C5、C6、 C7、C8的另一端依次与继电器K1、K2、K3、K4的动触点相连,电容C4的一端与继电器K1、K2、K3、K4的静触点均相连,作为电容补偿电路3的一个输出端,记为端口Cadj-out1,与高频逆变电路2的端口Cadj-in1相连,电容C4 的另一端与电容C9的一端及继电器K5的动触点相连,电容C9的另一端与电容C10的一端、继电器K5的静触点及继电器K6。该电路通过对不同电感的选择接入,实现了总电感值以0.2uF为间隔,从0.2uF~10uF的变化,以少量的元器件为高频逆变电路2提供50个可选的补偿电感。大大拓宽了本发明的负载适应范围。
实施例5本发明的开关控制电路
如图2所示,本发明所述的开关控制电路4由第一继电器驱动电路~第九继电器驱动电路共9个继电器驱动电路构成,其中,第一继电器驱动电路~第八继电器驱动电路的输出端分别与电容补偿电路3的八个输入端相连,第九继电器驱动电路的输出端与幅度检测电路6的使能控制端相连,第一继电器驱动电路~第九继电器驱动电路的输入端分别与单片机5的九个不同的I/O口相连;
开关控制电路4的功能是在单片机的控制下对幅度检测电路6及电容补偿电路3中各继电器的开关进行驱动控制,以实现选择或屏蔽不同的电容,以及控制幅度检测电路6是否工作。其中,所有继电器驱动电路的结构均相同,如图6 所示,电阻R28的一端与+5V直流电源相连,另一端与光耦U4中发光二极管的阳极相连,光耦U4中发光二极管的阴极作为继电器驱动电路的输入端,记为端口MCU-in,与单片机5相连;光耦U4中光电三极管的发射极接地,集电极与电阻R29的一端及电阻R30的一端相连,电阻R29的另一端接+12V电源,电阻R30的另一端与三极管Q17的基极相连,三极管Q17的发射极接+12V电源,集电极与二极管D9的阴极相连,作为继电器驱动电路的输出端,记为端口 Rout,二极管D9的阳极接地。该驱动电路在单片机5与继电器之间采用了光耦进行隔离,有效防止了继电器线圈或高频逆变电路2中的大电流对单片机5的影响。
实施例6本发明的工作原理
结合附图1~6对本发明的工作原理及工作过程进一步说明如下:在本发明的系统利用发射线圈(即高频逆变电路2中的电感L)对接收线圈(位于需要接收能量的接收电路中,图中未画出)发射能量之前,首先会进行一个初始化过程,由单片机5通过开关控制电路4控制电容补偿电路3,选取一个补偿电容接入主电路,该补偿电容与高频逆变电路中主回路上的电容Cs进行叠加形成总电容,尝试使回路达到谐振,幅度检测电路6检测取样电阻Rs两端的交流电压振幅并由模数转换电路7转换成数字信号送入单片机5进行存储,然后单片机5控制电容补偿电路3改变补偿电容的值,再重复上述过程,如此反复,在尝试完所有不同取值的补偿电容后,单片机5对所有的幅度检测结果进行比较,以确定最佳的补偿方案(当接收端的接收回路不同时,最佳的补偿方案也会不同)。初始化过程完成后,单片机5将最佳的补偿电容选出并接入主回路,同时控制幅度检测电路6中的继电器Ks使开关闭合,使取样电阻Rs及幅度检测电路6脱离谐振回路,然后开始对接收端进行发射能量。该初始化过程使系统对不同的接收回路进行能量传输时,均能使发射回路处于谐振状态,可以有效地保证不同负载下均能达到很高的传输功率和效率。

Claims (4)

1.一种基于磁耦共振的无线能量发射装置,其结构有,交直流转换电路(1),高频逆变电路(2),单片机(5),其特征在于,结构还有,电容补偿电路(3),开关控制电路(4),幅度检测电路(6),模数转换电路(7);所述的交直流转换电路(1)的输入端与市电相连,交直流转换电路(1)的输出端与高频逆变电路(2)的电源输入端相连,高频逆变电路(2)的取样输出端与幅度检测电路(6)的输入端相连,幅度检测电路(6)的输出端与模数转换电路(7) 的输入端相连,模数转换电路(7)的输出端与单片机(5)相连,单片机(5)还分别与高频逆变电路(2)的控制输入端和开关控制电路(4)的输入端相连,开关控制电路(4)的输出端分别与电容补偿电路(3)的输入端、幅度检测电路(6)的使能端相连,电容补偿电路(3)的输出端与高频逆变电路(2)的补偿输入端相连;
所述的高频逆变电路(2)的结构为,二极管D1的阳极与+12V的电源相连,二极管D1的阴极与电阻R1的一端、三极管Q1的发射极以及电容C1的一端相连,电阻R1的另一端与三极管Q1的基极及三极管Q2的集电极相连,三极管Q2的基极与电阻R2的一端相连,电阻R2的另一端与 +5V直流电源相连,三极管Q2的发射极与电阻R3的一端相连,电阻R3的另一端作为高频逆变电路(2) 的第一个控制输入端,记为端口MCU-in1,与单片机(5)相连,三极管Q1的集电极与二极管D2的阳极、三极管Q3的基极及电阻R4的一端相连,电阻R4的另一端与电容C1的另一端、三极管Q3的集电极、稳压二极管D3的阳极、场效应管Q8的漏极、电感L的一端及场效应管Q4的源极相连,三极管Q3的发射极与二极管D2的阴极、稳压二极管D3的阴极及场效应管Q4的栅极相连,场效应管Q4的漏极与场效应管Q9的漏极相连,作为高频逆变电路(2)的电源输入端,记为端口Vs-in,与交直流转换电路(1) 的直流电压输出端相连,场效应管Q8的栅极与电阻R8的一端及三极管Q7的集电极相连,电阻R8的另一端与三极管Q5的集电极相连,三极管Q5的发射极与电阻R5的一端及+12V直流电源相连,电阻R5的另一端与三极管Q5的基极及三极管Q6的集电极相连,三极管Q6的基极与电阻R6的一端相连,电阻R6的另一端与+5V电源相连,三极管Q6的发射极与电阻R7的一端相连,电阻R7的另一端与电阻R9的一端相连,作为高频逆变电路(2)的第二个控制输入端,记为端口MCU-in2,与单片机(5)相连,电阻R9的另一端与三极管Q7的基极相连,三极管Q7的发射极与场效应管Q8的源极、Q13的源极、Q14的发射极相连,作为高频逆变电路(2)的取样输出端,记为Rs-out,与幅度检测电路(6)的端口Rs-in相连,电感L的另一端与电容Cs的一端相连,作为高频逆变电路(2)的一个补偿输入端,记为端口Cadj-in1,与电容补偿电路(3)的端口Cadj-out1相连,电容Cs的另一端与场效应管Q13的漏极、场效应管Q9的源极、稳压二极管D4的阳极、三极管Q10的集电极、电阻R10的一端及电容C2的一端相连,作为高频逆变电路(2) 的另一个补偿输入端,记为端口Cadj-in2,该端口与电容补偿电路(3) 的端口Cadj-out2相连,场效应管Q9的栅极与稳压二极管D4的阴极、三极管Q10的发射极及二极管D5的阴极相连,三极管Q10的基极与电阻R10的另一端、二极管D5的阳极及三极管Q11的集电极相连,三极管Q11的发射极与电容C2的另一端、电阻R11的一端及二极管D6的阴极相连,二极管D6的阳极与+12V直流电源相连,三极管Q11的基极与电阻R11的另一端及三极管Q12的集电极相连,三极管Q12的基极与电阻R12的一端相连,电阻R12的另一端与+5V直流电源相连,三极管Q12的发射极与电阻R13的一端相连,电阻R13的另一端作为高频逆变电路(2)的第三个控制输入端,记为端口MCU-in3,与单片机(5)相连;场效应管Q13的栅极与电阻R14的一端及三极管Q14的集电极相连,三极管Q14的基极与电阻R15的一端相连,电阻R15的另一端与电阻R17的一端相连,作为高频逆变电路(2)的第四个控制输入端,记为端口MCU-in4,与单片机(5)相连,电阻R14的另一端与三极管Q15的集电极相连,三极管Q15的发射极与电阻R16的一端及+12V直流电源相连,三极管Q15的基极与电阻R16的另一端及三极管Q16的集电极相连,三极管Q16的发射极与电阻R17的另一端相连,三极管Q16的基极与电阻R18的一端相连,电阻R18的另一端与+5V直流电源相连;
所述的幅度检测电路(6)的结构为,取样电阻Rs的一端与继电器Ks的动触点及运放U1的同相输入端相连,作为幅度检测电路(6)的输入端,记为端口Rs-in,与高频逆变电路(2)的端口Rs-out相连;电阻Rs的另一端和继电器Ks的静触点接地,继电器线圈的一端接地,继电器线圈的另一端作为幅度检测电路(6)的使能控制端,记为端口Rins,与开关控制电路(4)中的第九继电器驱动电路的输出端口Rout相连;运放U1正电源输入端与+5V直流电源相连,运放U1的负电源输入端与-5V直流电源相连,运放U1的反相输入端与电阻R20的一端、电阻R22的一端及电阻R23的一端相连,电阻R20的另一端与电阻R21的一端、运放U2的反相输入端及电阻R19的一端相连,电阻R21的另一端与电阻R22的另一端及运放U2的输出端相连,电阻R19的另一端接地,运放U2正电源输入端与+5V直流电源相连,运放U2的负电源输入端与-5V直流电源相连,运放U2的同相输入端接地;运放U1的输出端与电阻R23的另一端及电阻R24的一端相连;电阻R24的另一端与运放U3的同相输入端相连,运放U3正电源输入端与+5V直流电源相连,运放U3的负电源输入端与-5V直流电源相连,运放U3的反相输入端与电阻R25的一端相连、电阻R26的一端及二极管D7的阳极相连,电阻R25的另一端接地,电阻R26的另一端与电容C3的一端、电阻R27的一端及二极管D8的阴极相连,作为幅度检测电路(6)的输出端,记为端口Amp-out,与模数转换电路(7)的模拟信号输入端相连;电容C3的另一端及电阻R27的另一端接地,二极管D8的阳极与二极管D7的阴极及运放U3的输出端相连;
所述的电容补偿电路(3)的结构为,继电器K1、K2、K3、K4、K5、K6、K7、K8的线圈的一端均接地,另一端作为电容补偿电路(3)的八个输入端,依次记为端口Rin1、Rin2、Rin3、Rin4、Rin5、Rin6、Rin7、Rin8,分别与开关控制电路(4)中第一继电器驱动电路~第八继电器驱动电路的八个输出端相连,电容C5、C6、C7、C8的一端相连,还与继电器K8的静触点相连,电容C5、C6、C7、C8的另一端依次与继电器K1、K2、K3、K4的动触点相连,电容C4的一端与继电器K1、K2、K3、K4的静触点均相连,作为电容补偿电路(3)的一个输出端,记为端口Cadj-out1,与高频逆变电路(2)的端口Cadj-in1相连,电容C4的另一端与电容C9的一端及继电器K5的动触点相连,电容C9的另一端与电容C10的一端、继电器K5的静触点及继电器K6的动触点相连,电容C10的另一端与电容C11的一端、继电器K6的静触点及继电器K7的动触点相连,电容C11的另一端与电容C12的一端、继电器K7的静触点及继电器K8的动触点相连,电容C12的另一端与继电器K8的静触点相连,作为电容补偿电路(3)的另一个输出端,记为端口Cadj-out2,与高频逆变电路(2)的端口Cadj-in2相连;
所述的开关控制电路(4)由第一继电器驱动电路~第九继电器驱动电路共9个继电器驱动电路构成,其中,第一继电器驱动电路~第八继电器驱动电路的输出端分别与电容补偿电路(3)的八个输入端相连,第九继电器驱动电路的输出端与幅度检测电路(6)的使能控制端相连,第一继电器驱动电路~第九继电器驱动电路的输入端分别与单片机(5)的九个不同的I/O口相连;
所述的第一继电器驱动电路~第九继电器驱动电路的结构均相同,具体结构为,电阻R28的一端与+5V直流电源相连,另一端与光耦U4中发光二极管的阳极相连,光耦U4中发光二极管的阴极作为继电器驱动电路的输入端,记为端口MCU-in,与单片机(5)相连;光耦U4中光电三极管的发射极接地,集电极与电阻R29的一端及电阻R30的一端相连,电阻R29的另一端接+12V电源,电阻R30的另一端与三极管Q17的基极相连,三极管Q17的发射极接+12V电源,集电极与二极管D9的阴极相连,作为继电器驱动电路的输出端,记为端口Rout,二极管D9的阳极接地。
2.根据权利要求1所述的一种基于磁耦共振的无线能量发射装置,其特征在于,在高频逆变电路(2)中,电感L的取值为285uH,耐压400V,电容Cs的取值为30nF,耐压400V。
3.根据权利要求1所述的一种基于磁耦共振的无线能量发射装置,其特征在于,在幅度检测电路(6)中取样电阻Rs的阻值优选0.1欧姆。
4.根据权利要求1~3任一所述的一种基于磁耦共振的无线能量发射装置,其特征在于,在电容补偿电路(3)中,各电容的取值为,电容C4~电容C6:1uF,电容C7:2nF,电容C8:5nF,电容C9:250pF,电容C10:680pF,电容C11:1.5nF,电容C12:4nF。
CN201810888846.1A 2018-08-07 2018-08-07 一种基于磁耦共振的无线能量发射装置 Active CN108880001B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810888846.1A CN108880001B (zh) 2018-08-07 2018-08-07 一种基于磁耦共振的无线能量发射装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810888846.1A CN108880001B (zh) 2018-08-07 2018-08-07 一种基于磁耦共振的无线能量发射装置

Publications (2)

Publication Number Publication Date
CN108880001A CN108880001A (zh) 2018-11-23
CN108880001B true CN108880001B (zh) 2022-03-22

Family

ID=64307834

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810888846.1A Active CN108880001B (zh) 2018-08-07 2018-08-07 一种基于磁耦共振的无线能量发射装置

Country Status (1)

Country Link
CN (1) CN108880001B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109560620B (zh) * 2018-12-29 2021-04-09 深圳纳弘熠岦光学科技有限公司 无线电能发射系统及静电波保鲜装置
CN111355290B (zh) * 2020-04-16 2022-05-31 吉林大学 小型无人机多路无线充电发射系统

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013005614A (ja) * 2011-06-17 2013-01-07 Toyota Motor Corp 送電装置、受電装置、車両、および非接触給電システム
CN103560593B (zh) * 2013-11-07 2015-09-30 重庆大学 一种电场耦合型无线电能传输系统的控制方法
CN104218640B (zh) * 2014-08-29 2016-09-28 中国科学院电工研究所 具有多负载频率适应性的无线充电系统
CN104795903B (zh) * 2015-04-16 2017-05-17 刘晓明 磁耦合双模无线电能传输装置及其调控方法
CN206202015U (zh) * 2016-11-28 2017-05-31 兰州理工大学 电动汽车谐振式无线充电装置
CN107959334A (zh) * 2017-12-15 2018-04-24 重庆唐古拉科技有限公司 新型无线充电系统

Also Published As

Publication number Publication date
CN108880001A (zh) 2018-11-23

Similar Documents

Publication Publication Date Title
CN109038854B (zh) 一种基于电感补偿的自动调谐无线能量发射系统
CN109038855B (zh) 基于磁耦合共振式电动汽车无线充电系统
CN110071562B (zh) 一种发送侧切换混合拓扑恒流恒压感应式无线充电方法及系统
CN103762726B (zh) 一种家用太阳能无线供电系统
CN205647044U (zh) 具有自适应调节能力的磁耦合谐振式无线充电装置
CN108880001B (zh) 一种基于磁耦共振的无线能量发射装置
CN206117480U (zh) Llc变换输出的高低压切换电路
CN106411109A (zh) 一种llc变换输出的高低压切换电路
CN106936474B (zh) 电力线载波通信方法及输出耦合滤波电路
CN108879997B (zh) 一种基于电容补偿的自动调谐无线能量发射装置
CN108879999B (zh) 一种电抗自适应无线能量发射系统
CN108819790B (zh) 一种自动谐振的电动汽车无线充电装置
CN109038856B (zh) 一种实时谐振控制式电动汽车无线充电装置
CN108879998B (zh) 一种高效率电动汽车无线充电装置
CN109038853B (zh) 一种自适应负载的无线能量传输装置
CN102006101B (zh) 一种电力线载波通讯模块
CN109067184B (zh) 一种恒流恒压无缝切换的感应电能传输系统
CN108880000B (zh) 一种应用于电动汽车充电的大功率无线能量发射装置
CN108565989A (zh) 一种无线充电系统的能量传输系统及方法
CN108110910A (zh) 基于阵列线圈式无线能量传输的复用型clcc结构及该结构的工作方法
CN210092946U (zh) 一种充电电路
CN108923551A (zh) 一种基于相位判断的主动调谐无线能量传输装置
CN206060569U (zh) 一种三相vienna整流器的驱动电源电路
Kim et al. Design methodology of 500 W wireless power transfer converter for high power transfer efficiency
CN205464786U (zh) 冰箱用高频感应焊接电源

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant