CN108875189A - 一种复杂几何结构角系数计算方法 - Google Patents

一种复杂几何结构角系数计算方法 Download PDF

Info

Publication number
CN108875189A
CN108875189A CN201810592274.2A CN201810592274A CN108875189A CN 108875189 A CN108875189 A CN 108875189A CN 201810592274 A CN201810592274 A CN 201810592274A CN 108875189 A CN108875189 A CN 108875189A
Authority
CN
China
Prior art keywords
ascent
radiation
obtains
heat transfer
equations
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810592274.2A
Other languages
English (en)
Other versions
CN108875189B (zh
Inventor
贺铸
贾舒渊
潘丽萍
谭方关
廖明建
李亚伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan University of Science and Engineering WUSE
Wuhan University of Science and Technology WHUST
Original Assignee
Wuhan University of Science and Engineering WUSE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan University of Science and Engineering WUSE filed Critical Wuhan University of Science and Engineering WUSE
Priority to CN201810592274.2A priority Critical patent/CN108875189B/zh
Publication of CN108875189A publication Critical patent/CN108875189A/zh
Application granted granted Critical
Publication of CN108875189B publication Critical patent/CN108875189B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • G06F30/23Design optimisation, verification or simulation using finite element methods [FEM] or finite difference methods [FDM]

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

本发明了一种复杂几何结构角系数计算方法,首先对辐射空间结构进行离散化处理,再通过有限差分法计算出辐射换热量,最后通过辐射换热量进行角系数的确定,与传统的直接通过有限差分法、有限元法、蒙特卡洛法、矢量法等方法对复杂结构的角系数进行计算方法相比,极大简化了处理过程,有效避免了编程计算积分的过程,对整个角系数计算过程的效率和可靠性有显著的提高。

Description

一种复杂几何结构角系数计算方法
技术领域
本发明涉及一种复杂几何结构角系数计算方法,属于辐射换热技术领域。
背景技术
在进行热工设备辐射传热计算并建立控制模型时,一般采用灰体表面包壳辐射换热模型计算温度场,该模型需要计算任意两个辐射换热面元之间的角系数。对于几何形状均匀、简单的辐射表面,可以得到角系数的解析表达式;前人已经对特殊形式平面间的角系数进行了理论推导,如相同大小的平行平面、相交的等宽平面之间的角系数,也有学者编写了特殊形式的角系数线图或角系数手册以供查阅。然而由于设备内部结构复杂,面元形状各异,有效辐射面积相差很大,而且彼此之间存在着严重的遮挡,因此要计算任意两个面元间的角系数很复杂。目前对复杂结构角系数计算主要的方法包括有限差分法,有限元法,蒙特卡洛法,矢量法等。
直接通过有限差分法,有限元法,蒙特卡洛法,矢量法等方法对复杂结构的角系数进行计算,需要对复杂的几何结构进行离散化处理,离散化的程序编写本身难度就很大,对于复杂几何结构更是如此。因此采用上述几种计算方法,尤其是对于复杂的几何结构,其离散化和程序编写的难度往往很大,调试过程也极为复杂。
发明内容
为了解决现有技术的不足,本发明提供了一种复杂几何结构角系数计算方法,首先对辐射空间结构进行离散化处理,再通过有限差分法计算出辐射换热量,最后通过辐射换热量进行角系数的确定,极大简化了处理过程,有效避免了编程计算积分的过程,对整个角系数计算过程的可靠性有很大的提高。
本发明为解决其技术问题所采用的技术方案是:提供了一种复杂几何结构角系数计算方法,包括以下步骤:
(1)为复杂结构空间进行建模,得到复杂结构空间模型;
(2)假设复杂结构空间模型为只通过辐射方式进行热量交换的辐射换热空间,辐射换热空间的气体透明、构成自由腔体的表面为灰体、各表面温度均匀,各表面的黑度为1,空气导热系数为0,则在此条件下利用网格划分工具对辐射换热空间进行离散化,通过有限元法计算得到辐射换热空间中各表面的有效辐射和投射辐射,得到以下n个关于角系数的方程:
其中n为辐射换热空间中的表面数目,Ji表示第i个表面的有效辐射,Gi表示第i个表面的投射辐射;
(3)联立步骤(2)得到的n个角系数方程以及根据角系数性质得到的方程所组成的线性方程组,获得各表面间辐射换热的角系数;所述角系数性质包括完整性、相对性、几何对称性和不可自见性,所述线性方程组包括n2个方程。
设步骤(2)中辐射换热空间中的表面数目n为6,则步骤(2)得到的关于角系数的方程为:
其中Ji表示第i个表面的有效辐射,Gi表示第i个表面的投射辐射;步骤(3)根据角系数性质得到的方程分别为:
(a)根据完整性得到6个方程:
(b)根据相对性得到15个方程:
(c)根据几何对称性得到5个方程:
(d)根据不可自见性得到4个方程:
其中Ai和Aj分别表示第i个表面和第j个表面的表面积,在建模时即得到;表示第i个表面对第j个表面的角系数,表示第j个表面对第i个表面的角系数。
步骤(1)所述网格划分工具采用Ansys mesh或ICEM CFD。
步骤(2)对复杂结构空间模型进行离散化后利用fluent工具模拟计算得到各表面的有效辐射和投射辐射。
本发明基于其技术方案所具有的有益效果在于:
(1)本发明提供的一种复杂几何结构角系数计算方法,与传统的直接通过有限差分法、有限元法、蒙特卡洛法、矢量法等方法对复杂结构的角系数进行计算方法相比,首先可利用专业的网格划分工具(如Ansys mesh、ICEM CFD等)对辐射换热空间的几何结构进行离散化处理,极大简化了处理过程,接着对于传统的积分过程的处理,本发明采用首先计算辐射换热量,然后通过辐射换热量确定角系数的方法,有效避免了编程计算积分的过程,对整个角系数计算过程的效率和可靠性有显著的提高;
(2)本发明提供的一种复杂几何结构角系数计算方法对于真空炉以下、钢液以上的真空炉内腔空间角系数计算尤其适用,同时也有明显的普适性,使用于各种不同复杂结构换热空间角系数的计算,且能有效提高计算效率和精度。
附图说明
图1是6个表面的辐射换热空间示意图。
具体实施方式
下面结合附图和实施例对本发明作进一步说明。
本发明提供了一种复杂几何结构角系数计算方法,包括以下步骤:
(1)为复杂结构空间进行建模,得到复杂结构空间模型;
(2)假设复杂结构空间模型为只通过辐射方式进行热量交换的辐射换热空间,辐射换热空间的气体透明、构成自由腔体的表面为灰体、各表面温度均匀,各表面的黑度为1,空气导热系数为0,则在此条件下利用网格划分工具对辐射换热空间进行离散化,通过有限元法计算得到辐射换热空间中各表面的有效辐射和投射辐射,得到以下n个关于角系数的方程:
其中Ji表示第i个表面的有效辐射,Gi表示第i个表面的投射辐射;
(3)联立步骤(2)得到的n个角系数方程以及根据角系数性质得到的方程所组成的线性方程组,获得各表面间辐射换热的角系数;所述角系数性质包括完整性、相对性、几何对称性和不可自见性,所述线性方程组包括n2个方程。
各种不同复杂几何结构的真空炉内腔空间均可利用本发明进行计算。如真空炉内腔空间被划分为5个面,则可联立5×5个方程;如被划分为8个面,则联立8×8个方程进行求解。
步骤(1)所述网格划分工具可采用Ansys mesh或ICEM CFD。
步骤(2)对复杂结构空间模型进行离散化后利用fluent工具模拟计算得到各表面的有效辐射和投射辐射。
下面以划分为6个表面的真空炉内腔空间为例:
首先利用利用画图工具对真空炉内腔空间进行建模,得到真空炉内腔空间模型,模型中6个表面分别为真空室底面S1(即圆柱体顶面)、钢包内部渣层与空气接触面S2(即圆柱体顶面)、钢包内壁未与液体接触部分的表面S3(即圆柱体在虚线以下的侧壁面)、大气表面S4(即圆柱体在虚线以上的侧壁面)、第一复杂结构外表面S5和第二复杂结构外表面S6(即两个圆柱表示的复杂结构表面)。复杂结构外表面可以是曲面或者不能够直接计算得到的平面。此时即可得到各个表面的表面积。接着利用icem或者Ansys mesh对整个辐射空间进行离散化,即划分网格;然后通过fluent计算模拟得到每个面上的有效辐射和投射辐射。则得到的关于角系数的方程为:
其中Ji表示第i个表面的有效辐射,Gi表示第i个表面的投射辐射;步骤(3)根据角系数性质得到的方程分别为:
(a)根据完整性得到6个方程:
(b)根据相对性得到15个方程:
(c)根据几何对称性得到5个方程:
(d)根据不可自见性得到4个方程:
其中Ai和Aj分别表示第i个表面和第j个表面的表面积,在建模时即得到;表示第i个表面对第j个表面的角系数,表示第j个表面对第i个表面的角系数。
本发明提供的一种复杂几何结构角系数计算方法,首先对辐射空间结构进行离散化处理,再通过有限差分法计算出辐射换热量,最后通过辐射换热量进行角系数的确定,极大简化了处理过程,有效避免了编程计算积分的过程,对整个角系数计算过程的可靠性有很大的提高。

Claims (4)

1.一种复杂几何结构角系数计算方法,其特征在于包括以下步骤:
(1)为复杂结构空间进行建模,得到复杂结构空间模型;
(2)假设复杂结构空间模型为只通过辐射方式进行热量交换的辐射换热空间,辐射换热空间的气体透明、构成自由腔体的表面为灰体、各表面温度均匀,各表面的黑度为1,空气导热系数为0,则在此条件下利用网格划分工具对辐射换热空间进行离散化,通过有限元法计算得到辐射换热空间中各表面的有效辐射和投射辐射,得到以下n个关于角系数的方程:
其中n为辐射换热空间中的表面数目,Ji表示第i个表面的有效辐射,Gi表示第i个表面的投射辐射;
(3)联立步骤(2)得到的n个角系数方程以及根据角系数性质得到的方程所组成的线性方程组,获得各表面间辐射换热的角系数;所述角系数性质包括完整性、相对性、几何对称性和不可自见性,所述线性方程组包括n2个方程。
2.根据权利要求1所述的复杂几何结构角系数计算方法,其特征在于:设步骤(2)中辐射换热空间中的表面数目n为6,则步骤(2)得到的关于角系数的方程为:
其中Ji表示第i个表面的有效辐射,Gi表示第i个表面的投射辐射;步骤(3)根据角系数性质得到的方程分别为:
(a)根据完整性得到6个方程:
(b)根据相对性得到15个方程:
(c)根据几何对称性得到5个方程:
(d)根据不可自见性得到4个方程:
其中Ai和Aj分别表示第i个表面和第j个表面的表面积,在建模时即得到;表示第i个表面对第j个表面的角系数,表示第j个表面对第i个表面的角系数。
3.根据权利要求1所述的复杂几何结构角系数计算方法,其特征在于:步骤(2)所述网格划分工具采用Ansys mesh或ICEM CFD。
4.根据权利要求1所述的复杂几何结构角系数计算方法,其特征在于:步骤(2)对复杂结构空间模型进行离散化后利用fluent工具模拟计算得到各表面的有效辐射和投射辐射。
CN201810592274.2A 2018-06-11 2018-06-11 具有对称性的热工设备的复杂几何结构角系数计算方法 Active CN108875189B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810592274.2A CN108875189B (zh) 2018-06-11 2018-06-11 具有对称性的热工设备的复杂几何结构角系数计算方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810592274.2A CN108875189B (zh) 2018-06-11 2018-06-11 具有对称性的热工设备的复杂几何结构角系数计算方法

Publications (2)

Publication Number Publication Date
CN108875189A true CN108875189A (zh) 2018-11-23
CN108875189B CN108875189B (zh) 2022-04-08

Family

ID=64338689

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810592274.2A Active CN108875189B (zh) 2018-06-11 2018-06-11 具有对称性的热工设备的复杂几何结构角系数计算方法

Country Status (1)

Country Link
CN (1) CN108875189B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110008587A (zh) * 2019-04-03 2019-07-12 东北大学 一种改进蒙特卡洛法求解全加热炉交换面积

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5546327A (en) * 1990-12-27 1996-08-13 Matsushita Electric Industrial Co., Ltd. Apparatus for calculating geometrical view factor
CN105512433A (zh) * 2016-01-12 2016-04-20 北京航空航天大学 流体-固体的节点化两相流建模方法
CN106202658A (zh) * 2016-06-30 2016-12-07 上海理工大学 用软件计算人体局部部位角系数的方法
CN107391894A (zh) * 2017-09-12 2017-11-24 中南大学 一种复杂结构辐射换热计算方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5546327A (en) * 1990-12-27 1996-08-13 Matsushita Electric Industrial Co., Ltd. Apparatus for calculating geometrical view factor
CN105512433A (zh) * 2016-01-12 2016-04-20 北京航空航天大学 流体-固体的节点化两相流建模方法
CN106202658A (zh) * 2016-06-30 2016-12-07 上海理工大学 用软件计算人体局部部位角系数的方法
CN107391894A (zh) * 2017-09-12 2017-11-24 中南大学 一种复杂结构辐射换热计算方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
孙凤贤等: "航天器温度场的蒙特卡罗法计算", 《哈尔滨工程大学学报》 *
张涛: "复杂结构角系数计算方法", 《航空动力学报》 *
郝金波等: "有限体积法求散射性介质辐射传递及耦合换热", 《哈尔滨工业大学学报》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110008587A (zh) * 2019-04-03 2019-07-12 东北大学 一种改进蒙特卡洛法求解全加热炉交换面积

Also Published As

Publication number Publication date
CN108875189B (zh) 2022-04-08

Similar Documents

Publication Publication Date Title
Michaleris Modeling metal deposition in heat transfer analyses of additive manufacturing processes
Yücel et al. Natural convection and radiation in a square enclosure
Hussain et al. Mixed convection heat transfer in a differentially heated square enclosure with a conductive rotating circular cylinder at different vertical locations
CN110044959B (zh) 利用移动粒子有限容积法研究熔融池换热特性的方法
CN104899351B (zh) 基于离散元模拟的沥青混合料试件温度场分析方法
Chow et al. A natural extension of the conventional finite volume method into polygonal unstructured meshes for CFD application
Ray et al. MHD mixed convection in a lid-driven cavity including heat conducting circular solid object and corner heaters with Joule heating
Mahdaoui et al. A numerical analysis of solid–liquid phase change heat transfer around a horizontal cylinder
CN104985298A (zh) 一种预测旋转电弧低合金结构钢小角度焊接温度场的方法
WO2022268099A1 (zh) 单晶生长的方法、装置及单晶体
Anandalakshmi et al. Natural convection in rhombic enclosures with isothermally heated side or bottom wall: entropy generation analysis
CN108875189A (zh) 一种复杂几何结构角系数计算方法
Shen et al. Soft sensor modeling of blast furnace wall temperature based on temporal–spatial dimensional finite-element extrapolation
CN114077796A (zh) 一种高适应性多相颗粒弥散型燃料元件温度场计算方法
Basak et al. Heatline analysis on thermal management with conjugate natural convection in a square cavity
CN104531932A (zh) 一种高炉内表面温度分布模型建立方法及装置
Ren et al. Heterogeneous convective thermal and airborne pollutant removals from a partial building enclosure with a conducting baffle: Parametric investigations and steady transition flow solutions
Singh et al. Study of combined free convection and surface radiation in closed cavities partially heated from below
Albu et al. Investigation of the optimal control of metal solidification for a complex-geometry object in a new formulation
El Moutaouakil et al. Analytical and numerical study of natural convection induced by a volumetric heat generation in inclined cavities asymmetrically cooled by heat fluxes
Djeumegni et al. Conductive-radiative heat transfer in a 2D semi-transparent medium with a square centered obstacle
Nagornova et al. Heat transfer in heated industrial premises with using radiant heating system
Yücel et al. Natural convection of a radiating fluid in a partially divided square enclosure
Wang et al. Global heat transfer model and dynamic ray tracing algorithm for complex multiple turbine blades of Ni-based superalloys in directional solidification process
Trubaev et al. Experimental determination of inverse heat conduction problem for cement clinker granules

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant