CN108873606A - 基于离心力的纳米压印方法及制备得到的聚合物微纳结构 - Google Patents

基于离心力的纳米压印方法及制备得到的聚合物微纳结构 Download PDF

Info

Publication number
CN108873606A
CN108873606A CN201810824815.XA CN201810824815A CN108873606A CN 108873606 A CN108873606 A CN 108873606A CN 201810824815 A CN201810824815 A CN 201810824815A CN 108873606 A CN108873606 A CN 108873606A
Authority
CN
China
Prior art keywords
nano
micro
polymer
centrifugal force
nano structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810824815.XA
Other languages
English (en)
Inventor
赵文宁
韩修训
方毅
罗烈升
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangxi University of Science and Technology
Original Assignee
Jiangxi University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangxi University of Science and Technology filed Critical Jiangxi University of Science and Technology
Priority to CN201810824815.XA priority Critical patent/CN108873606A/zh
Publication of CN108873606A publication Critical patent/CN108873606A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/0002Lithographic processes using patterning methods other than those involving the exposure to radiation, e.g. by stamping
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2002Exposure; Apparatus therefor with visible light or UV light, through an original having an opaque pattern on a transparent support, e.g. film printing, projection printing; by reflection of visible or UV light from an original such as a printed image

Abstract

本发明涉及微纳制造技术领域,尤其是涉及一种基于离心力的纳米压印方法及制备得到的聚合物微纳结构。所述基于离心力的纳米压印方法,包括如下步骤:聚合物置于微纳结构模板上,加热,离心填充;紫外曝光使聚合物固化,脱模。本发明无需使用昂贵的设备,利用离心力使聚合物充分填充于微纳结构模板的间隙,从而实现微纳结构的复制;加热条件下,使聚合物具备足够的流动性,利用离心作用,以填充于微纳结构模板的空隙,然后进行紫外曝光,使聚合物固化成型,脱模,即完成基于离心力的纳米压印。

Description

基于离心力的纳米压印方法及制备得到的聚合物微纳结构
技术领域
本发明涉及微纳制造技术领域,尤其是涉及一种基于离心力的纳米压印方法及制备得到的聚合物微纳结构。
背景技术
纳米压印光刻技术够大面积制造三维的微米级或纳米级结构,且产率高、分辨率高。目前,有多种纳米压印工艺,除了常用的热压印和紫外纳米压印外,还有微接触压印、滚筒压印等。
热纳米压印光刻技术是普林斯顿大学Stephen.Y.Chou等人于1995年提出来的。该技术利用纳米尺度的模板压印旋涂在晶圆表面的聚合物,从而实现图形的转移和复制功能。与传统光刻技术不同,纳米压印技术在制备纳米结构时可以不需要使用光子、电子或离子,不需要复杂的光学器件。各种基底都可以用来纳米压印,例如,硅片、玻璃片、柔性聚合物薄膜甚至非平面基底。原则上,纳米压印能够实现大面积制造10nm以下的结构。目前,其已成为超精细加工技术领域的研究热点和常用手段,成为光刻技术的主要代表之一。
然而,常规的纳米压印技术需要使用昂贵仪器,制备成本高。
有鉴于此,特提出本发明。
发明内容
本发明的第一目的在于提供一种基于离心力纳米压印方法,工艺简单,不需要昂贵的设备,以解决现有技术中存在的成本高等技术问题。
本发明的第二目的在于提供一种所述基于离心力的纳米压印方法制备得到的聚合物微纳结构,所述聚合物微纳结构可广泛用于微纳器件,特别是柔性及透明微纳器件领域。
为了实现本发明的上述目的,特采用以下技术方案:
一种基于离心力的纳米压印方法,包括如下步骤:
聚合物置于微纳结构模板上,加热,离心填充;
紫外曝光使聚合物固化,脱模。
本发明所述的基于离心力的纳米压印方法,无需使用昂贵的设备,利用离心力使聚合物充分填充于微纳结构模板的间隙,从而实现微纳结构的复制;加热条件下,使聚合物具备足够的流动性,利用离心作用,以填充于微纳结构模板的空隙,然后进行紫外曝光,使聚合物固化成型,脱模,即得到基于聚合物的微纳结构,完成基于离心力的纳米压印。
优选的,所述聚合物包括紫外固化光刻胶。
如在不同实施例中,所述聚合物包括丙烯酸酯类紫外固化光刻胶,如环氧丙烯酸酯类紫外固化光刻胶;所述聚合物还可以包括环化类紫外固化光刻胶或者含硅光刻胶等。
所述紫外固化光刻胶可根据实际使用需求进行选择,不局限于此。
优选的,聚合物固化后,降温使聚合物冷却,脱模。更优选的,所述降温包括:降低至室温。
优选的,通过涂膜方式将所述紫外光固化光刻胶置于微纳结构模板上。更优选的,所述涂膜方式包括旋涂、滴涂和刮涂中的一种或多种。
优选的,所述微纳结构模板包括周期性或非周期性的微纳结构阵列。
聚合物置于微纳结构模板上,利用离心力的作用,聚合物填充于微纳结构模板的间隙中,从而实现微纳结构的复制。
优选的,所述离心的转速为500-150000rpm/min,优选1000-50000rpm/min,更优选为7000-16000rpm/min,如8000rpm/min。
如在不同实施例中,离心的转速可以为500rpm/min、1000rpm/min、2000rpm/min、3000rpm/min、4000rpm/min、5000rpm/min、6000rpm/min、7000rpm/min、8000rpm/min、9000rpm/min、10000rpm/min、11000rpm/min、12000rpm/min、13000rpm/min、14000rpm/min、15000rpm/min、16000rpm/min、17000rpm/min、18000rpm/min、19000rpm/min、20000rpm/min、30000rpm/min、40000rpm/min、50000rpm/min等等。
采用上述转速能够兼顾保证聚合物充分填充于微纳结构模板的空隙中,实现微纳结构的完整复制,同时,为避免离心力过大,造成的模板的损伤。
优选的,所述离心的时间为5-30min,优选为10-20min,如10min。
优选的,采用离心机进行离心填充。更优选的,所述离心机包括水平转子离心机、角转子离心机、垂直转子离心机及区带转子离心机中的任一种。
优选的,所述加热的温度为25-85℃,优选为60-80℃,如70℃。
采用上述加热温度,配合离心转速赋予相应的离心力,能够保证聚合物于离心条件下充分填充于微纳结构模板的空隙中,完成微纳结构的完整复制。
优选的,所述紫外曝光的条件包括:曝光时间为1-5min,优选2-4min。
优选的,所述紫外曝光的波长为200-400nm。
所述紫外曝光的光源采用紫外灯,如可选用Philips TUV 15W规格的紫外灯。
优选的,所述脱模的方法包括机械脱模和化学脱模中的任一种。更优选的,所述机械脱模包括将微纳结构模板与固化的聚合物物理分离。所述化学脱模包括采用溶液溶解除去微纳结构模板。
如采用氧化铝模板时,所述溶液可采用氢氧化钠溶液和氢氧化钾溶液中的一种或两种。
本发明所采用的微纳结构模板可根据实际需求进行选择,如可选氧化铝模板、硅基模板和金属基模板等,但不局限于此。
优选的,所述基于离心力的纳米压印方法,包括如下步骤:
(a)聚合物置于微纳结构模板上,加热至25-85℃,于500-150000rpm/min转速下离心填充;
(b)保温离心5-30min后,紫外曝光使聚合物固化;
(c)停止加热和离心,降温、脱模,将微纳结构模板与聚合物分离。
本发明还提供了一种聚合物微纳结构,其为采用前述任一种所述基于离心力的纳米压印方法制备得到的聚合物微纳结构。
与现有技术相比,本发明的有益效果为:
(1)本发明无需使用昂贵的设备,利用离心力使聚合物充分填充于微纳结构模板的间隙,从而实现微纳结构的复制;加热条件下,使聚合物具备足够的流动性,利用离心作用,以填充于微纳结构模板的空隙,然后进行紫外曝光,使聚合物固化成型,脱模,即得到基于聚合物的微纳结构,完成基于离心力的纳米压印;
(2)本发明对加热和离心条件进行了进一步的限定,使得加热温度配合离心力,保证聚合物充分填充于微纳结构模板的空隙中,完成微纳结构的完整复制;
(3)本发明所述的基于离心力的纳米压印方法工艺简单,成本低;并且所述方法对使用的微纳结构模板无限制,不需具有紫外透过性,适用性广。
附图说明
为了更清楚地说明本发明具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例提供的微纳结构模板与聚合物的结构示意图;
图2为本发明实施例提供的紫外曝光过程的结构示意图;
图3为本发明实施例制备得到的基于聚合物的微纳结构阵列的示意图。
附图标记:
1-微纳结构模板; 2-聚合物; 3-紫外灯。
具体实施方式
下面将结合附图和具体实施方式对本发明的技术方案进行清楚、完整地描述,但是本领域技术人员将会理解,下列所描述的实施例是本发明一部分实施例,而不是全部的实施例,仅用于说明本发明,而不应视为限制本发明的范围。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。实施例中未注明具体条件者,按照常规条件或制造商建议的条件进行。所用试剂或仪器未注明生产厂商者,均为可以通过市售购买获得的常规产品。
本发明提供了一种基于离心力的纳米压印方法,包括如下步骤:
聚合物置于微纳结构模板上,加热,离心填充;
紫外曝光使聚合物固化,脱模。
本发明所述的基于离心力的纳米压印方法,无需使用昂贵的设备,利用离心力使聚合物充分填充于微纳结构模板的间隙,从而实现微纳结构的复制;加热条件下,使聚合物具备足够的流动性,利用离心作用,以填充于微纳结构模板的空隙,然后进行紫外曝光,使聚合物固化成型,脱模,即得到基于聚合物的微纳结构,完成基于离心力的纳米压印。
在本发明一优选实施方式中,所述聚合物包括紫外固化光刻胶。
如在不同实施例中,所述聚合物包括丙烯酸酯类紫外固化光刻胶,如环氧丙烯酸酯类紫外固化光刻胶;所述聚合物还可以包括环化类紫外固化光刻胶或者含硅光刻胶等。
在本发明实施例中,以STU220(生产厂商:Obducat)紫外固化光刻胶为例进行说明,但不局限于此。可根据实际使用需求,选择适宜的紫外固化光刻胶。其旋涂厚度可为0.2-200μm,结合实际工艺需求和成本综合选择。
在本发明一优选实施方式中,聚合物固化后,降温使聚合物冷却,脱模。优选的,所述降温包括:降低至室温。
在本发明一优选实施方式中,通过涂膜方式将所述紫外光固化光刻胶置于微纳结构模板上。优选的,所述涂膜方式包括旋涂、滴涂和刮涂中的一种或多种。
在本发明一优选实施方式中,所述微纳结构模板包括周期性或非周期性的微纳结构阵列。
聚合物置于微纳结构模板上,利用离心力的作用,聚合物填充于微纳结构模板的间隙中,从而实现微纳结构的复制。所述微纳结构模板的结构不局限于此,可根据实际使用需求进行调整。
在本发明一优选实施方式中,所述离心的转速为500-150000rpm/min,优选1000-50000rpm/min,更优选为7000-16000rpm/min,如8000rpm/min。
采用上述转速能够兼顾保证聚合物充分填充于微纳结构模板的空隙中,实现微纳结构的完整复制,同时,为避免离心力过大,造成的模板的损伤。
在本发明一优选实施方式中,所述离心的时间为5-30min,优选为10-20min,如10min。
在本发明一优选实施方式中,采用离心机进行离心填充。更优选的,所述离心机包括水平转子离心机、角转子离心机、垂直转子离心机及区带转子离心机中的任一种。
在本发明一优选实施方式中,所述加热的温度为25-85℃,优选为60-80℃,如70℃。
采用上述加热温度,配合离心转速赋予相应的离心力,能够保证聚合物于离心条件下充分填充于微纳结构模板的空隙中,完成微纳结构的完整复制。
在本发明一优选实施方式中,所述紫外曝光的条件包括:曝光时间为1-5min,优选2-4min。所述紫外曝光的波长为200-400nm。
在本发明一优选实施方式中,所述脱模的方法包括机械脱模和化学脱模中的任一种。更优选的,所述机械脱模包括将微纳结构模板与固化的聚合物物理分离。所述化学脱模包括采用溶液溶解除去微纳结构模板。
本发明所采用的微纳结构模板可根据实际需求进行选择,如可选氧化铝模板、硅基模板和金属基模板等,但不局限于此。
在本发明一优选实施方式中,如采用氧化铝模板时,所述溶液可采用氢氧化钠溶液和氢氧化钾溶液中的一种或两种。
其中,所述氢氧化钠溶液和氢氧化钾溶液的浓度不限,能溶解除去微纳结构模板即可。
在本发明一优选实施方式中,所述基于离心力的纳米压印方法,包括如下步骤:
(a)聚合物置于微纳结构模板上,加热至25-85℃,于500-150000rpm/min转速下离心填充;
(b)保温离心5-30min后,紫外曝光使聚合物固化;
(c)停止加热和离心,降温、脱模,将微纳结构模板与聚合物分离。
本发明还提供了一种聚合物微纳结构,其为采用前述任一种所述基于离心力的纳米压印方法制备得到的聚合物微纳结构。
实施例1
本实施例所述的基于离心力的纳米压印方法,步骤如下:
(1)将紫外固化光刻胶(生产厂商:Obducat,型号:STU220)旋涂在多孔氧化铝模板上,旋涂厚度为0.2-2μm,如图1所示;
(2)然后将旋涂有聚合物的多孔氧化铝模板置于离心装置中,加热升温至70℃;然后,设定转速为8000rpm/min,保持温度离心10min后,紫外曝光2min,如图2所示;
(3)紫外曝光后,停止加热,并关闭离心设备,降至室温,利用氢氧化钠溶液溶解除去多孔氧化铝模板,并用去离子水反复冲洗干燥,即得聚合物的微纳米结构-即聚合物的纳米柱阵列结构,如图3所示。
实施例2
本实施例所述的基于离心力的纳米压印方法,步骤如下:
(1)将紫外固化光刻胶旋涂在多孔氧化铝模板上,旋涂厚度为2-5μm;
(2)然后将旋涂有聚合物的多孔氧化铝模板置于离心装置中,加热升温至55℃;然后,设定转速为20000rpm/min,保持温度离心5min后,紫外曝光2min;
(3)紫外曝光后,停止加热,并关闭离心设备,降至室温,利用氢氧化钠溶液溶解除去多孔氧化铝模板,并用去离子水反复冲洗干燥,即得聚合物的微纳米结构-即聚合物的纳米柱阵列结构。
实施例3
本实施例所述的基于离心力的纳米压印方法,步骤如下:
(1)将紫外固化光刻胶旋涂在多孔氧化铝模板上,旋涂厚度为0.2-2μm;
(2)然后将旋涂有聚合物的多孔氧化铝模板置于离心装置中,加热升温至85℃;然后,设定转速为7000rpm/min,保持温度离心15min后,紫外曝光2min;
(3)紫外曝光后,停止加热,并关闭离心设备,降至室温,利用氢氧化钠溶液溶解除去多孔氧化铝模板,并用去离子水反复冲洗干燥,即得聚合物的微纳米结构-即聚合物的纳米柱阵列结构。
实施例4
本实施例所述的基于离心力的纳米压印方法,步骤如下:
(1)将紫外固化光刻胶旋涂在多孔氧化铝模板上,旋涂厚度为0.2-2μm;
(2)然后将旋涂有聚合物的多孔氧化铝模板置于离心装置中,加热升温至60℃;然后,设定转速为16000rpm/min,保持温度离心10min后,紫外曝光2min;
(3)紫外曝光后,停止加热,并关闭离心设备,降至室温,利用氢氧化钠溶液溶解除去多孔氧化铝模板,并用去离子水反复冲洗干燥,即得聚合物的微纳米结构-即聚合物的纳米柱阵列结构。
实施例5
本实施例参考实施例4的方法,区别仅在于,加热温度为25℃,离心转速为50000rpm/min,离心时间为30min。
本发明所述的基于离心力的纳米压印方法,无需使用昂贵的设备,利用离心力使聚合物充分填充于微纳结构模板的间隙,从而实现微纳结构的复制;加热条件下,使聚合物具备足够的流动性,利用离心作用,以填充于微纳结构模板的空隙,然后进行紫外曝光,使聚合物固化成型,脱模,即得到基于聚合物的微纳结构,完成基于离心力的纳米压印。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (10)

1.一种基于离心力的纳米压印方法,其特征在于,包括如下步骤:
聚合物置于微纳结构模板上,加热,离心填充;
紫外曝光使聚合物固化,脱模。
2.根据权利要求1所述的基于离心力的纳米压印方法,其特征在于,所述聚合物包括紫外固化光刻胶;
优选的,聚合物固化后,降温使聚合物冷却,脱模。
3.根据权利要求2所述的基于离心力的纳米压印方法,其特征在于,通过涂膜方式将所述紫外固化光刻胶置于微纳结构模板上;
优选的,所述涂膜方式包括旋涂、滴涂和刮涂中的一种或多种;
优选的,所述微纳结构模板包括周期性或非周期性的微纳结构阵列。
4.根据权利要求1-3任一项所述的基于离心力的纳米压印方法,其特征在于,所述离心的转速为500-150000rpm/min;
优选的,所述离心的转速为1000-50000rpm/min;
更优选的,所述离心的转速为7000-16000rpm/min;
优选的,所述离心的时间为5-30min;
更优选的,所述离心的时间为10-20min。
5.根据权利要求4所述的基于离心力的纳米压印方法,其特征在于,采用离心机进行离心填充;
优选的,所述离心机包括水平转子离心机、角转子离心机、垂直转子离心机及区带转子离心机中的任一种。
6.根据权利要求1所述的基于离心力的纳米压印方法,其特征在于,所述加热的温度为25-85℃;
优选的,所述加热的温度为60-80℃。
7.根据权利要求1所述的基于离心力的纳米压印方法,其特征在于,所述紫外曝光的时间为1-5min;
优选的,所述紫外曝光的波长为200-400nm;
优选的,所述降温包括:降低至室温。
8.根据权利要求1所述的基于离心力的纳米压印方法,其特征在于,所述脱模的方法包括机械脱模和化学脱模中的任一种;
优选的,所述机械脱模包括将微纳结构模板与固化的聚合物物理分离;
优选的,所述化学脱模包括采用溶液溶解除去微纳结构模板。
9.根据权利要求1所述的基于离心力的纳米压印方法,其特征在于,所述纳米压印方法,包括如下步骤:
(a)聚合物置于微纳结构模板上,加热至25-85℃,于500-150000rpm/min转速下离心填充;
(b)保温离心5-30min后,紫外曝光使聚合物固化;
(c)停止加热和离心,降温、脱模,将微纳结构模板与聚合物分离。
10.采用权利要求1-9任一项所述的基于离心力的纳米压印方法制备得到的聚合物微纳结构。
CN201810824815.XA 2018-07-25 2018-07-25 基于离心力的纳米压印方法及制备得到的聚合物微纳结构 Pending CN108873606A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810824815.XA CN108873606A (zh) 2018-07-25 2018-07-25 基于离心力的纳米压印方法及制备得到的聚合物微纳结构

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810824815.XA CN108873606A (zh) 2018-07-25 2018-07-25 基于离心力的纳米压印方法及制备得到的聚合物微纳结构

Publications (1)

Publication Number Publication Date
CN108873606A true CN108873606A (zh) 2018-11-23

Family

ID=64305386

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810824815.XA Pending CN108873606A (zh) 2018-07-25 2018-07-25 基于离心力的纳米压印方法及制备得到的聚合物微纳结构

Country Status (1)

Country Link
CN (1) CN108873606A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116954019A (zh) * 2023-06-21 2023-10-27 湖北大学 一种基于液态镓的冷冻离心纳米压印方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070077770A1 (en) * 2005-09-30 2007-04-05 Molecular Imprints, Inc. Etching technique to planarize a multi-layer structure
CN102325563A (zh) * 2008-12-22 2012-01-18 昆士兰大学 贴剂制备
CN105824190A (zh) * 2016-05-30 2016-08-03 中国科学院上海高等研究院 一种纳米压印模板制备方法
US20160266493A1 (en) * 2014-03-20 2016-09-15 Seagate Technology Llc Apparatuses and methods utilizing etch stop layers
CN108137310A (zh) * 2015-09-07 2018-06-08 新型材料莱布尼兹研究所公益性有限责任公司 制备结构化表面的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070077770A1 (en) * 2005-09-30 2007-04-05 Molecular Imprints, Inc. Etching technique to planarize a multi-layer structure
CN102325563A (zh) * 2008-12-22 2012-01-18 昆士兰大学 贴剂制备
US20160266493A1 (en) * 2014-03-20 2016-09-15 Seagate Technology Llc Apparatuses and methods utilizing etch stop layers
CN108137310A (zh) * 2015-09-07 2018-06-08 新型材料莱布尼兹研究所公益性有限责任公司 制备结构化表面的方法
CN105824190A (zh) * 2016-05-30 2016-08-03 中国科学院上海高等研究院 一种纳米压印模板制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116954019A (zh) * 2023-06-21 2023-10-27 湖北大学 一种基于液态镓的冷冻离心纳米压印方法

Similar Documents

Publication Publication Date Title
CN105658413A (zh) 利用压印法的聚酰亚胺的精细图案形成方法
Wang et al. Three-dimensional photonic crystals fabricated by visible light holographic lithography
CN101823690B (zh) Su-8纳米流体系统的制作方法
CN104991416B (zh) 一种基于光盘的二维周期性微纳结构的热压印方法
Probst et al. Athermal Azobenzene‐Based Nanoimprint Lithography
CN105824190A (zh) 一种纳米压印模板制备方法
CN102910579A (zh) 一种可提高图形深宽比的纳米压印方法及其产品
CN102393600B (zh) 一种纳米压印复合模板的制备方法
CN104937697B (zh) 曝光装置
CN111438859A (zh) 一种图案化纳米阵列模板及其制备方法和应用
CN101900936A (zh) 压印模具及其制作方法
CN108873606A (zh) 基于离心力的纳米压印方法及制备得到的聚合物微纳结构
CN106291776A (zh) 一种基于纳米成型技术的力响应性光子晶体材料的制备方法
CN102799066B (zh) 一种在二氧化钛有机无机光敏复合薄膜上制备凹透镜阵列结构的方法
KR20050019557A (ko) 나노 임프린트 방법 및 이에 이용되는 고분자 조성물
CN105425266A (zh) 一种光子晶体塑料闪烁体的制备方法
KR100537722B1 (ko) 미세형상 구조물의 연속 성형장치 및 방법 그리고 그 미세형상의 성형을 위한 스탬퍼 제작방법
WO2020098445A1 (zh) 压印模板及其制备方法和压印方法
TWI728489B (zh) 利用可溶解性模仁的壓印方法及相關壓印系統
CN107248367B (zh) 一种防伪结构及其制作和使用方法
Jung et al. Dual-layer thermal nanoimprint lithography without dry etching
CN104690991A (zh) 一种制备大轴径比皱纹模板的方法
CN112363367A (zh) 一种多阶图形纳米压印的方法
KR101689153B1 (ko) 집속이온빔 적용 재전사가 가능한 나노 패턴 쉐도우 마스크 제조 방법 및 나노 패턴 쉐도우 마스크를 재사용하는 패턴 전사 방법
CN109110728A (zh) 基于离心力的微纳结构复制方法及制备得到的聚合物微纳结构

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20181123