CN108871427B - A kind of water quality detection method of water source - Google Patents
A kind of water quality detection method of water source Download PDFInfo
- Publication number
- CN108871427B CN108871427B CN201810428956.XA CN201810428956A CN108871427B CN 108871427 B CN108871427 B CN 108871427B CN 201810428956 A CN201810428956 A CN 201810428956A CN 108871427 B CN108871427 B CN 108871427B
- Authority
- CN
- China
- Prior art keywords
- turbidity
- water source
- sensor
- similarity
- value
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 title claims abstract description 105
- 238000001514 detection method Methods 0.000 title claims abstract description 35
- 230000004927 fusion Effects 0.000 claims abstract description 33
- 239000011159 matrix material Substances 0.000 claims abstract description 19
- 238000000034 method Methods 0.000 claims abstract description 19
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 18
- 230000007613 environmental effect Effects 0.000 claims description 15
- 239000003651 drinking water Substances 0.000 claims description 9
- 235000020188 drinking water Nutrition 0.000 claims description 9
- 238000002347 injection Methods 0.000 claims description 5
- 239000007924 injection Substances 0.000 claims description 5
- 238000012806 monitoring device Methods 0.000 claims description 4
- 230000001360 synchronised effect Effects 0.000 claims description 3
- 238000005259 measurement Methods 0.000 claims description 2
- 238000012544 monitoring process Methods 0.000 description 7
- 238000010586 diagram Methods 0.000 description 6
- 238000000746 purification Methods 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000005672 electromagnetic field Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01D—MEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
- G01D21/00—Measuring or testing not otherwise provided for
- G01D21/02—Measuring two or more variables by means not covered by a single other subclass
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/25—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Biochemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
- Water Treatment By Sorption (AREA)
Abstract
本发明提供了一种水源地水质检测方法,包括以下过程:在水源地水下布设若干浊度传感器,将浊度传感器测得的数值转化为浊度矩阵;计算基于灰色关联度的水源环境浊度传感器值的灰色关联度融合权重;计算基于相似度的水源环境浊度传感器值的相似度融合权重;计算基于最小相对信息熵原理的组合的权重;根据组合权重得到水源地水质融合模型。
The invention provides a water quality detection method for a water source, including the following processes: arranging a plurality of turbidity sensors underwater in the water source, converting the values measured by the turbidity sensors into a turbidity matrix; The gray correlation degree fusion weight of the sensor value is calculated; the similarity fusion weight of the water source environment turbidity sensor value based on the similarity is calculated; the combination weight based on the principle of minimum relative information entropy is calculated; the water source water quality fusion model is obtained according to the combination weight.
Description
技术领域technical field
本发明涉及一种水源地水质监测方法,特别是一种水源地水质监测方法。The invention relates to a water quality monitoring method of a water source, in particular to a water quality monitoring method of a water source.
背景技术Background technique
我国从八九十年代已经开始对饮用水源环境参数的检测,研制饮用水源环境参数智能监控系统和智能控制系统中的试验应用工作从未间断,但目前我国市场上水源环境参数智能监控系统的智能化程度和科学技术水平比较低,不能够对同一水源地多点监测,不能对饮用水源地的浑浊度精确的把控,针对目前现状,设计了一种饮用水源监测装置能够对饮用水源地水环境因子的各项参数进行多点监测,利用水源环境多点浊度融合模型,将水源环境多点检测的浊度值进行精确融合,提高水源环境浊度检测精确度、鲁棒性和可靠性,还具有较高的通用性和实用性。my country has begun to test the environmental parameters of drinking water sources since the 1980s and 1990s, and the development of intelligent monitoring systems for environmental parameters of drinking water sources and the test application in the intelligent control system has never been interrupted. The level of intelligence and science and technology is relatively low, and it cannot monitor the same water source at multiple points, and cannot accurately control the turbidity of drinking water sources. According to the current situation, a drinking water source monitoring device is designed to Multi-point monitoring of various parameters of the water environment factors of drinking water sources, using the multi-point turbidity fusion model of the water source environment to accurately fuse the turbidity values of the multi-point detection of the water source environment to improve the accuracy of turbidity detection in the water source environment, Robustness and reliability, but also high versatility and practicality.
发明内容SUMMARY OF THE INVENTION
本发明提供一种水源地水质检测方法,该方法监测水环境水因子的参数精度高。The invention provides a water quality detection method for a water source, and the method has high parameter precision for monitoring the water factor of the water environment.
实现本发明目的的技术方案为:一种水源地水质检测方法,其特征在于,包括以下过程:The technical scheme for realizing the purpose of the present invention is: a water quality detection method for a water source, which is characterized in that it includes the following process:
步骤1,在水源地水下布设若干浊度传感器,将浊度传感器测得的数值转化为浊度矩阵;Step 1: Arrange several turbidity sensors underwater at the water source, and convert the values measured by the turbidity sensors into a turbidity matrix;
步骤2,计算基于灰色关联度的水源环境浊度传感器值的灰色关联度融合权重;Step 2: Calculate the gray correlation degree fusion weight of the water source environmental turbidity sensor value based on the gray correlation degree;
步骤3,计算基于相似度的水源环境浊度传感器值的相似度融合权重;Step 3, calculating the similarity fusion weight of the water source environmental turbidity sensor value based on the similarity;
步骤4,计算基于最小相对信息熵原理的组合的权重;
步骤5,根据组合权重得到水源地水质融合模型。Step 5: Obtain a water source water quality fusion model according to the combined weights.
本发明与现有技术相比,具有以下优点:(1)解决现有监测设备中不能够对同一水源地多点监测,不能对饮用水源地的浑浊度精确的把控的问题,将水源环境多点检测的浊度值进行精确融合,提高水源环境浊度检测精确度、鲁棒性和可靠性,还具有较高的通用性和实用性,同时高度智能和人性化的检测的控制调节能力也更好地降低了监测的成本,使用方便,安全可靠;(2)将水源环境中水因子的浊度参数转化为区间数形式,定义两两区间数的相似度,构建相似度矩阵,装有浊度传感器的移动小车每运动30°,检测一次水源环境中的浊度,根据每个检测点浊度传感器区间数的相似度占整个水环境浊度传感器的区间数相似度和的比为该检测点浊度传感器值的相似度融合权重αi,提高了水源环境浊度融合值的精确性和科学性。Compared with the prior art, the present invention has the following advantages: (1) It solves the problem that the existing monitoring equipment cannot monitor the same water source at multiple points and cannot accurately control the turbidity of the drinking water source. The turbidity values of environmental multi-point detection are accurately fused to improve the accuracy, robustness and reliability of turbidity detection in the water source environment. It also has high versatility and practicability. At the same time, the control and adjustment of highly intelligent and user-friendly detection The ability to better reduce the cost of monitoring, easy to use, safe and reliable; (2) Convert the turbidity parameter of the water factor in the water source environment into the form of interval numbers, define the similarity between the two interval numbers, and build a similarity matrix, The mobile car equipped with turbidity sensor moves every 30° to detect the turbidity in the water source environment. The similarity fusion weight α i of the turbidity sensor value at the detection point improves the accuracy and scientificity of the turbidity fusion value of the water source environment.
下面结合说明书附图对本发明作进一步描述。The present invention will be further described below with reference to the accompanying drawings.
附图说明Description of drawings
图1是本发明方法流程示意图。Fig. 1 is the schematic flow chart of the method of the present invention.
图2是一种饮用水源监测装置中升降轨道装置结构示意图。Figure 2 is a schematic structural diagram of a lifting rail device in a drinking water source monitoring device.
图3是本发明中活性炭投放装置结构示意图。Figure 3 is a schematic diagram of the structure of the activated carbon injection device in the present invention.
图4是本发明中环形轨道结构简图。Figure 4 is a schematic diagram of the structure of the annular track in the present invention.
图5是本发明中底座内部结构图。Fig. 5 is the internal structure diagram of the base in the present invention.
图6是本发明中螺杆和光杆位置分布图。Fig. 6 is the position distribution diagram of screw and polished rod in the present invention.
图7是本发明中底座示意图。Figure 7 is a schematic diagram of the base in the present invention.
图8是本发明中移动小车局部放大图。Fig. 8 is a partial enlarged view of the mobile trolley in the present invention.
具体实施方式Detailed ways
结合图1,一种水源地水质检测方法,其特征在于,包括以下过程:With reference to Fig. 1, a kind of water quality detection method of water source is characterized in that, comprises the following process:
步骤1,在水源地水下布设若干浊度传感器,将浊度传感器测得的数值转化为浊度矩阵;Step 1: Arrange several turbidity sensors underwater at the water source, and convert the values measured by the turbidity sensors into a turbidity matrix;
步骤2,计算基于灰色关联度的水源环境浊度传感器值的灰色关联度融合权重;Step 2: Calculate the gray correlation degree fusion weight of the water source environmental turbidity sensor value based on the gray correlation degree;
步骤3,计算基于相似度的水源环境浊度传感器值的相似度融合权重;Step 3, calculating the similarity fusion weight of the water source environmental turbidity sensor value based on the similarity;
步骤4,计算基于最小相对信息熵原理的组合的权重;
步骤5,根据组合权重得到水源地水质融合模型。Step 5: Obtain a water source water quality fusion model according to the combined weights.
步骤1中的浊度矩阵为The turbidity matrix in
其中,m为传感器的数量,n为传感器测量时段的数量。Among them, m is the number of sensors, and n is the number of sensor measurement periods.
步骤2的具体过程在于:The specific process of step 2 is as follows:
步骤2.1,根据式(2)计算每个传感器在k时段与m个传感器在每个K时段极大温度值的关联度ζij,k取值为1,2,…n,Step 2.1, according to formula (2), calculate the correlation degree ζ ij between each sensor and the maximum temperature value of m sensors in each K period, k is 1, 2, ... n,
其中,in,
步骤2.2,构建水源环境浊度传感器的灰色关联度矩阵B,Step 2.2, construct the gray correlation matrix B of the water source environmental turbidity sensor,
步骤2.3,根据式(4)计算每个传感器检测浊度值与极大浊度值的平均关联度ζi Step 2.3, according to formula (4), calculate the average correlation degree ζ i between the turbidity value detected by each sensor and the maximum turbidity value
步骤2.4,根据式(5)计算每个传感器在k时段与m个传感器在每个K时段的极小浊度值的关联度λij Step 2.4, according to formula (5), calculate the correlation degree λ ij between each sensor and the minimum turbidity value of m sensors in each K period
步骤2.5,构建关联度矩阵CStep 2.5, construct the correlation matrix C
步骤2.6,根据式(7)计算每个传感器检测浊度值与极小浊度值的平均关联度ηi Step 2.6, according to formula (7), calculate the average correlation degree η i between the turbidity value detected by each sensor and the minimum turbidity value
步骤2.7,根据式(8)求取水源环境浊度传感器值的灰色关联度融合权重βi Step 2.7, according to formula (8), obtain the gray correlation degree fusion weight β i of the water source environmental turbidity sensor value
步骤3的具体过程在于:The specific process of step 3 is as follows:
步骤3.1,根据任意不同两个传感器在同一时段检测水源环境浊度的相似度构建传感器检测水源浊度的相似度矩阵SStep 3.1, according to the similarity between any two sensors detecting the turbidity of the water source environment at the same time period, construct a similarity matrix S for the sensor to detect the turbidity of the water source
其中,Sab表示a和b的相似度,a=[aL,aU],b=[bL,bU],qj,j=1,2,3,4分别为aL、aU、bL、bU中的第j大的数,in, S ab represents the similarity between a and b, a=[a L , a U ], b=[b L , b U ], q j , j=1, 2, 3, 4 are respectively a L , a U , The jth largest number in b L and b U ,
步骤3.2,计算矩阵S每行的每个传感器的平均相似度Si Step 3.2, calculate the average similarity Si of each sensor in each row of matrix S
步骤3.3,计算水源环境浊度传感器值的相似度融合权重αi Step 3.3, calculate the similarity fusion weight α i of the water source environmental turbidity sensor value
步骤4中基于最小相对信息熵原理的组合的权重wi The weight w i of the combination based on the principle of minimum relative information entropy in
步骤5中的模型为The model in
其中,i为检测点的索引值,xi为k时刻第i个检测点温度。Among them, i is the index value of the detection point, and x i is the temperature of the ith detection point at time k.
结合图2~8,实现上述检测方法的一种饮用水源监测装置,包括活性炭投放装置2、升降轨道装置1、水源地检测装置21和水源环境多点浊度融合模型。2 to 8 , a drinking water source monitoring device implementing the above detection method includes an activated carbon injection device 2 , a
结合图3至图6,升降轨道装置包括底座7、下底板8、环形轨道5和连接底座7、环形轨道5的升降装置。升降装置包括步进电机19、两个丝杠18、一个光杆17、三个带轮15、同步带16、两个带有内螺纹的支撑脚6、一个带有光孔的支撑脚9。两个带有内螺纹的支撑脚6、一个带有光孔的支撑脚9呈120度分布于环形轨道5下底面,两个丝杠18、一个光杆17分别与两个带有内螺纹的支撑脚6、一个带有光孔的支撑脚9匹配,两个丝杠18、一个光杆17下端穿过底座7上表面分别与三个带轮15固定连接,两个丝杠18下端通过轴承设置于下底板8上,光杆17下端与设置于下底板8上的步进电机19的驱动轴连接,三个带轮15之间通过同步带16连接。3 to 6 , the lifting track device includes a
结合图2和图7,活性炭投放装置2包括移动小车22、外壳本体、曲柄滑块机构、无盖长方体13。移动小车22设置于环形轨道5上且绕环形轨道5运动,外壳本体设置与移动小车22上,外壳本体设置内腔,外壳本体侧壁上开有与内腔连通的投放口,投放口上设置电磁阀门4,曲柄滑块机构设置于外壳本体的内腔中,无盖长方体13承载活性炭,且由曲柄滑块机构驱动伸出或锁紧投放口。曲柄滑块机构包括机架10、曲柄11、连杆12、滑块23。曲柄11末端固定于外壳本体内腔底面,连杆12末端与曲柄11前端转动连接,机架10末端与曲柄11滑动连接,滑块23与连杆12前端转动连接且与机架10前端固定连接,滑块23与无盖长方体13固定连接。Referring to FIGS. 2 and 7 , the activated carbon injection device 2 includes a moving
具体地,机架10末端表面设置方孔,曲柄11穿过方孔。Specifically, the end surface of the
水源地检测装置包括浊度传感器、温度传感器、TDS传感器、PH值传感器。浊度传感器设置四个,其中三个均匀的分布于底座7上图1的A、B、C三点且另一个设置于外壳本体外壁上。The water source detection device includes a turbidity sensor, a temperature sensor, a TDS sensor, and a PH value sensor. There are four turbidity sensors, three of which are evenly distributed on the
所述水源环境多点浊度融合模型把水源环境中水源地检测装置检测的多点浊度值转化为区间数值,定义浊度传感器的区间数值的相似度和灰色关联度,构建相似度矩阵和灰色关联度矩阵,水源环境每个检测点浊度传感器区间数的相似度融合权重,每个检测点浊度传感器区间值与水源环境浊度传感器的极大和极小区间数值的平均关联度积的倒数占整个水源环境检测点浊度传感器区间数值与极大和极小区间数值的平均关联度积的倒数和的比为该检测点浊度传感器值的灰色关联度融合权重,每个检测点浊度传感器值融合的相似度融合权重和灰色关联度融合权重积的均方根占整个水源环境浊度传感器值的相似度融合权重和灰色关联度融合权重积的均方根和的比为该检测点浊度传感器值融合的组合权重,水源环境各个检测点浊度传感器值与各自浊度传感器值融合的组合权重积的相加和为水源环境多个检测点浊度融合模型的值。The multi-point turbidity fusion model of the water source environment converts the multi-point turbidity values detected by the water source detection device in the water source environment into interval values, defines the similarity and gray correlation of the interval values of the turbidity sensor, and constructs the similarity matrix and Gray correlation matrix, the similarity fusion weight of the turbidity sensor interval number of each detection point in the water source environment, the average correlation product of the turbidity sensor interval value of each detection point and the maximum and minimum interval values of the water source environment turbidity sensor The ratio of the reciprocal to the reciprocal sum of the average correlation product of the turbidity sensor interval value of the entire water source environment detection point and the maximum and minimum interval values is the gray correlation degree fusion weight of the turbidity sensor value of the detection point. The turbidity of each detection point The ratio of the root mean square of the similarity fusion weight of the sensor value fusion and the gray correlation fusion weight product to the sum of the root mean square of the similarity fusion weight of the sensor value and the grey correlation fusion weight product of the turbidity sensor value in the entire water source is the turbidity of the detection point. The combined weight of the fusion of the turbidity sensor values, the sum of the combined weight products of the turbidity sensor values of each detection point in the water source environment and the fusion of the respective turbidity sensor values is the value of the turbidity fusion model of multiple detection points in the water source environment.
所述的升降轨道装置放置于水源地,通过螺旋传动机构带动环形轨道5升降运动,分布在移动小车侧面的水源地检测装置5中的各个传感器分别检测水质参数,采集到的水质参数的信息通过无线模块与用户进行通讯,从而实现了用户实时监测水源地水质情况。与此同时,利用水源环境多个检测点浊度融合模型,任意不同两个传感器在同一时段检测水源环境浊度的相似度,构建传感器检测水源浊度的相似度矩阵S,能够更精确把控整个水源地水源环境的浊度情况,若水源地的浊度超过预设值,电磁阀门4打开,装有固体活性炭的无盖长方体13通过曲柄滑块机构的动作,穿过电磁阀门4伸出到水面进行水质净化。The lifting track device is placed in the water source, and the
工作原理:所述升降轨道装置放置于水源地,通过螺旋传动机构和光杆导轨的配合控制环形轨道5升降运动,分布在移动小车侧面25的水源地检测装置中的各个传感器分别检测水质参数,随着环形轨道的升降运动,水源地检测装置可以检测水源地不同深度水质的情况,移动小车在环形轨道上运动,可以检测水源地同一水平面多点水质的情况,采集到的水质参数的信息通过无线模块与用户进行通讯,利用水源环境多个检测点浊度融合模型,任意不同两个传感器在同一时段检测水源环境浊度的相似度,构建传感器检测水源浊度的相似度矩阵S,能够更精确把控整个水源地水源环境的浊度情况,从而实现了用户精确监测水源地水环境因子情况。若水源地的浊度超过预设值,电磁阀门打开,装有固体活性炭的无盖长方体通过曲柄滑块机构的动作,穿过电磁阀门伸出到水面进行水质净化。Working principle: The lifting track device is placed in the water source, and the lifting motion of the
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810428956.XA CN108871427B (en) | 2018-05-08 | 2018-05-08 | A kind of water quality detection method of water source |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810428956.XA CN108871427B (en) | 2018-05-08 | 2018-05-08 | A kind of water quality detection method of water source |
Publications (2)
Publication Number | Publication Date |
---|---|
CN108871427A CN108871427A (en) | 2018-11-23 |
CN108871427B true CN108871427B (en) | 2021-01-05 |
Family
ID=64327213
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810428956.XA Active CN108871427B (en) | 2018-05-08 | 2018-05-08 | A kind of water quality detection method of water source |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108871427B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN118330031A (en) * | 2024-04-18 | 2024-07-12 | 哈尔滨工业大学 | Injury signal detection method based on self-adaptive weighting multi-sensor data fusion |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102053139A (en) * | 2009-10-27 | 2011-05-11 | 中国科学院苏州纳米技术与纳米仿生研究所 | Real-time multiparameter remote water quality monitoring system and method |
CN103728428A (en) * | 2013-12-24 | 2014-04-16 | 蒙宏铅 | Water quality real-time online monitoring system |
CN104077601A (en) * | 2014-07-08 | 2014-10-01 | 中国航空无线电电子研究所 | Method for carrying out synthetic target recognition through information of different types |
CN107168402A (en) * | 2017-05-12 | 2017-09-15 | 淮阴工学院 | Environment of chicken house temperature intelligent monitoring system based on CAN fieldbus |
CN107168403A (en) * | 2017-05-12 | 2017-09-15 | 淮阴工学院 | A kind of environment of chicken house system for detecting temperature based on CAN fieldbus |
-
2018
- 2018-05-08 CN CN201810428956.XA patent/CN108871427B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102053139A (en) * | 2009-10-27 | 2011-05-11 | 中国科学院苏州纳米技术与纳米仿生研究所 | Real-time multiparameter remote water quality monitoring system and method |
CN103728428A (en) * | 2013-12-24 | 2014-04-16 | 蒙宏铅 | Water quality real-time online monitoring system |
CN104077601A (en) * | 2014-07-08 | 2014-10-01 | 中国航空无线电电子研究所 | Method for carrying out synthetic target recognition through information of different types |
CN107168402A (en) * | 2017-05-12 | 2017-09-15 | 淮阴工学院 | Environment of chicken house temperature intelligent monitoring system based on CAN fieldbus |
CN107168403A (en) * | 2017-05-12 | 2017-09-15 | 淮阴工学院 | A kind of environment of chicken house system for detecting temperature based on CAN fieldbus |
Also Published As
Publication number | Publication date |
---|---|
CN108871427A (en) | 2018-11-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105044303B (en) | A kind of vertical dynamic data acquisition device of reservoir multi-parameter water quality | |
CN103233723B (en) | Small-diameter electromagnetic flow comprehensive logging instrument | |
CN202974629U (en) | Precise spring leaf performance tester | |
CN108871427B (en) | A kind of water quality detection method of water source | |
CN203464861U (en) | Hole position detecting device | |
WO2014106442A1 (en) | Device for detecting curved surface and pressure distribution of foot sole | |
KR20070008500A (en) | Ultrasonic Foot Size Automatic Measuring System | |
CN106121627A (en) | A kind of oil pumper displacement acquisition method based on image recognition | |
CN103116008B (en) | Wireless sensor network-based drinking water safety monitoring device | |
CN203169157U (en) | Unstrained vital sign monitoring mattress | |
CN204421903U (en) | A kind of shallow lake vertical section observation device | |
CN111190218A (en) | Neutron energy spectrum detection device and detection method for small sleeve | |
CN108387702A (en) | A kind of drinking water detection device | |
CN106323372A (en) | Intelligent household indoor environment information wireless collection device | |
CN104655108A (en) | Shallow lake longitudinal section observing device | |
CN216144954U (en) | Laser scanning device for measuring biological disturbance microtopography | |
CN217465759U (en) | Automatic change rope depth measurement device | |
CN210689567U (en) | An accurate detection device for the growth of wheat and corn | |
CN103163176A (en) | On-site detection apparatus and detection method for heat transfer coefficient of enclosure wall structure of building | |
CN107607690B (en) | System and method for monitoring soil parameters | |
CN108414718A (en) | A kind of drinking water source monitoring system based on wireless sensor network | |
CN107762452B (en) | A kind of continuous real-time measurement apparatus of beam pumping unit load | |
CN106597486B (en) | Verification device and method for detecting positioning accuracy of Beidou positioning antenna | |
CN114354514B (en) | Non-contact multi-mode material sensing and identifying device | |
CN2457578Y (en) | Magnetostriction multipurpose level, temperature and density meter |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |