CN108871174B - 一种利用电磁涡流法检测金属管道壁厚的方法 - Google Patents

一种利用电磁涡流法检测金属管道壁厚的方法 Download PDF

Info

Publication number
CN108871174B
CN108871174B CN201811093065.XA CN201811093065A CN108871174B CN 108871174 B CN108871174 B CN 108871174B CN 201811093065 A CN201811093065 A CN 201811093065A CN 108871174 B CN108871174 B CN 108871174B
Authority
CN
China
Prior art keywords
phase
wall thickness
pipeline
theta
eddy current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811093065.XA
Other languages
English (en)
Other versions
CN108871174A (zh
Inventor
张伟
师奕兵
王志刚
李焱骏
孙虎
高旭阳
李志鹏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Electronic Science and Technology of China
Original Assignee
University of Electronic Science and Technology of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Electronic Science and Technology of China filed Critical University of Electronic Science and Technology of China
Priority to CN201811093065.XA priority Critical patent/CN108871174B/zh
Publication of CN108871174A publication Critical patent/CN108871174A/zh
Application granted granted Critical
Publication of CN108871174B publication Critical patent/CN108871174B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/02Measuring arrangements characterised by the use of electric or magnetic techniques for measuring length, width or thickness
    • G01B7/06Measuring arrangements characterised by the use of electric or magnetic techniques for measuring length, width or thickness for measuring thickness
    • G01B7/10Measuring arrangements characterised by the use of electric or magnetic techniques for measuring length, width or thickness for measuring thickness using magnetic means, e.g. by measuring change of reluctance

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

本发明公开了一种利用电磁涡流法检测金属管道壁厚的方法,先通过相位解缠方程进行相位解缠,再计算解除缠绕后的相位θan与理论相位值θth之间的误差θe,及构建金属管道壁的磁导率μ与电导率σ的关系式Ψ0,然后进行拟合,最后根据拟合曲线计算仿真补偿后金属管道壁面厚度。

Description

一种利用电磁涡流法检测金属管道壁厚的方法
技术领域
本发明属于无损检测技术领域,更为具体地讲,涉及一种利用电磁涡流法检测金属管道壁厚的方法。
背景技术
电磁涡流阵列检测技术具有检测速度较快、覆盖范围广和测试精度较高等优点。近年来,随着传感器技术的发展,电磁涡流阵列传感器检测技术的研究和应用得到极大的发展,广泛应用于航空航天部件和油气管道的无损检测中。
管道远场涡流检测研究中,接收线圈与发射线圈同轴设置于管内中心轴位置。线圈同轴设置的检测模式对于全周向缺陷可以实现良好检测,而对于半周向缺陷、1/4周向缺陷或更小局部缺陷不能准确实现其具体位置和深度的检测,因为同轴检测模式下检测信号反映的是管壁一周的平均壁厚情况。若将接收线圈贴近管壁设置可以提高局部缺陷的定位和定量检测精度,但是这势必需要更多的检测次数以完成管道周向壁厚的整体检测,降低了管道的检测速度。
在基于电磁涡流的管道检测中,电磁涡流的传输不仅受到管道缺陷的影响,还受到管道物理参数(内直径,磁导率和电导率等)的影响;这些影响均会体现在检测信号相对于发射信号的变化中,因此可以利用信号的变化来对管道物理参数进行反演。
发明内容
本发明的目的在于克服现有技术的不足,提供一种利用电磁涡流法检测金属管道壁厚的方法,通过对相位进行补偿,来推导得出金属管道壁厚。
为实现上述发明目的,本发明一种利用电磁涡流法检测金属管道壁厚的方法,其特征在于,包括以下步骤:
(1)、基于ANASY仿真分析金属管道壁厚对远场涡流检测信号的影响,建立相位纠缠的解缠方程;
θan=θd+360×T (1)
其中,θan为解除缠绕后的相位,θd为远场涡流检测信号的相位,T为相位缠绕的次数;
(2)、基于ANASY仿真分析,计算解除缠绕后的相位θan与理论相位值θth之间的误差θe
θe=θanth (2)
(3)、构建金属管道壁的磁导率μ与电导率σ的关系式;
Figure GDA0002202732100000021
(4)、将步骤(2)得到的θe和步骤(3)得到Ψ0进行拟合;
θe=a0Ψ0+b0 (4)
其中,a0为斜率,b0为截距;
(5)、取影响因子Ω随管道磁导率和电导率变化曲线上的若干点,然后分别将每一个点的变换对曲线按照公式(4)进行拟合,得到各曲线斜率值,最后 将所有的斜率值求平均,得到斜率am
(6)、根据b0随磁导率μ和电导率σ变化的特性,不同的影响因子Ω会得到不同的截距b0,因此,通过如下公式对截距b0再次拟合;
Figure GDA0002202732100000022
其中,a1、b1、c1为常数,f为激发信号的频率;
(7)、将斜率am和拟合后的b0重新代入到公式(4),然后计算仿真补偿后金属管道壁面厚度h;
Figure GDA0002202732100000023
本发明的发明目的是这样实现的:
本发明一种利用电磁涡流法检测金属管道壁厚的方法,先通过相位解缠方程进行相位解缠,再计算解除缠绕后的相位θan与理论相位值θth之间的误差θe,及构建金属管道壁的磁导率μ与电导率σ的关系式Ψ0,然后进行拟合,最后根据拟合曲线计算仿真补偿后金属管道壁面厚度。
同时,本发明一种利用电磁涡流法检测金属管道壁厚的方法还具有以下有益效果:
(1)、通过对管道电导率和磁导率对管道相位的影响拟合了相位误差公式,提高了壁厚测量精度;
(2)、在已经设计好的仪器架构上提高了壁厚的反演精度,没有增加额外的传感器或电路;
(3)、参数的拟合可以在PC的Matlab中进行,然后将拟合好的参数写入 DSP中,降低了DSP的运算量。
附图说明
图1是本发明一种利用电磁涡流法检测金属管道壁厚的方法流程图;
图2是管道壁厚对远场涡流检测信号影响分析的极坐标图;
图3是影响因子Ω随管道磁导率和电导率变化图;
图4是各点的相位仿真值与其理论值的误差棒图;
图5是各变换对的误差变化图;
图6是各变换对曲线截距值与影响因子Ω的关系图;
图7是数据处理框图。
具体实施方式
下面结合附图对本发明的具体实施方式进行描述,以便本领域的技术人员更好地理解本发明。需要特别提醒注意的是,在以下的描述中,当已知功能和设计的详细描述也许会淡化本发明的主要内容时,这些描述在这里将被忽略。
实施例
图1是本发明一种利用电磁涡流法检测金属管道壁厚的方法原理图。
在本实施例中,如图1所示,本发明一种利用电磁涡流法检测金属管道壁厚的方法,包括以下步骤:
S1、利用ANASY仿真分析了管道壁厚对检测信号相位的影响。随着管道壁厚的增加,检测信号的幅值逐渐减小,相位的滞后逐渐增加。若管道壁厚不断增加,在每次求取相位的过程中,当前一时刻的相位大于330°,而下一时刻的相位为小于30°时,说明此刻的相位滞后已经大于360°此时的相位滞后与管壁薄时的相位滞后相等,这种现象称为相位缠绕,需要通过建立相位纠缠的解缠方程进行校正;
θan=θd+360×T (1)
其中,θan为解除缠绕后的相位,θd为远场涡流检测信号的相位,T为相位缠绕的次数;
S2、基于ANASY仿真分析,计算解除缠绕后的相位θan与理论相位值θth之间的误差θe
θe=θanth (2)
S3、构建金属管道壁的磁导率μ与电导率σ的关系式;
Figure GDA0002202732100000041
在本实施例中,设存在一远场发射信号,其如下式:
A=A0sin(ωt+φ0) (4)
其中,A0为远场发射信号的幅度,ω为远场发射信号的角频率,φ0为远场发射信号的相位。
分析可知,检测信号的相位与远场发射信号在管道壁上传输距离之间的关系可表示为:
Figure GDA0002202732100000042
其中,φ为检测信号相位相对于远场发射信号相位的变化(弧度),r为远场发射信号在管道壁上的径向传输距离,f为远场发射信号频率,μ为管道壁的磁导率,σ为管道壁的电导率。若管壁无缺陷,那么远场发射信号最终被接收线圈收到时在管道径向上的传输距离r=2h,其中h为管壁厚度,则可以得到壁厚的求解公式如下:
Figure GDA0002202732100000043
S4、然而通常的管壁是存在缺陷的,因此上述计算方法会出现偏差,本发明提出一种拟合方法,将步S2)得到的θe和步骤S3得到Ψ0进行拟合;
θe=a0Ψ0+b0 (7)
其中,a0为斜率,b0为截距;
S5、取影响因子Ω随管道磁导率和电导率变化曲线上的若干点,然后分别将每一个点的变换对曲线按照公式(7)进行拟合,得到各曲线斜率值,最后 将所有的斜率值求平均,得到斜率am
S6、根据b0随磁导率μ和电导率σ变化的特性,不同的影响因子Ω会得到不同的截距b0,因此,通过如下公式对截距b0再次拟合;
其中,a1、b1、c1为常数,f为激发信号的频率;
S7、将斜率am和拟合后的b0重新代入到公式(7),然后计算仿真补偿后金属管道壁面厚度h;
Figure GDA0002202732100000052
实例仿真
在仿真中,远场发射线圈的参数设置如表1,远场接收线圈的参数设置如表 2,远场发射线圈的激励信号设置如表3。实际整个装置的示意图如图1所示,远场线圈对应图1中仪器近场线圈右侧的平均场线圈,远场发射线圈与远场接收线圈轴心距为907mm。保持管道内直径(153.7毫米)、管道相对磁导率(80) 和管道电导率(5.599x106西门子/米)参数不变,管道壁厚参数分别设置为: [2:0.5:20]毫米。对应的仿真结果如图2所示。从图2可知,随着管道壁厚的增加,检测信号的相位滞后逐渐增加。
表1
Figure GDA0002202732100000054
Figure GDA0002202732100000061
表2
Figure GDA0002202732100000062
表3
需要特别注意的是:随着管道壁厚的不断增加,相位滞后可能超过360度,此时的相位滞后与管壁薄时的相位滞后相等,如图2中的阴暗部分,即出现了相位缠绕现象,需要按照公式(1)进行解缠。
在本实施例中,当远场发射线圈的频率f为20Hz,管道相对磁导率μ为 [60:1:130],管道电导率σ为[3.7:0.037:7.4]x106西门子/米时,影响因子Ω的计算结果如图3所示。
由图2可知,随着管道磁导率和电导率的增加,影响因子Ω值也增加。影响因子Ω值并不能唯一确定对应的管道磁导率和电导率值,如图3中的J点和 K点的影响因子值相等,但是它们对应的管道磁导率和电导率均不相等。另外,一对管道磁导率和电导率值确定唯一的影响因子Ω值,即确定唯一的检测信号相位值和幅值。
Figure GDA0002202732100000063
表4
在仿真过程中,设置管道内直径为153.7毫米,壁厚为10.36毫米,远场发射线圈的频率f为20赫兹,幅值为160伏。取图3中E点和G点数值对应的相对磁导率和电导率变换对进行仿真,结果如表4所示。在表4中,E点的Ω=175, E点所对应的管道相对磁导率和电导率变换对的乘积相等,即相对磁导率×电导率=恒值。E点仿真结果中的幅值1和相位1为E点每个变换对的仿真结果,其中检测信号的幅值按照式(10)进行处理,相位1为检测信号的相位减去空气环境仿真相位的绝对值,即消除仿真中电路耦合对检测信号相位的影响。G点的Ω=225,G点的其它特性和E点一致。
A'=ln(106Am) (10)
此处Am为检测信号的幅值;从表4可知当影响因子Ω的值保持恒定时,不同相对磁导率和电导率变换对所对应的仿真结果(相位和幅值)均不相等。从整体上看,仿真信号的幅值与管道相对磁导率之间成正相关,与管道电导率之间成负相关;仿真信号的相位与管道相对磁导率成负相关,与管道电导率成正相关。因为在管道的远场涡流检测中,检测信号的相位通常被用来作为管道壁厚的分析量,所以本发明采用检测信号的相位来进一步分析其与管道相对磁导率和电导率的关系。首先,将图3中的B、C、D、E、F、G和H点对应的Ω值分别带入公式(5)进行计算可得各点的理论相位值;然后,将仿真中得到相位值减去对应的理论相位值进行误差分析,结果如图4所示。其中图4的横坐标为Ψ0。由图4可知,各磁导率和电导率变换对的仿真结果(如E点和F点的变换对)与Ψ0之间成负线性相关,并且仿真相位值与理论相位值的误差随着Ψ0值的增加而逐渐减小。从图4中提取出仿真相位值和理论相位值之间的误差,并绘制其与对应Ψ0值之间的关系曲线,结果如图5所示。
由图5可知,各点对应的误差值与变量Ψ0之间呈负线性相关关系(A点和 I点是图3的边角点)。将图5中的B、C、D、E、F、G和H点的变换对曲线按照式(7)的形式进行线性拟合,拟合所得的各变换对曲线的斜率值如表5所示。
为了便于进行仿真相位值和理论相位值之间的误差分析,将表5中各曲线斜率值的均值am作为各点变换对曲线的最终斜率值,然后根据式(7)拟合得到各曲线的截距值,结果如表6所示。基于表6,以A、B、C、D、E、F、G、H和 I点对应曲线的截距值为因变量,以各点对应的因子Ω值为自变量绘图,结果如图6所示。最终可以计算出金属管道壁厚度。
B点 C点 D点 E点 F点 G点 H点 均值
斜率a<sub>0</sub>(x10<sup>6</sup>) 5.876 6.038 5.935 5.67 5.161 5.188 5.208 5.582
表5
A点 B点 C点 D点 E点 F点 G点 H点 I点
截距b<sub>0</sub> 30.39 31.90 33.52 34.68 35.79 36.56 36.14 35.72 35.42
表6
为了说明本发明在管道壁厚计算上的效果,选取不同变换对(磁导率和电导率变换对)的结果进行有缺陷和无缺陷处理,并对有缺陷和无缺陷处理后的管道壁厚计算结果进行比较与分析,结果如表7所示。在表7中,前7行的磁导率和电导率变换对在Matlab仿真中参与了拟合,用来验证拟合函数的逼近精度;后3行数据由实际管道测量而来,并使用DSP进行管壁厚度反演,其中数据的处理框图如图7。磁导率和电导率为实际管道的磁导率和电导率,其中磁导率由另外的反演算法提供,电导率为实际管道的默认值,可直接得到。这3行数据未参与函数拟合,用来验证拟合函数的泛化能力。
Figure GDA0002202732100000081
表7
由表7可知,在相位未处理之前,计算出的管道壁厚相对误差最大达到了 20%,该数值超过了采用远场涡流检测技术测试管道壁厚的测试精度要求(相对误差不超过10%)。相位在采用本发明提出的方法进行处理后,所计算出的管道壁厚相对误差不超过4%(最大3.85%)。表7验证了本发明提出的方法在基于远场涡流的管道检测中,提升管道壁厚计算精度的有效性。
尽管上面对本发明说明性的具体实施方式进行了描述,以便于本技术领域的技术人员理解本发明,但应该清楚,本发明不限于具体实施方式的范围,对本技术领域的普通技术人员来讲,只要各种变化在所附的权利要求限定和确定的本发明的精神和范围内,这些变化是显而易见的,一切利用本发明构思的发明创造均在保护之列。

Claims (1)

1.一种利用电磁涡流法检测金属管道壁厚的方法,其特征在于,包括以下步骤:
(1)、基于ANASY仿真分析金属管道壁厚对远场涡流检测信号的影响,建立相位纠缠的解缠方程;
θan=θd+360×T (1)
其中,θan为解除缠绕后的相位,θd为远场涡流检测信号的相位,T为相位缠绕的次数;
(2)、基于ANASY仿真分析,计算解除缠绕后的相位θan与理论相位值θth之间的误差θe
θe=θanth (2)
(3)、构建金属管道壁的磁导率μ与电导率σ的关系式;
Figure FDA0002232857070000011
(4)、将步骤(2)得到的θe和步骤(3)得到Ψ0进行拟合;
θe=a0Ψ0+b0 (4)
其中,a0为斜率,b0为截距;
(5)、取影响因子Ω随管道磁导率和电导率变化曲线上的若干点,然后分别将每一个点的变换对曲线按照公式(4)进行拟合,得到各曲线斜率值,最后将所有的斜率值求平均,得到斜率am
(6)、根据b0随磁导率μ和电导率σ变化的特性,不同的影响因子Ω会得到不同的截距b0,因此,通过如下公式对截距b0再次拟合;
Figure FDA0002232857070000012
其中,a1、b1、c1为常数,f为激发信号的频率;
(7)、将斜率am和拟合后的b0重新代入到公式(4),然后计算仿真补偿后金属管道壁面厚度h;
Figure FDA0002232857070000013
CN201811093065.XA 2018-09-19 2018-09-19 一种利用电磁涡流法检测金属管道壁厚的方法 Active CN108871174B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811093065.XA CN108871174B (zh) 2018-09-19 2018-09-19 一种利用电磁涡流法检测金属管道壁厚的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811093065.XA CN108871174B (zh) 2018-09-19 2018-09-19 一种利用电磁涡流法检测金属管道壁厚的方法

Publications (2)

Publication Number Publication Date
CN108871174A CN108871174A (zh) 2018-11-23
CN108871174B true CN108871174B (zh) 2020-02-04

Family

ID=64324249

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811093065.XA Active CN108871174B (zh) 2018-09-19 2018-09-19 一种利用电磁涡流法检测金属管道壁厚的方法

Country Status (1)

Country Link
CN (1) CN108871174B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110108789B (zh) * 2019-05-23 2022-12-27 电子科技大学 一种磁测厚仪近场涡流检测模块的管道参数反演方法
CN111256574B (zh) * 2020-03-25 2021-01-01 北京理工大学 一种金属管道厚度测量方法及系统

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR112013008984A2 (pt) * 2010-10-14 2016-07-05 Halliburton Energy Services Inc método de medição remota da espessura de um campo com correntes de foucault na configuração multi tubular
CN104359389B (zh) * 2014-11-05 2017-04-26 北京航空航天大学 一种测量铁磁构件壁厚相对变化量的脉冲涡流检测方法
US10082593B2 (en) * 2016-03-01 2018-09-25 Gowell International, Llc Method and apparatus for synthetic magnetic sensor aperture using eddy current time transient measurement for downhole applications
CN105976381A (zh) * 2016-05-10 2016-09-28 电子科技大学 一种基于远场涡流去伪峰的管道大面积缺陷定量评估方法
CN106524892A (zh) * 2016-10-11 2017-03-22 武汉华宇目检测装备有限公司 一种基于涡流磁导率测量的钢管壁厚测量方法
CN106501355A (zh) * 2016-12-14 2017-03-15 中国计量大学 一种基于远场涡流的金属管道缺陷检测装置

Also Published As

Publication number Publication date
CN108871174A (zh) 2018-11-23

Similar Documents

Publication Publication Date Title
US5623203A (en) Remote field flaw sensor including an energizing coil, first and second receiving coil groups oriented perpendicular and a third receiving coil oriented parallel to pipe
CN109917255B (zh) 变压器绝缘油温升下局部放电定位方法
CN108871174B (zh) 一种利用电磁涡流法检测金属管道壁厚的方法
CN109669075B (zh) 基于开口矩形波导的介质复介电常数无损反射测量方法
CN110515037B (zh) 非视距环境下能时频多域联合的被动定位方法
CN108717181B (zh) 一种新型室外场静态rcs前置联动标校测试方法
CN107478715B (zh) 核电站热交换器传热管的无损检测分析方法、装置及系统
US9523660B2 (en) Method of conducting probe coupling calibration in a guided-wave inspection instrument
CN111157624A (zh) 一种管道内膛损伤状态诊断方法
Luo et al. Method for removing secondary peaks in remote field eddy current testing of pipes
CN110108789B (zh) 一种磁测厚仪近场涡流检测模块的管道参数反演方法
Xue et al. A fast numerical method for the analytical model of pulsed eddy current for pipelines
CN113640369B (zh) 适用于金属表面裂纹的交流电磁场提离效应补偿方法
US10578584B2 (en) Calibration device for non-destructive inspection/measurement system and non-destructive inspection/measurement method
Husby et al. Eddy Current duplex coating thickness Non-Destructive Evaluation augmented by VNA scattering parameter theory and Machine Learning
CN111044604B (zh) 一种acfm单轴磁信号评估方法
CN116337990A (zh) 一种基于交流电磁场检测的提离抖动抑制方法
CN108169634B (zh) 一种精确获得局部放电特高频信号时差的方法
CN114047250B (zh) 金属管道裂纹检测传感器及检测方法
CN111351842B (zh) 一种基于涡流信号差分技术的缺陷相位角的精确测量方法
CN109341945A (zh) 基于双管腔的脉动压力测量修正方法
Park et al. Development of RFECT system for in-line inspection robot considering extendibility of receiving sensors based on parallel lock-in amplifier
CN106770627B (zh) 一种轴向漏磁信号长度量化方法
CN112347598A (zh) 双覆盖层结构涡流检测方法
CN109975397A (zh) 基于多频涡流复信号的传热管损伤信息高保真提取方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant