CN108866824A - 一种聚丙烯腈基纳米纤维膜及其制备方法及应用 - Google Patents

一种聚丙烯腈基纳米纤维膜及其制备方法及应用 Download PDF

Info

Publication number
CN108866824A
CN108866824A CN201810830988.2A CN201810830988A CN108866824A CN 108866824 A CN108866824 A CN 108866824A CN 201810830988 A CN201810830988 A CN 201810830988A CN 108866824 A CN108866824 A CN 108866824A
Authority
CN
China
Prior art keywords
polyacrylonitrile
nano fibrous
fibrous membrane
radical
spinning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810830988.2A
Other languages
English (en)
Inventor
王久生
张春波
郭慧
孙墨杰
王冬
吴琼
宋晓晨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
State Grid Corp of China SGCC
Electric Power Research Institute of State Grid Jilin Electric Power Co Ltd
Northeast Electric Power University
Original Assignee
State Grid Corp of China SGCC
Northeast Dianli University
Electric Power Research Institute of State Grid Jilin Electric Power Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by State Grid Corp of China SGCC, Northeast Dianli University, Electric Power Research Institute of State Grid Jilin Electric Power Co Ltd filed Critical State Grid Corp of China SGCC
Priority to CN201810830988.2A priority Critical patent/CN108866824A/zh
Publication of CN108866824A publication Critical patent/CN108866824A/zh
Pending legal-status Critical Current

Links

Classifications

    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/005Synthetic yarns or filaments
    • D04H3/007Addition polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • B01J20/261Synthetic macromolecular compounds obtained by reactions only involving carbon to carbon unsaturated bonds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28033Membrane, sheet, cloth, pad, lamellar or mat
    • B01J20/28038Membranes or mats made from fibers or filaments
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/01Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with hydrogen, water or heavy water; with hydrides of metals or complexes thereof; with boranes, diboranes, silanes, disilanes, phosphines, diphosphines, stibines, distibines, arsines, or diarsines or complexes thereof
    • D06M11/05Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with hydrogen, water or heavy water; with hydrides of metals or complexes thereof; with boranes, diboranes, silanes, disilanes, phosphines, diphosphines, stibines, distibines, arsines, or diarsines or complexes thereof with water, e.g. steam; with heavy water
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M13/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
    • D06M13/322Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with compounds containing nitrogen
    • D06M13/402Amides imides, sulfamic acids
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2101/00Chemical constitution of the fibres, threads, yarns, fabrics or fibrous goods made from such materials, to be treated
    • D06M2101/16Synthetic fibres, other than mineral fibres
    • D06M2101/18Synthetic fibres consisting of macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M2101/26Polymers or copolymers of unsaturated carboxylic acids or derivatives thereof
    • D06M2101/28Acrylonitrile; Methacrylonitrile
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2321/00Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D10B2321/10Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds polymers of unsaturated nitriles, e.g. polyacrylonitrile, polyvinylidene cyanide

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Analytical Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

本发明涉及一种聚丙烯腈基纳米纤维膜及其制备方法及应用,属于水处理技术领域。包括纯聚丙烯腈基纳米纤维膜制备和聚丙烯腈基纳米纤维膜制备,在常规回流装置中,加入上述纳米纤维膜0.345g、硫代乙酰胺3.8655g及H2O、DMF配置的混合液,控制pH值为9,反应温度90℃,进行反应12h,得到聚丙烯腈基纳米纤维膜。本发明极大的提高了对重金属铜离子的吸附性能,为纳米纤维膜材料的实际应用提供了理论支撑,本发明聚丙烯腈基纳米纤维膜材料的制备过程简单,吸附量高,应用前景广阔。

Description

一种聚丙烯腈基纳米纤维膜及其制备方法及应用
技术领域
本发明属于水处理技术领域,涉及一种采用静电纺丝技术制备纳米纤维膜,及其应用于重金属离子去除的应用,特别是一种采用聚丙烯腈为膜原材料,生产膜材料产品及应用。
背景技术
燃煤电厂产生的脱硫废水是高含盐、强腐蚀性的高浊水,其中含有大量的重金属离子,超过电力行业相关排放标准,因此必须经过严格处理方可排放。吸附法是目前研究最多的重金属离子处理方法,而制备经济可行的吸附剂是吸附法的核心技术。静电纺纳米纤维膜作为一种比表面积大、孔隙率高的材料,作为一种优势吸附剂应用于水处理技术领域越来越受到关注。
发明内容
本发明提供一种聚丙烯腈基纳米纤维膜及其制备方法及应用,制备出一种对重金属吸附量高的材料以解决实际生活中的污染问题。
本发明采取的技术方案是,包括下列步骤:
(1)纯聚丙烯腈基纳米纤维膜制备:将常规聚丙烯腈粉末溶于一定量的N,N-二甲基甲酰胺溶剂中,配置9%-15%wt的纺丝液,在纺丝电压15-24kV,纺丝距离15-20cm,纺丝注射速度0.2-1mL/h的条件下进行静电纺丝,得到一层无纺布膜,即纯聚丙烯腈基纳米纤维膜;
(2)聚丙烯腈基纳米纤维膜制备:在常规回流装置中,加入上述纳米纤维膜0.345g、硫代乙酰胺3.8655g及H2O、DMF配置的混合液,控制pH值为9,反应温度90℃,进行反应12h,得到聚丙烯腈基纳米纤维膜。
本发明所述的H2O、DMF配置的混合液为,H2O:4mL,DMF:12mL。
本发明所述的聚丙烯腈基纳米纤维膜在对重金属吸附中的应用;
本发明所述重金属为铜;
本发明所述聚丙烯腈基纳米纤维膜质量采用0.02g,吸附溶液pH为6,吸附温度为50℃。
本发明的有益效果:
本发明采用静电纺丝技术制备聚丙烯腈基纯纳米纤维膜材料,再对聚丙烯腈本身具有的官能团进行硫化制得所需的聚丙烯腈基纳米纤维膜材料。纯聚丙烯腈基纳米纤维膜材料对重金属离子没有吸附能力,而经改性后的聚丙烯腈基纳米纤维膜对铜表现出很高的吸附量。
本发明为具有纤维结构的纯聚丙烯腈膜材料,通过对聚丙烯腈本身具有的官能团进行改性,得到一种对重金属铜离子吸附量高的聚丙烯腈基纳米纤维膜,该材料比表面积大,为反应提供更多的活性位点,加上C=S基团中S对重金属离子的螯合作用及还原能力,极大的提高了对重金属铜离子的吸附性能,为纳米纤维膜材料的实际应用提供了理论支撑,本发明聚丙烯腈基纳米纤维膜材料的制备过程简单,吸附量高,应用前景广阔。
附图说明
图1是本发明对重金属离子选择性吸附测试效果图;
图2是本发明不同膜质量对吸附效果影响图;
图3是本发明不同铜离子初始浓度对吸附效果影响图;
图4是本发明不同pH对吸附效果影响图;
图5是本发明不同吸附时间对吸附效果影响图;
图6不同温度对吸附效果影响图;
图7是纯聚丙烯腈基纳米纤维膜SEM图;
聚丙烯腈基纤维膜材料表面整齐排列,表面光滑、均匀,由许多根任意方向排列的纤维组成;
图8是本发明聚丙烯腈基纳米纤维膜SEM图;
图中的纤维是经过改性后纤维的SEM图,形貌变得弯曲,不再是整齐排列的纤维;
图9是本发明吸附铜离子后的XRD图;
经过N或S原子与重金属铜离子反应后生成的最终产物有铜,S对铜离子不仅有特异性吸附能力,还能将吸附的铜离子还原为铜,达到高效吸附铜离子的目的。
具体实施方式
下面结合具体实例,进一步阐述本发明。应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。此外应理解,在阅读了本发明讲授的内容之后,本领域技术人员可以对本发明作各种改动或修改,这些等价形式同样落于本申请所附权利要求书所限定范围。
实施例1
(1)纯聚丙烯腈基纳米纤维膜制备:称取1g聚丙烯腈PAN(15万分子量)粉末加入到10mL N,N-二甲基甲酰胺(DMF)溶剂中,室温下搅拌3h,得到9%wt PAN纺丝溶液,将纺丝溶液加到塑料喷丝管中(喷丝口内径大约0.55mm),纺丝电压为15kV,纺丝距离为15cm,纺丝速度0.2mL/h的条件下进行静电纺丝,得到白色的纯聚丙烯腈基静电纺丝纳米纤维无纺布膜;
(2)聚丙烯腈基纳米纤维膜制备:称取3.8655g硫代乙酰胺溶解到水和DMF的混合溶液中(H2O:4mL;DMF:12mL),用0.5mol/L的NaOH溶液调节pH值为9,加入上述制备好的纯聚丙烯腈基静电纺丝纳米纤维膜0.345g,于90℃下磁力搅拌回流反应12h,得到功能基螯合的纳米纤维膜;
将膜倾倒入水中,用蒸馏水洗涤至中性,然后放入40℃电热鼓风干燥箱中进行干燥,以备后续吸附实验使用。
实施例2
(1)纯聚丙烯腈基纳米纤维膜制备:称取1.295g PAN(15万分子量)粉末加入到10mL DMF中,室温下搅拌3h,得到12%wt PAN纺丝溶液,将纺丝溶液加到塑料喷丝管中(喷丝口内径大约0.55mm),纺丝电压为20kV,纺丝距离为18cm,纺丝速度0.5mL/h的条件下进行静电纺丝,得到白色的纯聚丙烯腈基静电纺丝纳米纤维无纺布膜;
(2)聚丙烯腈基纳米纤维膜制备:称取3.8655g硫代乙酰胺溶解到水和DMF的混合溶液中(H2O:4mL;DMF:12mL),用0.5mol/L的NaOH溶液调节pH值为9,加入上述制备好的PAN基静电纺丝纳米纤维膜0.345g,于90℃下磁力搅拌回流反应12h,得到功能基螯合的纳米纤维膜;
将膜倾倒入水中,用蒸馏水洗涤至中性,然后放入40℃电热鼓风干燥箱中进行干燥,以备后续吸附实验使用。
实施例3
(3)纯聚丙烯腈基纳米纤维膜制备:称取1.668g PAN(15万分子量)粉末加入到10mL DMF中,室温下搅拌3h,得到15%wt PAN纺丝溶液,将纺丝溶液加到塑料喷丝管中(喷丝口内径大约0.55mm),纺丝电压为24kV,纺丝距离为20cm,纺丝速度01mL/h的条件下进行静电纺丝,得到白色的纯聚丙烯腈基静电纺丝纳米纤维无纺布膜;
(2)聚丙烯腈基纳米纤维膜制备:称取3.8655g硫代乙酰胺溶解到水和DMF的混合溶液中(H2O:4mL;DMF:12mL),用0.5mol/L的NaOH溶液调节pH值为9,加入上述制备好的PAN基静电纺丝纳米纤维膜0.345g,于90℃下磁力搅拌回流反应12h,得到功能基螯合的纳米纤维膜;
将膜倾倒入水中,用蒸馏水洗涤至中性,然后放入40℃电热鼓风干燥箱中进行干燥,以备后续吸附实验使用。
实验例1聚丙烯腈基纳米纤维膜材料的吸附铜离子性能测试,
所述的铜离子吸附性能测试包括:将功能基螯合的PAN基纳米纤维膜分别放入到100mL、40mg/L的Cd(II)、Zn(II)、Ni(II)、Cu(II)、Pb(II)、Cr(VI)等的重金属离子溶液中,室温下保持吸附60分钟。采用原子吸收分光光度计测量吸附后的Pb(II)、Cd(II)、Zn(II)、Ni(II)的重金属离子浓度,Cu(II)浓度采用双环己酮草酰二腙分光光度法,Cr(VI)浓度采用二苯碳酰二肼测定,根据以下方程计算吸附容量(mg/g):
式中,C0为起始浓度(mg/L);Ce为吸附平衡时的浓度(mg/L);
V为溶液的体积(L);W是纳米纤维膜的质量(g)。
由图1可知,该纳米纤维膜对铜离子表现出了很高的吸附容量,其吸附能力主要是因为N或S原子的存在,对重金属表现出了强烈的吸附性,因为改性后的纳米纤维膜对铜离子的高的吸附选择性,故选用铜离子溶液做下一步实验研究对象。
实验例2不同膜质量聚丙烯腈基纳米纤维膜材料的吸附铜离子性能测试,
所述的铜离子吸附性能测试包括:将0.005g,0.01g,0.015g,0.02g,0.025g功能化的螯合纳米纤维膜放入100mL 100ug/L的铜离子溶液中,室温下保持吸附60min。采用双环己酮草酰二腙分光光度法测定吸附后溶液中铜离子的浓度,根据上述公式计算吸附容量。
如图2所示,从图可以看出该纤维对铜离子的吸附容量在逐渐减少,但对铜离子的去除率不断增加,结合本实验结果和经济的考量,选用0.02g纤维膜对铜离子的吸附量作为最佳吸附容量。
实验例3聚丙烯腈基纳米纤维膜材料对不同初始浓度的铜离子的吸附性能测试
所述的铜离子吸附性能测试包括:将0.02g功能化的螯合纳米纤维膜分别放入100mL 5mg/L,10mg/L,15mg/L,20mg/L,40mg/L不同铜离子浓度的溶液中,室温下保持吸附60min,用双环己酮草酰二腙分光光度法测定吸附后溶液中重金属铜离子的浓度,根据上述公式计算吸附容量;
由图3可知,该种纤维膜材料对重金属离子的吸附量随着初始铜离子的升高呈上升直至吸附饱和。
实验例4pH值的改变对聚丙烯腈基纳米纤维膜材料吸附铜离子过程的影响
所述的铜离子吸附性能测试包括:将0.02g功能化的螯合纳米纤维膜放入100mL40mg/L的铜离子溶液中,调节pH为2,3,4,5,6。室温下保持吸附60min后,用双环己酮草酰二腙分光光度法测定吸附后溶液中重金属铜离子的浓度,根据上述公式计算吸附容量。
由图4可知,pH值的改变对纤维膜材料吸附铜离子的过程有一定地影响,随着pH值的增大,功能化改性的纳米纤维膜对重金属铜离子的吸附容量先增大后减小;该位点容易吸附氢离子和金属阳离子,而在酸性环境中大量的H+与Cu2+互相竞争纤维膜材料上的吸附位点,随着pH的继续增加,生成氢氧化铜沉淀,造成对铜离子吸附下降,故pH值为6时效果最佳。
实验例5聚丙烯腈基纳米纤维膜材料吸附时间对吸附效果的影响测试
所述的铜离子吸附性能测试包括:将0.02g功能化的螯合纳米纤维膜放入100mL40mg/L的铜离子溶液中,室温下保持吸附时间为2h,4h,12h,16h,20h,24h,用双环己酮草酰二腙分光光度法测定吸附后溶液中重金属铜离子的浓度,根据上述公式计算吸附容量。
由图5可知,随着时间的增加,吸附量不断增加,在前一段时间,吸附量迅速增加,而随着吸附时间的延长,吸附量增加的越来越缓慢直至达到平衡。原因是刚开始该种纤维膜材料的高孔隙率和大的比表面积或者是存在大量的吸附活性位点,当所有的位点都被占据时,吸附达到饱和。
实验例6聚丙烯腈基纳米纤维膜材料吸附温度对吸附效果影响测试
所述的铜离子吸附性能测试包括:将0.02g功能化的螯合纳米纤维膜分别放入100mL 40mg/L的铜离子溶液中,调节吸附温度为30℃,40℃,50℃,60℃,70℃保持吸附60min,用双环己酮草酰二腙分光光度法测定吸附后溶液中重金属铜离子的浓度,根据上述公式计算吸附容量;
由图6可知,随着温度的升高,吸附量不断增加,这一结果说明,Cu2+在该功能化改性的纳米纤维膜上的吸附为吸热过程,且活性位点增加,随着不断增加温度,Cu2+扩散到吸附位点的速度越快,使得对铜离子的吸附量也越多。选用50℃为最佳吸附温度。
由上述实验可见:
(1)经静电纺丝法制备的聚丙烯腈基纳米纤维膜材料具有比表面积大、孔隙率高的特点,故可作为一种优良的吸附材料应用于水处理领域。
(2)该种纳米纤维膜材料对重金属铜离子表现了高的吸附性能,故选用该重金属溶液作为本实验研究对象。探讨了纤维膜的质量、铜离子初始浓度、pH、吸附时间、吸附温度等因素对纳米纤维膜吸附铜离子的影响。经过实验结果可知,最佳吸附条件为纤维膜的质量0.02g,铜离子初始浓度为40mg/L;pH=6,吸附时间16h,温度50℃。从最终结果可知,对铜离子吸附容量最高达到225mg/g。
(3)静电纺丝技术是一种新兴的纳米材料制备技术,其制备的聚丙烯腈基纳米纤维膜作为吸附剂具有很多的优势,为处理高铜含量废水提供了有效途径,为静电纺丝法应用于污水处理中提供了新方法。

Claims (9)

1.一种聚丙烯腈基纳米纤维膜,其特征在于,是由下列步骤得到的:
(1)纯聚丙烯腈基纳米纤维膜制备:将常规聚丙烯腈粉末溶于一定量的N,N-二甲基甲酰胺溶剂中,配置9%-15%wt的纺丝液,在纺丝电压15-24kV,纺丝距离15-20cm,纺丝注射速度0.2-1mL/h的条件下进行静电纺丝,得到一层无纺布膜,即纯聚丙烯腈基纳米纤维膜;
(2)聚丙烯腈基纳米纤维膜制备:在常规回流装置中,加入上述纳米纤维膜0.345g、硫代乙酰胺3.8655g及H2O、DMF配置的混合液,控制pH值为9,反应温度90℃,进行反应12h,得到聚丙烯腈基纳米纤维膜。
2.根据权利要求1所述的聚丙烯腈基纳米纤维膜,其特征在于:H2O、DMF配置的混合液为,H2O:4mL,DMF:12mL。
3.如权利要求1所述的一种聚丙烯腈基纳米纤维膜的制备方法,其特征在于,包括下列步骤:
(1)纯聚丙烯腈基纳米纤维膜制备:将常规聚丙烯腈粉末溶于一定量的N,N-二甲基甲酰胺溶剂中,配置9%-15%wt的纺丝液,在纺丝电压15-24kV,纺丝距离15-20cm,纺丝注射速度0.2-1mL/h的条件下进行静电纺丝,得到一层无纺布膜,即纯聚丙烯腈基纳米纤维膜;
(2)聚丙烯腈基纳米纤维膜制备:在常规回流装置中,加入上述纳米纤维膜0.345g、硫代乙酰胺3.8655g及H2O、DMF配置的混合液,控制pH值为9,反应温度90℃,进行反应12h,得到聚丙烯腈基纳米纤维膜。
4.根据权利要求3所述的一种聚丙烯腈基纳米纤维膜的制备方法,其特征在于:H2O、DMF配置的混合液为,H2O:4mL,DMF:12mL。
5.如权利要求1所述的聚丙烯腈基纳米纤维膜在对重金属吸附中的应用。
6.如权利要求5所述的聚丙烯腈基纳米纤维膜在对重金属吸附中的应用,所述重金属为铜。
7.如权利要求6所述的聚丙烯腈基纳米纤维膜在对重金属吸附中的应用,聚丙烯腈基纳米纤维膜质量采用0.02g。
8.如权利要求7所述的聚丙烯腈基纳米纤维膜在对重金属吸附中的应用,吸附溶液pH为6。
9.如权利要求8所述的聚丙烯腈基纳米纤维膜在对重金属吸附中的应用,吸附温度为50℃。
CN201810830988.2A 2018-07-25 2018-07-25 一种聚丙烯腈基纳米纤维膜及其制备方法及应用 Pending CN108866824A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810830988.2A CN108866824A (zh) 2018-07-25 2018-07-25 一种聚丙烯腈基纳米纤维膜及其制备方法及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810830988.2A CN108866824A (zh) 2018-07-25 2018-07-25 一种聚丙烯腈基纳米纤维膜及其制备方法及应用

Publications (1)

Publication Number Publication Date
CN108866824A true CN108866824A (zh) 2018-11-23

Family

ID=64305530

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810830988.2A Pending CN108866824A (zh) 2018-07-25 2018-07-25 一种聚丙烯腈基纳米纤维膜及其制备方法及应用

Country Status (1)

Country Link
CN (1) CN108866824A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109499386A (zh) * 2018-11-28 2019-03-22 东北电力大学 用于去除水中重金属铜离子的纤维膜及应用
CN111926565A (zh) * 2020-06-19 2020-11-13 浙江工商大学 一种显色纤维pan-ham-par及其合成方法和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101733079A (zh) * 2009-12-30 2010-06-16 东南大学 功能化纳米纤维重金属离子吸附材料及其制备方法
CN102140705A (zh) * 2010-12-24 2011-08-03 吉林大学 吸附重金属离子的硫代酰胺基螯合纳米纤维的制备方法
CN102358962A (zh) * 2011-08-01 2012-02-22 扬州大学 一种杯芳烃聚丙烯腈复合纳米纤维的制备方法
CN106040193A (zh) * 2016-06-13 2016-10-26 王金明 一种铜吸附剂的制备方法
CN107675281A (zh) * 2017-10-19 2018-02-09 华北水利水电大学 Pvp/pan纳米复合纤维的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101733079A (zh) * 2009-12-30 2010-06-16 东南大学 功能化纳米纤维重金属离子吸附材料及其制备方法
CN102140705A (zh) * 2010-12-24 2011-08-03 吉林大学 吸附重金属离子的硫代酰胺基螯合纳米纤维的制备方法
CN102358962A (zh) * 2011-08-01 2012-02-22 扬州大学 一种杯芳烃聚丙烯腈复合纳米纤维的制备方法
CN106040193A (zh) * 2016-06-13 2016-10-26 王金明 一种铜吸附剂的制备方法
CN107675281A (zh) * 2017-10-19 2018-02-09 华北水利水电大学 Pvp/pan纳米复合纤维的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
张城城: "《中国优秀博士学位论文全文数据库》", 31 August 2013 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109499386A (zh) * 2018-11-28 2019-03-22 东北电力大学 用于去除水中重金属铜离子的纤维膜及应用
CN109499386B (zh) * 2018-11-28 2021-07-06 东北电力大学 用于去除水中重金属铜离子的纤维膜及应用
CN111926565A (zh) * 2020-06-19 2020-11-13 浙江工商大学 一种显色纤维pan-ham-par及其合成方法和应用
CN111926565B (zh) * 2020-06-19 2022-12-02 浙江工商大学 一种显色纤维pan-ham-par及其合成方法和应用

Similar Documents

Publication Publication Date Title
Sun et al. Robust preparation of flexibly super-hydrophobic carbon fiber membrane by electrospinning for efficient oil-water separation in harsh environments
Deng et al. PEI modified multiwalled carbon nanotube as a novel additive in PAN nanofiber membrane for enhanced removal of heavy metal ions
Wang et al. Poly (ethyleneimine) nanofibrous affinity membrane fabricated via one step wet-electrospinning from poly (vinyl alcohol)-doped poly (ethyleneimine) solution system and its application
Cui et al. Electrospun nanofiber membranes for wastewater treatment applications
Huang et al. Electrospun fibrous membranes for efficient heavy metal removal
Guo et al. Preparation and dye filtration property of electrospun polyhydroxybutyrate–calcium alginate/carbon nanotubes composite nanofibrous filtration membrane
Jin et al. Electrospinning synthesis of ZIF-67/PAN fibrous membrane with high-capacity adsorption for malachite green
Abdulkarem et al. Polyvinylidene fluoride (PVDF)-α-zirconium phosphate (α-ZrP) nanoparticles based mixed matrix membranes for removal of heavy metal ions
Shirazi et al. Characterization of electrospun polystyrene membrane for treatment of biodiesel's water-washing effluent using atomic force microscopy
Almasian et al. Preparation and adsorption behavior of diethylenetriamine/polyacrylonitrile composite nanofibers for a direct dye removal
Zhao et al. Functionalized magnetic iron oxide/polyacrylonitrile composite electrospun fibers as effective chromium (VI) adsorbents for water purification
Si et al. Optimized colorimetric sensor strip for mercury (II) assay using hierarchical nanostructured conjugated polymers
Xu et al. Sorption of malachite green on vinyl-modified mesoporous poly (acrylic acid)/SiO2 composite nanofiber membranes
Sun et al. Bioinspired design of underwater superoleophobic Poly (N-isopropylacrylamide)/polyacrylonitrile/TiO2 nanofibrous membranes for highly efficient oil/water separation and photocatalysis
Jia et al. “Flower-Like” PA6@ Mg (OH) 2 electrospun nanofibers with Cr (VI)-removal capacity
Lee et al. Electrospun nanofibrous rhodanine/polymethylmethacrylate membranes for the removal of heavy metal ions
de Almeida et al. Development and characterization of electrospun cellulose acetate nanofibers modified by cationic surfactant
Zang et al. Electrospun superhydrophilic membranes for effective removal of Pb (II) from water
Zhu et al. Preparation of high strength ultrafine polyvinyl chloride fibrous membrane and its adsorption of cationic dye
Shu et al. Morphologies and properties of PET nano porous luminescence fiber: oil absorption and fluorescence-indicating functions
Hou et al. Bipolar jet electrospinning bi-functional nanofibrous membrane for simultaneous and sequential filtration of Cd2+ and BPA from water: Competition and synergistic effect
CN108866824A (zh) 一种聚丙烯腈基纳米纤维膜及其制备方法及应用
Li et al. Highly efficient sunlight-driven self-cleaning electrospun nanofiber membrane NM88B@ HPAN for water treatment
Wang et al. Gravity-driven catalytic nanofibrous membrane with microsphere and nanofiber coordinated structure for ultrafast continuous reduction of 4-nitrophenol
Chen et al. One-step electrospinning of negatively-charged polyethersulfone nanofibrous membranes for selective removal of cationic dyes

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20181123

WD01 Invention patent application deemed withdrawn after publication