CN108855228A - CS-Cu/二氧化钛纳米复合材料的制备及其光催化还原二氧化碳的应用 - Google Patents

CS-Cu/二氧化钛纳米复合材料的制备及其光催化还原二氧化碳的应用 Download PDF

Info

Publication number
CN108855228A
CN108855228A CN201810489225.6A CN201810489225A CN108855228A CN 108855228 A CN108855228 A CN 108855228A CN 201810489225 A CN201810489225 A CN 201810489225A CN 108855228 A CN108855228 A CN 108855228A
Authority
CN
China
Prior art keywords
tio
chitosan
nanocomposite
preparation
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810489225.6A
Other languages
English (en)
Other versions
CN108855228B (zh
Inventor
佘厚德
马晓玉
白文才
孙毅东
苏碧桃
王其召
王磊
黄静伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northwest Normal University
Original Assignee
Northwest Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northwest Normal University filed Critical Northwest Normal University
Priority to CN201810489225.6A priority Critical patent/CN108855228B/zh
Publication of CN108855228A publication Critical patent/CN108855228A/zh
Application granted granted Critical
Publication of CN108855228B publication Critical patent/CN108855228B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/26Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24
    • B01J31/38Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24 of titanium, zirconium or hafnium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/10Heat treatment in the presence of water, e.g. steam
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/02Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2531/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • C07C2531/26Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups C07C2531/02 - C07C2531/24
    • C07C2531/38Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups C07C2531/02 - C07C2531/24 of titanium, zirconium or hafnium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种CS‑Cu/TiO2纳米复合材料的制备方法,是将壳聚糖搅拌充分分散于乙醇中,加入醋酸铜和钛酸四丁酯,先搅拌1h~2h,再超声10~20min;然后加入冰醋酸,于100℃~120℃下反应20~26小时;反应结束后将混合物冷却至室温,并用醇和去离子水洗涤,干燥,研磨,即得CS‑Cu/TiO2纳米复合材料。本发明利用水热法将掺杂了Cu的二氧化钛成功的负载到了壳聚糖上,CS和Cu的引入扩大了二氧化钛对可见光吸收范围,在360~430nm的紫外‑可见光范围内增强了吸收强度,用于光催化还原CO2的反应中,具有较高的CH4的产量。

Description

CS-Cu/二氧化钛纳米复合材料的制备及其光催化还原二氧化 碳的应用
技术领域
本发明涉及一种CS-Cu /TiO2纳米复合材料的制备方法,主要用于光催化还原CO2的反应中。
背景技术
随着化石燃料的燃烧,大气中二氧化碳的含量越来越高,导致温室效应日益严重。自从1972年藤岛和本田的开创性工作以来,光催化还原二氧化碳引起了人们的极大关注,从而实现了太阳能利用和碳循环。半导体光催化技术作为解决环境问题和能源短缺的有效方法受到广泛的关注。目前,已经开发了高效率的可见光催化剂,如CdS,BiVO4,Ga2O3等。二氧化钛(TiO2)作为高性能半导体光催化材料。具有化学性质稳定,催化效率高,氧化能力强,无毒无害,价格便宜,无二次污染,氧化还原能力强等优点。因此在国内外倍受关注和研究。然而,TiO2材料具有光生电子较低,空穴迁移率较低,光生载流子寿命较短,光生电荷复合速率较高的缺点。这些缺点导致TiO2材料的低量子效率。同时,TiO2是一种常见的宽禁带半导体材料,锐钛矿相的禁带宽度为3.2 eV,金红石相的禁带宽度为3.0 eV。它只能吸收波长小于420nm的紫外光,这部分光线占据全部光谱的不到5%。针对这些缺点,研究人员进行了一系列的修改研究。研究包括离子掺杂、半导体材料复合、表面贵金属沉积及有机染料光敏化。虽然这些研究提高了光催化性能,但也存在一些缺陷。例如成本高,稳定性差,合成方法复杂等。
壳聚糖(CS)是由自然界广泛存在的几丁质(chitin)经过脱乙酰作用得到的,它在自然界中广泛存在,具有生物相容好,低成本,抗菌性和可生物降解等性质。此外,由于氨基和羟基含量高,CS对废水处理中重金属、有机物、染料等各种污染物具有优异的吸附性能。壳聚糖(CS)作为天然高分子化合物在空间结构上相对稳定,具有特殊的空间效应和强的配位络合能力,可以使其成为一类优良的聚合物配体。壳聚糖独特的协同效应能有效分离过渡金属光催化剂的光生电子空穴,提高光催化活性,具有广阔的应用前景。在医药,食品,化工,化妆品,水处理,金属提取与回收,生物医学工程等领域,应用研究取得重大进展。许多报道报道了用于医药和生物领域的壳聚糖/二氧化钛纳米复合材料,但很少应用于光催化反应。
发明内容
本发明的目的是提供一种CS-Cu /TiO2纳米复合材料的制备方法;
本发明的另一目的是提供一种CS-Cu /TiO2纳米复合材料作为光催化及催化还原CO2的性能和应用。
一、CS-Cu /TiO2纳米复合材料的制备
将壳聚糖搅拌充分分散于乙醇中,加入醋酸铜和钛酸四丁酯,先搅拌1h~2 h,再超声10~20min;然后加入冰醋酸,于100℃~120℃下反应20~26小时;反应结束后将混合物冷却至室温,并用醇和去离子水洗涤,干燥,研磨,即得CS-Cu /TiO2纳米复合材料
壳聚糖与醋酸铜的质量比为1:0.01~1:0.025;壳聚糖与钛酸四丁酯的质量比为1:0.25~1:0.75。
加入冰醋酸可以使壳聚糖很好的溶解,冰醋酸的加入量为壳聚糖、醋酸铜、钛酸四丁酯总质量的50%~80%。
所述干燥是在烘箱中于60~80℃的干燥10~12h。
二、CS-Cu /TiO2纳米复合材料的表征
1、TEM、SEM测试
CS-Cu/TiO2纳米复合材料的形貌采用TEM和SEM进行检测。图1(a,b,c)为纯壳聚糖(a)和锐钛矿Cu-CS/TiO 2(b、c)的扫描电镜图。图(a)可以看出纯的壳聚糖扫描电子显微照片可以看作片状结构。图(b,c)为Cu/TiO2-CS纳米复合材料的SEM图,可以看到,在球状的壳聚糖上附着着颗粒状的TiO2,壳聚糖糖球体尺寸均匀分散性良好。
图1(d、e)为Cu-CS/TiO2的透射电镜图。图(d)可以看出,TiO2纳米粒子的大小约为20纳米。图(e)其显示了更高的分辨率,并且观察到{112}的TiO2晶格条纹,相应的晶格间距为0.23nm。然而,Cu没有被观察到,可能是由Cu掺杂量太少的缘故。
2、紫外漫反射光谱图分析
图2为TiO2、Cu/TiO2、CS-Cu/TiO2纳米复合材料的的紫外漫反射光谱图。在360nm左右的波长处吸收的显着增加可以归因于TiO2吸收的固有带隙3.0 eV。CS-Cu/TiO2复合样品的吸收光谱与纯TiO2纳米颗粒样品相比,吸收边发生红移,并在360~430nm的紫外-可见光范围内表现出增强的吸收。这些结果表明,CS和Cu的引入将大范围的背景吸收带入可见光区域,提高了太阳能的利用率。可见,CS-Cu/TiO2纳米棒复合材料在可见光照射下比纯TiO2纳米粒子具有更高的光催化活性。因此,光生载流子的形成和传输效率应在一定程度上得到改善,这将导致增强的光催化活性。
3、光致荧光发光光谱和光电流响应分析
图3为光致荧光发光光谱(a)和光电流响应图(b)。从这两个图分别评价影响光催化活性的电子空穴分离效率。从TiO2,Cu / TiO2和CS-Cu / TiO2的荧光光谱图可以看到,二氧化钛具有最高的发光强度,表明它具有良好的光激发电子-空穴复合效率。PL强度比较表明,由于CS-Cu/TiO2的电子-空穴分离效率较高,CS-Cu/TiO2的PL强度远低于其他材料。另外,光电流结果与PL光谱相反。由于电子-空穴分离效率的提高,CS-Cu/TiO2显示出最低的光电流。PL和光电流测量表明,CS-Cu/TiO2复合材料比异质结表现出更好的电子空穴分离性。
4、傅里叶红外光谱图分析
图4是CS-Cu/TiO2复合材料的傅里叶红外光谱图。在图4中可以看出,纯的壳聚糖(a)光谱OH键约为3450cm-1。另一个功能结构处的峰约为1045 cm-1,主要与C-O键结构有关。此外,壳聚糖大约在1667cm-1含有氨基。存在羟基和C-H键结构的基团(3503 cm-1和2891 cm-1)。当TiO2样品中加入壳聚糖(b)之后,光谱中大约在653cm-1对应Ti-O-Ti键,存在伸缩振动。最后形成了CS-Cu / TiO2纳米复合材料体系。
三、CS-Cu/TiO2复合材料光化学性能测试
光催化还原CO2实验包括光还原和还原产物检测两部分。包括带有顶部窗口的50mL石英玻璃反应器的,位于反应器上方8cm处的300W的氙灯和离线气相色谱分析仪(GC2080型气相色谱分析仪)。UV灯(300nm <λ<420nm,20.5mW·cm-2)光发射器。向反应器底部加入2mL去离子水,然后将0.1g催化剂粉末平铺于反应器底部。为确保实验不受干扰,首先用真空泵将反应器抽至真空,然后清洗并装满超纯二氧化碳(99.0%)。内置的反应器压力为100kPa,并通过用循环水冷却反应器使之温度保持在约25℃。反应器的蒸气压为30kPa。气相色谱分析仪配有火焰离子化检测器(FID),热导检测器(TCD)和甲烷化器,N2为载气。首先,进行空白实验,以确保任何由GC测量的碳基产品都来源于二氧化碳。其次,在二氧化碳和水作为反应物的空的反应器中进行测试。在黑暗中或光照下未检测到碳氢化合物。这表明,在没有催化剂的情况下,不会发生二氧化碳还原。另外,当反应器抽真空时,在UV照射下没有检测到烃。
图5为复合材料光化学性能的测试图。图5(a)显示了使用不同类型催化剂的CO和CH4的产率和产物选择性。与原有的TiO2相比,CS-Cu/TiO2显着增强了CH4的形成,抑制了CO的产生,这可能是由于电子-空穴复合的减少(与PL完全相同)。与Cu/TiO2不同,Cu颗粒促进了CH4的形成,抑制了CO的形成,并且Cu/TiO2的CH4收率低于CS-Cu/TiO2。这可以由Cu/TiO2中的电子-空穴复合率来解释,这是通过比较不同PL光谱来确定的。此外,壳聚糖对水蒸气和二氧化碳具有良好的吸附作用,这也促使催化剂与水和二氧化碳之间更好的接触,类似于文献报道的结果。
图5(b)比较了不同比例二氧化钛和壳聚糖的催化剂对CO2转化率的影响。从结果可以可以看出,当壳聚糖和二氧化钛的质量比为1:1时显示出最好的转化率。这可能是由于壳聚糖所占比例达到最大时提供了更多吸附二氧化碳的活性位点,提高了二氧化碳的浓度。
四、CO2还原反应的机理图
图6为二氧化碳还原反应机理图。表面等离子体共振和CS-Cu/TiO2光催化电荷转移过程在紫外和可见光下的可能的光催化机理示意图如图6所示。二氧化碳还原反应的半导体光催化剂涉及电子和电子质子转移的多个阶段。通常由于光照射的类型,半导体带隙能量以及用于掺杂半导体的金属的性质,光催化剂上的电荷产生和分离。可见光可以提供能量传递通道,而Cu纳米颗粒可以捕获光生电子,有效的促进了电子-空穴对的分离,活性电子再与H+自由基将二氧化碳还原成一氧化碳和甲烷。提高了光催化还原二氧化碳的性能。
综上所述,本发明利用水热法将掺杂了Cu的二氧化钛成功的负载到了壳聚糖上,CS和Cu的引入扩大了二氧化钛对可见光吸收范围,在360~430nm的紫外-可见光范围内增强了吸收强度。壳聚糖的吸附作用使催化剂表面的光催化反应更好,从而提高了光催化反应的效率。在光反应过程中,反应器中的水分子和CO2分子吸附在壳聚糖/TiO2复合催化剂的表面,使水,光催化剂和CO2接触更好,提高了光催化还原CO2的性能,用于光催化还原CO2的反应中,具有较高的CH4的产量。
附图说明
图1为纯壳聚糖(a)和锐钛矿Cu-CS/TiO 2(b,c)的扫描电镜图。Cu-CS / TiO2(d,e)透射电镜图。
图2为Cu-CS/TiO2的紫外漫反射光谱图。
图3为Cu-CS/TiO2的光致发光光谱图和光电流响应图。
图4为Cu-CS/TiO2的傅里叶红外光谱图。
图5 为Cu-CS/TiO2的光化学性能的测试图。
图6为Cu-CS/TiO2还原二氧化碳的反应机理图。
具体实施方式
下面通过具体实施例对本发明Cu-CS/TiO2复合材料的制备和还原二氧化碳的性能做进一步说明。
实施例1
将2 g壳聚糖分散于40 mL乙醇中搅拌30 min,加入0.03g的醋酸铜和10 mL钛酸四丁酯,搅拌2 h后超声10 min,然后加入2 mL冰醋酸,搅拌均匀后转移到100mL内衬为聚四氟乙烯的不锈钢高压釜中,控制在温度在110℃下反应24小时;反应结束后将反应混合物冷却至室温,并用乙醇和去离子水洗涤数次,在60℃的烘箱中干燥12h,干燥后的样品研磨,即得样品Cu-CS/TiO2。Cu-CS/TiO2中,壳聚糖和二氧化钛的质量比为1:1;Cu和壳聚糖的质量比为1:208。
光化学性能的测试:Cu-CS/TiO2用于光催化还原的CO2,CH4的产生速率为66 μmol/g。
实施例2
将0.1 g壳聚糖分散于40 mL乙醇中搅拌30 min,加入0.03g的醋酸铜和10 mL钛酸四丁酯,搅拌2 h后超声10 min,然后加入2 mL冰醋酸,搅拌均匀后转移到100mL内衬为聚四氟乙烯的不锈钢高压釜中,控制在温度在110℃下反应24小时;反应结束后将反应混合物冷却至室温,并用乙醇和去离子水洗涤数次,在60℃的烘箱中干燥12h,干燥后的样品研磨,即得样品Cu-CS/TiO2。Cu-CS/TiO2中,壳聚糖和二氧化钛的质量比为1:20;Cu和壳聚糖的质量比为1:10。
光化学性能的测试:Cu-CS/TiO2用于光催化还原的CO2, CH4的产生速率为10.5 μmol/g。
实施例3
将0.2 g壳聚糖分散于40 mL乙醇中搅拌30 min,加入0.03g的醋酸铜和10mL钛酸四丁酯,搅拌2 h后超声10 min,然后加入2 mL冰醋酸,搅拌均匀后转移到100mL内衬为聚四氟乙烯的不锈钢高压釜中,控制在温度在110℃下反应24小时;反应结束后将反应混合物冷却至室温,并用乙醇和去离子水洗涤数次,在60℃的烘箱中干燥12h,干燥后的样品研磨,即得样品Cu-CS/TiO2。Cu-CS/TiO2中,壳聚糖和二氧化钛的质量比为1:10;Cu和壳聚糖的质量比为1:20。
光化学性能的测试:Cu-CS/TiO2用于光催化还原的CO2,CH4的产生速率为15 μmol/g。
实施例4
将0.4 g壳聚糖分散于40 mL乙醇中搅拌30 min,加入0.03g的醋酸铜和10 mL钛酸四丁酯,搅拌2 h后超声10 min,然后加入2 mL冰醋酸,搅拌均匀后转移到100mL内衬为聚四氟乙烯的不锈钢高压釜中,控制在温度在110℃下反应24小时;反应结束后将反应混合物冷却至室温,并用乙醇和去离子水洗涤数次,在60℃的烘箱中干燥12h,干燥后的样品研磨,即得样品Cu-CS/TiO2。Cu-CS/TiO2中,壳聚糖和二氧化钛的质量比为1:5;Cu和壳聚糖的质量比为1:40。
光化学性能的测试:Cu-CS/TiO2用于光催化还原的CO2,CH4的产生速率为17μmol/g。
实施例5
将4 g壳聚糖分散于40 mL乙醇中搅拌30 min,加入0.03g的醋酸铜和10 mL钛酸四丁酯,搅拌2 h后超声10 min,然后加入2 mL冰醋酸,搅拌均匀后转移到100mL内衬为聚四氟乙烯的不锈钢高压釜中,控制在温度在110℃下反应24小时;反应结束后将反应混合物冷却至室温,并用乙醇和去离子水洗涤数次,在60℃的烘箱中干燥12h,干燥后的样品研磨,即得样品Cu-CS/TiO2。Cu-CS/TiO2中,壳聚糖和二氧化钛的质量比为2:1;Cu和壳聚糖的质量比为1:416。
光化学性能的测试:Cu-CS/TiO2用于光催化还原的CO2,CH4的产生速率为39.8μmol/g。

Claims (6)

1.CS-Cu /TiO2纳米复合材料的制备方法,是将壳聚糖搅拌充分分散于乙醇中,加入醋酸铜和钛酸四丁酯,先搅拌1h~2 h,再超声10~20min;然后加入冰醋酸,于100℃~110℃下反应20~24小时;反应结束后将反应混合物冷却至室温,并用醇和去离子水洗涤,干燥,研磨,即得CS-Cu /TiO2纳米复合材料。
2.如权利要求1所述CS-Cu /TiO2纳米复合材料的制备方法,其特征在于:壳聚糖与醋酸铜的质量比为1:0.01~1:0.025。
3.如权利要求1所述CS-Cu /TiO2纳米复合材料的制备方法,其特征在于:壳聚糖与钛酸四丁酯的质量比为1:0.25~1:0.75。
4.如权利要求1所述CS-Cu /TiO2纳米复合材料的制备方法,其特征在于:冰醋酸的加入量为壳聚糖、醋酸铜、钛酸四丁酯总质量的50%~80%。
5.如权利要求1所述CS-Cu /TiO2纳米复合材料的制备方法,其特征在于:所述干燥是在烘箱中于60~80℃的干燥10~12h。
6.如权利要求1所述方法制备的CS-Cu/TiO2纳米复合材料用于光催化还原CO2的反应中。
CN201810489225.6A 2018-05-21 2018-05-21 CS-Cu/二氧化钛纳米复合材料的制备及其光催化还原二氧化碳的应用 Active CN108855228B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810489225.6A CN108855228B (zh) 2018-05-21 2018-05-21 CS-Cu/二氧化钛纳米复合材料的制备及其光催化还原二氧化碳的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810489225.6A CN108855228B (zh) 2018-05-21 2018-05-21 CS-Cu/二氧化钛纳米复合材料的制备及其光催化还原二氧化碳的应用

Publications (2)

Publication Number Publication Date
CN108855228A true CN108855228A (zh) 2018-11-23
CN108855228B CN108855228B (zh) 2021-04-27

Family

ID=64333610

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810489225.6A Active CN108855228B (zh) 2018-05-21 2018-05-21 CS-Cu/二氧化钛纳米复合材料的制备及其光催化还原二氧化碳的应用

Country Status (1)

Country Link
CN (1) CN108855228B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114931949A (zh) * 2022-01-20 2022-08-23 浙江理工大学 一种用于二氧化碳还原的光催化剂及其制备方法与应用
CN115709090A (zh) * 2022-11-15 2023-02-24 江西理工大学 一种CuSCN/CoS2复合光催化材料、制备方法及应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102240561A (zh) * 2011-05-06 2011-11-16 华北电力大学 一种CS/TiO2-NTs复合光催化剂的制备方法
US8932983B1 (en) * 2005-12-07 2015-01-13 Crystal Clear Technologies, Inc. Chitosan based adsorbent

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8932983B1 (en) * 2005-12-07 2015-01-13 Crystal Clear Technologies, Inc. Chitosan based adsorbent
CN102240561A (zh) * 2011-05-06 2011-11-16 华北电力大学 一种CS/TiO2-NTs复合光催化剂的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
A.V. RAUT H.M等: "Synthesis and characterization of chitosan-TiO2:Cu nanocomposite and their enhanced antimicrobial activity with visible light", 《COLLOIDS AND SURFACES B: BIOINTERFACES》 *
SHIGUO CHEN等: "Facile preparation and synergistic antibacterial effect of three-component Cu/TiO2/CS nanoparticles", 《J. MATER. CHEM.》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114931949A (zh) * 2022-01-20 2022-08-23 浙江理工大学 一种用于二氧化碳还原的光催化剂及其制备方法与应用
CN115709090A (zh) * 2022-11-15 2023-02-24 江西理工大学 一种CuSCN/CoS2复合光催化材料、制备方法及应用
CN115709090B (zh) * 2022-11-15 2024-01-26 江西理工大学 一种CuSCN/CoS2复合光催化材料、制备方法及应用

Also Published As

Publication number Publication date
CN108855228B (zh) 2021-04-27

Similar Documents

Publication Publication Date Title
Zhang et al. Hierarchical Z-scheme gC 3 N 4/Au/ZnIn 2 S 4 photocatalyst for highly enhanced visible-light photocatalytic nitric oxide removal and carbon dioxide conversion
Yang et al. Insights into the degradation mechanism of perfluorooctanoic acid under visible-light irradiation through fabricating flower-shaped Bi5O7I/ZnO nn heterojunction microspheres
Jiang et al. Constructing graphite-like carbon nitride modified hierarchical yolk–shell TiO 2 spheres for water pollution treatment and hydrogen production
Li et al. Visible-light-driven CQDs@ MIL-125 (Ti) nanocomposite photocatalyst with enhanced photocatalytic activity for the degradation of tetracycline
Wang et al. Ag NPs decorated C–TiO2/Cd0. 5Zn0. 5S Z-scheme heterojunction for simultaneous RhB degradation and Cr (VI) reduction
Zhu et al. Highly selective CO2 capture and photoreduction over porous carbon nitride foams/LDH monolith
He et al. NH2-MIL-125 (Ti) encapsulated with in situ-formed carbon nanodots with up-conversion effect for improving photocatalytic NO removal and H2 evolution
CN103480353A (zh) 一种用水热法合成碳量子点溶液制备复合纳米光催化剂的方法
CN107243340B (zh) 一种二氧化铈纳米棒掺杂二氧化钛纳米颗粒光催化剂的制备方法
CN109985618A (zh) 一种H占据BiVO4-OVs的光催化材料、制备方法及其应用
Xue et al. In situ growth of MIL-88A into polyacrylate and its application in highly efficient photocatalytic degradation of organic pollutants in water
CN113145141B (zh) 用于CO2还原的CsPbBr3量子点/纳米CuCo2O4复合光催化剂及其制备方法
Zou et al. Enhanced photocatalytic activity of bismuth oxychloride by in-situ introducing oxygen vacancy
CN108339544B (zh) 富勒烯羧基衍生物修饰的光催化剂/超疏水膜复合材料
CN110327988A (zh) 一种PCN-222(Cu)/ 二氧化钛纳米复合材料的制备和应用
Yang et al. Enhanced photocatalytic hydrogen peroxide production activity of imine-linked covalent organic frameworks via modification with functional groups
An et al. CuBi2O4 surface-modified three-dimensional graphene hydrogel adsorption and in situ photocatalytic Fenton synergistic degradation of organic pollutants
Wu et al. Application of a novel biomimetic double-ligand zirconium-based metal organic framework in environmental restoration and energy conversion
Yang et al. Nanopore enriched hollow carbon nitride nanospheres with extremely high visible-light photocatalytic activity in the degradation of aqueous contaminants of emerging concern
Tasbihi et al. Photocatalytic CO2 reduction by mesoporous polymeric carbon nitride photocatalysts
Kang et al. Preparation of Zn2GeO4 nanosheets with MIL-125 (Ti) hybrid photocatalyst for improved photodegradation of organic pollutants
Su et al. Creating distortion in g-C3N4 framework by incorporation of ethylenediaminetetramethylene for enhancing photocatalytic generation of hydrogen
CN113976148B (zh) 一种Z型C60/Bi/BiOBr复合光催化剂及其制备方法和应用
CN108855228A (zh) CS-Cu/二氧化钛纳米复合材料的制备及其光催化还原二氧化碳的应用
Wu et al. Synthesis of a novel ternary BiOBr/g-C3N4/Ti3C2Tx hybrid for effectively removing tetracycline hydrochloride and rhodamine B

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant