CN108845181A - 电流检测电路和检测方法 - Google Patents

电流检测电路和检测方法 Download PDF

Info

Publication number
CN108845181A
CN108845181A CN201810741986.6A CN201810741986A CN108845181A CN 108845181 A CN108845181 A CN 108845181A CN 201810741986 A CN201810741986 A CN 201810741986A CN 108845181 A CN108845181 A CN 108845181A
Authority
CN
China
Prior art keywords
control switch
resistance
current
detection circuit
resistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
CN201810741986.6A
Other languages
English (en)
Inventor
赵伟兵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhuhai Amicro Semiconductor Co Ltd
Original Assignee
Zhuhai Amicro Semiconductor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhuhai Amicro Semiconductor Co Ltd filed Critical Zhuhai Amicro Semiconductor Co Ltd
Priority to CN201810741986.6A priority Critical patent/CN108845181A/zh
Publication of CN108845181A publication Critical patent/CN108845181A/zh
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/25Arrangements for measuring currents or voltages or for indicating presence or sign thereof using digital measurement techniques

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Tests Of Electric Status Of Batteries (AREA)

Abstract

本发明涉及一种电流检测电路和检测方法,通过由两个电阻和四个控制开关所组成的选择模块,可以根据待测模块是处于充电状态还是放电状态,选择不同的检流路径,从而实现双向电流的准确检测。此外,由放大器、晶体管和模数转换器组成的电流转换模块,可以实现采样电流到电压的快速转换,整个电路结构简单,成本较低。

Description

电流检测电路和检测方法
技术领域
本发明涉及电子电路领域,具体涉及一种电流检测电路和检测方法。
背景技术
在电源管理系统中普遍存在电流检测的需求。一方面,在电池给系统供电时,电源管理模块需要监测电池放电的电流大小,在电池放电电流过大时,指示系统减小供电需求,从而对整个系统起到保护作用;另一方面,在对电池充电时,充电电路也需要监控电池的充电电流,将电流控制在合适的大小范围内,在保证较快的充电速度的同时,保证电池和充电电路的安全。有的电源管理系统还需要随时监控电池的剩余电量,在电池充电、放电过程中,都需要实时监测电池的准确电流大小。实现这些功能的电源管理模块的电路结构比较复杂,体积较大,不利于产品小型化。
发明内容
本发明提供了一种电流检测电路和检测方法,可实现充电电流和放电电流的双向电流检测,同时电路结构比较简单,成本较低。本发明的具体技术方案如下:
一种电流检测电路,用于检测待测模块的充电电流和放电电流。所述电流检测电路包括第一电阻、第二电阻、第一控制开关、第二控制开关、第三控制开关、第四控制开关、放大器、NMOS管、第一PMOS管、第二PMOS管、第三电阻和模数转换器。其中:所述第一电阻的一端作为所述电流检测电路的第一输入端,连接至所述待测模块;所述第一电阻的另一端则通过所述第一控制开关连接至所述放大器的正输入端,所述第一电阻的另一端还通过所述第二控制开关连接至所述放大器的负输入端;所述第二电阻的一端作为所述电流检测电路的第二输入端,连接至所述待测模块;所述第二电阻的另一端则通过所述第三控制开关连接至所述放大器的负输入端,所述第二电阻的另一端还通过所述第四控制开关连接至所述放大器的正输入端。所述放大器的输出端连接所述NMOS管的栅极,所述NMOS管的源极连接所述放大器的负输入端,所述NMOS管的漏极连接所述第一PMOS管的漏极;所述第一PMOS管和所述第二PMOS管的源极共同连接外部电源,所述第一PMOS管和所述第二PMOS管的栅极共同连接至所述NMOS管的漏极;所述第二PMOS管的漏极通过所述第三电阻接地;所述第二PMOS管的漏极和所述第三电阻的公共端连接至所述模数转换器的输入端;所述模数转换器的输出端则作为所述电流检测电路的输出端。
进一步地,所述待测模块包括待测电源和检流电阻,所述待测电源的负极通过所述检流电阻接地;所述电流检测电路的第一输入端连接至所述待测电源与所述检流电阻的公共端,所述电流检测电路的第二输入端连接至所述检流电阻的接地端。
进一步地,所述第一电阻的阻值与所述第二电阻的阻值相等。
进一步地,所述第三电阻的阻值为所述第一电阻的阻值的20倍。
进一步地,所述第二PMOS管与所述第一PMOS管的尺寸比例为5。
进一步地,所述电流检测电路集成在一块芯片中。
一种基于上述的电流检测电路的电流检测方法,包括如下步骤:步骤S1:判断所述待测模块是否处于充电状态,如果是,则进入步骤S2,如果否,则进入步骤S3。步骤S2:控制所述第一控制开关和所述第三控制开关闭合,控制所述第二控制开关和所述第四控制开关断开,并以所述模数转换器输出的用于表征电流大小的数字电压参数作为检测结果。步骤S3:控制所述第二控制开关和所述第四控制开关闭合,控制所述第一控制开关和所述第三控制开关断开,并以所述模数转换器输出的用于表征电流大小的数字电压参数作为检测结果。
本发明所述的电流检测电路,通过由两个电阻和四个控制开关所组成的选择模块,可以根据待测模块是处于充电状态还是放电状态,选择不同的检流路径,从而实现双向电流的准确检测。此外,由放大器、晶体管和模数转换器组成的电流转换模块,可以实现采样电流到电压的快速转换,整个电路结构简单,成本较低。
附图说明
图1为所述电流检测电路处于控制开关全部打开状态时的电路原理图。
图2为所述电流检测电路进行充电电流检测时的电路原理图。
图3为所述电流检测电路进行放电电流检测时的电路原理图。
图4为所述电流检测方法的流程示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行详细描述。应当理解,下面所描述的具体实施例仅用于解释本发明,并不用于限定本发明。
如图1所示,一种电流检测电路,可以用于检测待测模块的充电电流和放电电流。所述电流检测电路包括第一电阻R1、第二电阻R2、第一控制开关S1、第二控制开关S2、第三控制开关S3、第四控制开关S4、放大器OP、NMOS管MN1、第一PMOS管MP1、第二PMOS管MP2、第三电阻R3和模数转换器ADC。其中:
所述第一电阻R1的一端作为所述电流检测电路的第一输入端,连接至所述待测模块;所述第一电阻R1的另一端则通过所述第一控制开关S1连接至所述放大器OP的正输入端,所述第一电阻R1的另一端还通过所述第二控制开关S2连接至所述放大器OP的负输入端;所述第二电阻R2的一端作为所述电流检测电路的第二输入端,连接至所述待测模块;所述第二电阻R2的另一端则通过所述第三控制开关S3连接至所述放大器OP的负输入端,所述第二电阻R2的另一端还通过所述第四控制开关S4连接至所述放大器OP的正输入端。
所述放大器OP的输出端连接所述NMOS管MN1的栅极,所述NMOS管MN1的源极连接所述放大器OP的负输入端,所述NMOS管MN1的漏极连接所述第一PMOS管MP1的漏极;所述第一PMOS管MP1和所述第二PMOS管MP2的源极共同连接外部电源VDD,所述第一PMOS管MP1和所述第二PMOS管MP2的栅极共同连接至所述NMOS管MN1的漏极;所述第二PMOS管MP2的漏极通过所述第三电阻R3接地;所述第二PMOS管MP2的漏极和所述第三电阻R3的公共端连接至所述模数转换器ADC的输入端;所述模数转换器ADC的输出端则作为所述电流检测电路的输出端。
所述待测模块包括待测电源和检流电阻RS。所述待测电源的负极通过所述检流电阻RS接地;所述电流检测电路的第一输入端连接至所述待测电源与所述检流电阻RS的公共端,所述电流检测电路的第二输入端连接至所述检流电阻RS的接地端。所述待测电源为可充电电池。所述检流电阻RS采用精密电阻。
所述电流检测电路通过由两个电阻和四个控制开关所组成的选择模块,可以根据待测模块是处于充电状态还是放电状态,选择不同的检流路径,从而实现双向电流的准确检测。此外,由放大器OP、晶体管和模数转换器ADC组成的电流转换模块,可以实现采样电流到电压的快速转换,整个电路结构简单,成本较低。
优选的,所述第一电阻R1的阻值与所述第二电阻R2的阻值相等。
优选的,所述第三电阻R3的阻值为所述第一电阻R1的阻值的20倍。
优选的,所述第二PMOS管MP2与所述第一PMOS管MP1的尺寸比例为5。
优选的,所述电流检测电路集成在一块芯片中,从而实现元器件的高度集成化,缩小产品体积,拓宽了产品应用范围。
如图4所示,一种基于上述电流检测电路的电流检测方法,包括如下步骤:步骤S1:判断所述待测模块是否处于充电状态,即判断作为待测电源的电池是否在进行充电。如果是,则进入步骤S2,进行充电电流的检测。如果否,则表明电池处于放电状态,进入步骤S3,进行放电电流的检测。
在步骤S2中,控制所述第一控制开关S1和所述第三控制开关S3闭合,控制所述第二控制开关S2和所述第四控制开关S4断开(参见图2),此时,所述第一PMOS管MP1和所述NMOS管MN1产生的电流流经第二电阻R2,产生压降,作为放大器OP负输入端的输入电压,而第一电阻R1上没有电流,放大器OP正输入端的电压直接等于检流电阻RS的压降,然后,由放大器OP和后续的晶体管进行转换,形成输出电压VO至模数转换器ADC,最后经过所述模数转换器ADC的转换后,输出用于表征电流大小的数字电压参数作为检测结果。
在步骤S3中,控制所述第二控制开关S2和所述第四控制开关S4闭合,控制所述第一控制开关S1和所述第三控制开关S3断开(参见图3),此时,所述第一PMOS管MP1和所述NMOS管MN1产生的电流流经第一电阻R1,产生的电压与检流电阻RS上的压降叠加,作为放大器OP负输入端的输入电压,而第二电阻R2上没有电流,放大器OP正输入端的电压等于0。然后,由放大器OP和后续的晶体管进行转换,形成输出电压VO至模数转换器ADC,最后经过所述模数转换器ADC的转换后,输出用于表征电流大小的数字电压参数作为检测结果。
上述电池的充电状态或者放电状态的检测,以及控制开关的通断控制,可以由电源管理模块进行,也可以由MCU或者CPU等处理器进行。
所述电流检测方法根据待测模块是处于充电状态还是放电状态,选择不同的检流路径,从而实现充电电流和放电电流的双向电流的准确检测,检测效率也比较高。
具体地,在充电电流检测状态下,如图2所示,第一控制开关S1和第三控制开关S3闭合,第二控制开关S2和第四控制开关S4打开。第一PMOS管MP1的电流I1与电池充电电流IC,应满足如下关系式:I1*R2=IC*RS。而第一PMOS管MP1的电流I1和第二PMOS管MP2的电流I2正比于它们的尺寸比例关系:I1/I2=(W1/L1)/(W2/L2)。因此,电流检测得到的电压VO=I2*R3=((W2/L2)/(W1/L1))*(R3/R1)*IC*RS。VO经ADC转换后,得到相应的数字电压参数DO。这里的电流检测,就是测量电流的大小,前面已经把电流量转换得到一个电压量,这个电压量可以经ADC做模数转换,可以得到对应的数字电压参数,用于表征电流大小。
具体地,在放电电流检测状态下,如图3所示,第二控制开关S2和第四控制开关S4闭合,第一控制开关S1和第三控制开关S3打开。第一PMOS管MP1的电流I1与电池充电电流IC,应满足如下关系式:I1*R1=ID*RS。而第一PMOS管MP1的电流I1和第二PMOS管MP2的电流I2正比于它们的尺寸比例关系:I1/I2=(W1/L1)/(W2/L2)。因此,电流检测得到的电压VO=I2*R3=((W2/L2)/(W1/L1))*(R3/R1)*ID*RS。VO经ADC转换后,得到相应的数字电压参数DO,这里的电流检测,就是测量电流的大小,前面已经把电流量转换得到一个电压量,这个电压量可以经ADC做模数转换,可以得到数字电压参数,用于表征电流大小。
从上述推导过程可知,该电路只需保证R1=R2,同时与R3满足所需的比例关系,以及MP1与MP2的尺寸满足所需的比例关系,那么检测结果就是准确的。对于集成电路来说,满足这些相对数值关系,是比较容易实现的。
最后应说明的是:本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其它实施例的不同之处,各个实施例之间相同或相似部分互相参见即可,各实施例之间的技术方案是可以相互结合的。以上各实施例仅用于说明本发明的技术方案,而非对其限制,尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员依然可以对前述各实施例所记载的技术方案进行修改, 或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (7)

1.一种电流检测电路,用于检测待测模块的充电电流和放电电流,其特征在于,所述电流检测电路包括第一电阻、第二电阻、第一控制开关、第二控制开关、第三控制开关、第四控制开关、放大器、NMOS管、第一PMOS管、第二PMOS管、第三电阻和模数转换器,其中:
所述第一电阻的一端作为所述电流检测电路的第一输入端,连接至所述待测模块;所述第一电阻的另一端则通过所述第一控制开关连接至所述放大器的正输入端,所述第一电阻的另一端还通过所述第二控制开关连接至所述放大器的负输入端;所述第二电阻的一端作为所述电流检测电路的第二输入端,连接至所述待测模块;所述第二电阻的另一端则通过所述第三控制开关连接至所述放大器的负输入端,所述第二电阻的另一端还通过所述第四控制开关连接至所述放大器的正输入端;
所述放大器的输出端连接所述NMOS管的栅极,所述NMOS管的源极连接所述放大器的负输入端,所述NMOS管的漏极连接所述第一PMOS管的漏极;所述第一PMOS管和所述第二PMOS管的源极共同连接外部电源,所述第一PMOS管和所述第二PMOS管的栅极共同连接至所述NMOS管的漏极;所述第二PMOS管的漏极通过所述第三电阻接地;所述第二PMOS管的漏极和所述第三电阻的公共端连接至所述模数转换器的输入端;所述模数转换器的输出端则作为所述电流检测电路的输出端。
2.根据权利要求1所述的电路,其特征在于,所述待测模块包括待测电源和检流电阻,所述待测电源的负极通过所述检流电阻接地;所述电流检测电路的第一输入端连接至所述待测电源与所述检流电阻的公共端,所述电流检测电路的第二输入端连接至所述检流电阻的接地端。
3.根据权利要求1所述的电路,其特征在于,所述第一电阻的阻值与所述第二电阻的阻值相等。
4.根据权利要求1所述的电路,其特征在于,所述第三电阻的阻值为所述第一电阻的阻值的20倍。
5.根据权利要求1所述的电路,其特征在于,所述第二PMOS管与所述第一PMOS管的尺寸比例为5。
6.根据权利要求1至5中任一项所述的电路,其特征在于,所述电流检测电路集成在一块芯片中。
7.一种基于权利要求1至6中任意一项所述的电流检测电路的电流检测方法,其特征在于,包括如下步骤:
步骤S1:判断所述待测模块是否处于充电状态,如果是,则进入步骤S2,如果否,则进入步骤S3;
步骤S2:控制所述第一控制开关和所述第三控制开关闭合,控制所述第二控制开关和所述第四控制开关断开,并以所述模数转换器输出的用于表征电流大小的数字电压参数作为检测结果;
步骤S3:控制所述第二控制开关和所述第四控制开关闭合,控制所述第一控制开关和所述第三控制开关断开,并以所述模数转换器输出的用于表征电流大小的数字电压参数作为检测结果。
CN201810741986.6A 2018-07-09 2018-07-09 电流检测电路和检测方法 Withdrawn CN108845181A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810741986.6A CN108845181A (zh) 2018-07-09 2018-07-09 电流检测电路和检测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810741986.6A CN108845181A (zh) 2018-07-09 2018-07-09 电流检测电路和检测方法

Publications (1)

Publication Number Publication Date
CN108845181A true CN108845181A (zh) 2018-11-20

Family

ID=64201406

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810741986.6A Withdrawn CN108845181A (zh) 2018-07-09 2018-07-09 电流检测电路和检测方法

Country Status (1)

Country Link
CN (1) CN108845181A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11808789B2 (en) 2021-07-26 2023-11-07 Delta Electronics (Shanghai) Co., Ltd. Current detecting circuit, current detecting method and converter

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030169078A1 (en) * 2002-01-23 2003-09-11 Seiko Epson Corporation Charge/discharge current detection circuit and variable resistor
JP2004138482A (ja) * 2002-10-17 2004-05-13 Seiko Epson Corp 電流検出回路
JP2008026082A (ja) * 2006-07-19 2008-02-07 Rohm Co Ltd 電流検出回路ならびにそれを用いた充電制御回路、充電回路および電子機器
CN102523650A (zh) * 2011-12-02 2012-06-27 赵修平 一种led电流检测和控制电路
US20140354256A1 (en) * 2013-05-29 2014-12-04 Chengdu Monolithic Power Systems Co., Ltd. Switch-mode power supply, charging current source and associated method
CN106124840A (zh) * 2016-06-27 2016-11-16 成都芯源系统有限公司 电流检测电路
CN106546800A (zh) * 2017-01-25 2017-03-29 北京鸿智电通科技有限公司 一种应用于快充电源的充/放电电流检测电路
CN106841749A (zh) * 2017-02-14 2017-06-13 上海华虹宏力半导体制造有限公司 一种利用单运放实现双向高端电流检测电路
CN208421059U (zh) * 2018-07-09 2019-01-22 珠海市一微半导体有限公司 一种电流检测电路

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030169078A1 (en) * 2002-01-23 2003-09-11 Seiko Epson Corporation Charge/discharge current detection circuit and variable resistor
JP2004138482A (ja) * 2002-10-17 2004-05-13 Seiko Epson Corp 電流検出回路
JP2008026082A (ja) * 2006-07-19 2008-02-07 Rohm Co Ltd 電流検出回路ならびにそれを用いた充電制御回路、充電回路および電子機器
CN102523650A (zh) * 2011-12-02 2012-06-27 赵修平 一种led电流检测和控制电路
US20140354256A1 (en) * 2013-05-29 2014-12-04 Chengdu Monolithic Power Systems Co., Ltd. Switch-mode power supply, charging current source and associated method
CN106124840A (zh) * 2016-06-27 2016-11-16 成都芯源系统有限公司 电流检测电路
CN106546800A (zh) * 2017-01-25 2017-03-29 北京鸿智电通科技有限公司 一种应用于快充电源的充/放电电流检测电路
CN106841749A (zh) * 2017-02-14 2017-06-13 上海华虹宏力半导体制造有限公司 一种利用单运放实现双向高端电流检测电路
CN208421059U (zh) * 2018-07-09 2019-01-22 珠海市一微半导体有限公司 一种电流检测电路

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11808789B2 (en) 2021-07-26 2023-11-07 Delta Electronics (Shanghai) Co., Ltd. Current detecting circuit, current detecting method and converter

Similar Documents

Publication Publication Date Title
TWI395964B (zh) 電壓檢測電路、多電池單元之電池組保護電路及保護方法
CN101071949B (zh) 充电控制电路、充电电流校正方法、充电电路和电子设备
CN107579508B (zh) 一种电源保护装置以及使用所述装置的终端
US8242746B2 (en) Method and device for measuring cell voltages in a plurality of series-connected accumulator cells
US10802078B2 (en) Current monitoring circuit and coulomb counter circuit
CN104883059B (zh) 双芯片功率保护器及电池供电电子产品保护电路
CN105846493B (zh) 过流检测、保护电路及电池
CN109507487B (zh) 晶闸管触发脉冲信号检测电路
CN108594004A (zh) 双向电流检测电路和检测方法
CN108063428B (zh) 一种电源保护装置以及使用所述装置的终端
CN108736536A (zh) 充放电控制电路和电池装置
US8570001B2 (en) Device and method for charging and controlling the charge of a battery
US9812743B2 (en) Battery state monitoring circuit and battery device
CN107534314A (zh) 电流限制
CN208421059U (zh) 一种电流检测电路
TWI440874B (zh) 電池的檢測電路及其檢測方法
CN108845181A (zh) 电流检测电路和检测方法
CN104821555A (zh) 能够进行精确电流采样的电池保护电路
CN208421060U (zh) 一种双向电流检测电路
CN110470905A (zh) 用于确定电池系统中的电阻器的电阻值的方法和装置
CN115236481B (zh) 一种高精度电流检测方法及其芯片模组
CN208334494U (zh) 一种用于进行双向电流检测的电路
TW201933716A (zh) 電池充放電管理方法及系統
CN114977377A (zh) 一种电池组大电流主动均衡电路及测量、均衡方法
WO2021093357A1 (zh) 一种充放电过流保护电路及其过流保护方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB02 Change of applicant information
CB02 Change of applicant information

Address after: 519000 2706, No. 3000, Huandao East Road, Hengqin new area, Zhuhai, Guangdong

Applicant after: Zhuhai Yiwei Semiconductor Co.,Ltd.

Address before: Room 105-514, No.6 Baohua Road, Hengqin New District, Zhuhai City, Guangdong Province

Applicant before: AMICRO SEMICONDUCTOR Co.,Ltd.

WW01 Invention patent application withdrawn after publication
WW01 Invention patent application withdrawn after publication

Application publication date: 20181120