CN108594004A - 双向电流检测电路和检测方法 - Google Patents

双向电流检测电路和检测方法 Download PDF

Info

Publication number
CN108594004A
CN108594004A CN201810742027.6A CN201810742027A CN108594004A CN 108594004 A CN108594004 A CN 108594004A CN 201810742027 A CN201810742027 A CN 201810742027A CN 108594004 A CN108594004 A CN 108594004A
Authority
CN
China
Prior art keywords
control switch
current
resistance
module
resistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
CN201810742027.6A
Other languages
English (en)
Inventor
赵伟兵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhuhai Amicro Semiconductor Co Ltd
Original Assignee
Zhuhai Amicro Semiconductor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhuhai Amicro Semiconductor Co Ltd filed Critical Zhuhai Amicro Semiconductor Co Ltd
Priority to CN201810742027.6A priority Critical patent/CN108594004A/zh
Publication of CN108594004A publication Critical patent/CN108594004A/zh
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/25Arrangements for measuring currents or voltages or for indicating presence or sign thereof using digital measurement techniques

Abstract

本发明涉及一种双向电流检测电路和检测方法。所述的双向电流检测电路,通过设置采样选择模块,可以根据待测模块是处于充电状态还是放电状态,选择不同的检流路径,从而实现双向电流的准确检测。此外,通过设置采样选择模块以及引入电流源的恒定电流,可在系统内部抵消电流检测的误差,避免电池充放电电流对电路校准的影响。整个电路结构简单,成本较低。

Description

双向电流检测电路和检测方法
技术领域
本发明涉及电子电路领域,具体涉及一种双向电流检测电路和检测方法。
背景技术
在电源管理系统中普遍存在电流检测的需求。一方面,在电池给系统供电时,电源管理模块需要监测电池放电的电流大小,在电池放电电流过大时,指示系统减小供电需求,从而对整个系统起到保护作用;另一方面,在对电池充电时,充电电路也需要监控电池的充电电流,将电流控制在合适的大小范围内,在保证较快的充电速度的同时,保证电池和充电电路的安全。有的电源管理系统还需要随时监控电池的剩余电量,在电池充电、放电过程中,都需要实时监测电池的准确电流大小。实现这些功能的电源管理模块的电路结构比较复杂,体积较大,不利于产品小型化。
发明内容
本发明提供了一种双向电流检测电路和检测方法,可实现精准的双向电流检测,同时电路结构比较简单,成本较低。本发明的具体技术方案如下:
一种双向电流检测电路,用于检测待测模块的充电电流和放电电流,包括采样选择模块、电流转换模块、电流源和模数转换器。其中:所述采样选择模块包括第一电阻、第二电阻、第三电阻、第一控制开关、第二控制开关、第三控制开关、第四控制开关和第五控制开关;其中,所述第一电阻和所述第二电阻的一端连接,并共同作为用于连接待测模块的所述采样选择模块的第一输入端,所述第一电阻的另一端则通过所述第一控制开关连接至所述电流转换模块的正输入端,所述第一电阻的另一端还通过所述第二控制开关连接至所述电流转换模块的负输入端,所述第二电阻的另一端则通过所述第三控制开关连接至所述电流转换模块的负输入端;所述第三电阻的一端作为用于连接待测模块的所述采样选择模块的第二输入端,所述第三电阻的另一端则通过第四控制开关连接至所述电流转换模块的负输入端,所述第三电阻的另一端还通过第五控制开关连接至所述电流转换模块的正输入端。所述电流转换模块接收所述采样选择模块输出的采样电流,并转换为采样电压输出至所述模数转换器。所述电流源通过第六控制开关连接至所述采样选择模块与所述电流转换模块的正输入端之间的公共端,用于在进行电路校准时输入校准电流。所述模数转换器接收所述采样电压,并转换为用于表征电流大小的数字电压参数进行输出。
进一步地,所述电流转换模块包括放大器、第一PMOS管、第二PMOS管、NMOS管和第四电阻。其中:所述放大器的正输入端作为所述电流转换模块的正输入端,分别连接所述第一控制开关、第五控制开关和第六控制开关;所述放大器的负输入端作为所述电流转换模块的负输入端,分别连接所述第二控制开关、第三控制开关和第四控制开关;所述放大器的输出端连接所述NMOS管的栅极,所述NMOS管的源极连接所述放大器的负输入端,所述NMOS管的漏极连接所述第一PMOS管的漏极;所述第一PMOS管和所述第二PMOS管的源极共同连接外部电源,所述第一PMOS管和所述第二PMOS管的栅极共同连接至所述NMOS管的漏极;所述第二PMOS管的漏极通过所述第四电阻接地,所述第二PMOS管的漏极和所述第四电阻的公共端作为所述电流转换模块的输出端,用于连接至所述模数转换器的输入端。
进一步地,所述第一电阻的阻值与所述第二电阻的阻值相等,且所述第一电阻的阻值与所述第三电阻的阻值相等。
进一步地,所述第四电阻的阻值为所述第一电阻的阻值的20倍。
进一步地,所述第二PMOS管与所述第一PMOS管的尺寸比例为5。
进一步地,所述待测模块包括待测电源和检流电阻,所述待测电源的负极通过所述检流电阻接地,所述待测电源的负极与所述检流电阻的一端相连接的公共端连接至所述采样选择模块的第一输入端,所述检流电阻的另一端则连接至所述采样选择模块的第二输入端。
进一步地,所述采样选择模块、电流转换模块、电流源和模数转换器集成在一块芯片中。
一种基于上述的双向电流检测电路的双向电流检测方法,包括如下步骤:步骤S1:所述双向电流检测电路初始化,所述第一控制开关、所述第二控制开关、所述第三控制开关、所述第四控制开关、所述第五控制开关和所述第六控制开关都处于断开状态,然后进入步骤S2。步骤S2:控制所述第一控制开关和所述第三控制开关闭合,然后判断所述模数转换器输出的用于表征电流大小的第一数字电压参数是否大于零,如果是,则进入步骤S3,如果否,则进入步骤S4。步骤S3:判断所述待测模块是否处于充电状态,如果是,则控制所述第一控制开关和所述第四控制开关闭合,控制所述第二控制开关、所述第三控制开关、所述第五控制开关和所述第六控制开关断开,并以当前输出的数字电压参数与所述第一数字电压参数的差值作为检测结果;如果否,则控制所述第二控制开关和所述第五控制开关闭合,控制所述第一控制开关、所述第三控制开关、所述第四控制开关和所述第六控制开关断开,并以当前输出的数字电压参数与所述第一数字电压参数的差值作为检测结果。步骤S4:控制所述第一控制开关、所述第三控制开关和所述第六控制开关闭合,控制所述第二控制开关、所述第四控制开关和所述第五控制开关断开,并记录所述模数转换器输出的第二数字电压参数,然后判断所述待测模块是否处于充电状态,如果是,则进入步骤S5,如果否,则进入步骤S6。步骤S5:控制所述第一控制开关、所述第四控制开关和所述第六控制开关闭合,控制所述第二控制开关、所述第三控制开关和所述第五控制开关断开,并以当前输出的数字电压参数与所述第二数字电压参数的差值作为检测结果。步骤S6:控制所述第二控制开关、所述第五控制开关和所述第六控制开关闭合,控制所述第一控制开关、所述第三控制开关和所述第四控制开关断开,并以当前输出的数字电压参数与所述第二数字电压参数的差值作为检测结果。
本发明所述的双向电流检测电路,通过设置采样选择模块,可以根据待测模块是处于充电状态还是放电状态,选择不同的检流路径,从而实现双向电流的准确检测。此外,通过设置采样选择模块以及引入电流源的恒定电流,可在系统内部抵消电流检测的误差,避免电池充放电电流对电路校准的影响。整个电路结构简单,成本较低。
附图说明
图1为所述双向电流检测电路处于控制开关全部打开状态时的电路原理图。
图2为所述双向电流检测电路进行电流检测时的控制流程图。
图3为所述双向电流检测电路处于控制开关部分闭合状态时的电路原理图一。
图4为所述双向电流检测电路处于控制开关部分闭合状态时的电路原理图二。
图5为所述双向电流检测电路处于控制开关部分闭合状态时的电路原理图三。
图6为所述双向电流检测电路处于控制开关部分闭合状态时的电路原理图四。
图7为所述双向电流检测电路处于控制开关部分闭合状态时的电路原理图五。
图8为所述双向电流检测电路处于控制开关部分闭合状态时的电路原理图六。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行详细描述。应当理解,下面所描述的具体实施例仅用于解释本发明,并不用于限定本发明。
一种双向电流检测电路,包括采样选择模块、电流转换模块、电流源和模数转换器。所述采样选择模块连接待测模块,并将采样电流传输至所述电流转换模块,所述电流转换模块再将采样电流转换成采样电压输出至所述模数转换器,最后,所述模数转换器将采样电压转换为用于表征电流大小的数字电压参数进行输出。其中,所述电流源连接至所述采样选择模块与所述电流转换模块之间的公共端,用于在进行电路校准时输入校准电流。
具体电路如图1所示:
所述待测模块包括待测电源和检流电阻RS,所述待测电源的负极通过所述检流电阻RS接地。所述待测电源为可充电电池。所述检流电阻RS为精密电阻。
所述采样选择模块包括第一电阻R1、第二电阻R2、第三电阻R3、第一控制开关S1、第二控制开关S2、第三控制开关S3、第四控制开关S4和第五控制开关S5。其中,所述第一电阻R1和所述第二电阻R2的一端连接,并共同作为所述采样选择模块的第一输入端,连接至所述待测电源的负极与所述检流电阻RS的公共端。所述第一电阻R1的另一端则通过所述第一控制开关S1连接至所述电流转换模块的正输入端,所述第一电阻R1的另一端还通过所述第二控制开关S2连接至所述电流转换模块的负输入端。所述第二电阻R2的另一端则通过所述第三控制开关S3连接至所述电流转换模块的负输入端。所述第三电阻R3的一端作为所述采样选择模块的第二输入端,连接至所述检流电阻RS的接地端。所述第三电阻R3的另一端则通过第四控制开关S4连接至所述电流转换模块的负输入端,所述第三电阻R3的另一端还通过第五控制开关S5连接至所述电流转换模块的正输入端。
所述电流转换模块包括放大器OP、第一PMOS管MP1、第二PMOS管MP2、NMOS管MN1和第四电阻R4。其中:所述放大器OP的正输入端作为所述电流转换模块的正输入端,分别连接所述第一控制开关S1和第五控制开关S5。所述放大器OP的负输入端作为所述电流转换模块的负输入端,分别连接所述第二控制开关S2、第三控制开关S3和第四控制开关S4。所述放大器OP的输出端连接所述NMOS管MN1的栅极,所述NMOS管MN1的源极连接所述放大器OP的负输入端。所述NMOS管MN1的漏极连接所述第一PMOS管MP1的漏极。所述第一PMOS管MP1和所述第二PMOS管MP2的源极共同连接外部电源VDD,所述第一PMOS管MP1和所述第二PMOS管MP2的栅极共同连接至所述NMOS管MN1的漏极。所述第二PMOS管MP2的漏极通过所述第四电阻R4接地。所述第二PMOS管MP2的漏极和所述第四电阻R4的公共端作为所述电流转换模块的输出端,连接至所述模数转换器ADC的输入端。
所述电流源通过第六控制开关S6连接至所述放大器OP的正输入端与所述第一控制开关S1之间的公共端,同时,所述电流源也通过第六控制开关S6连接至所述放大器OP的正输入端与所述第五控制开关S5之间的公共端。
所述模数转换器ADC接收所述采样电压,并转换为用于表征电流大小的数字电压参数进行输出。
所述双向电流检测电路,可以实现充电电流检测、放电电流检测和电流检测电路的校准三种功能。其中,通过设置采样选择模块,可以根据待测模块是处于充电状态还是放电状态,选择不同的检流路径,从而实现双向电流的准确检测。此外,通过设置采样选择模块以及引入电流源的恒定电流,可在系统内部抵消电流检测的误差,避免电池充放电电流对电路校准的影响。整个电路结构简单,成本较低。
优选的,所述第一电阻R1的阻值与所述第二电阻R2的阻值相等,且所述第一电阻R1的阻值与所述第三电阻R3的阻值相等。
优选的,所述第四电阻R4的阻值为所述第一电阻R1的阻值的20倍。
优选的,所述第二PMOS管MP2与所述第一PMOS管MP1的尺寸比例为5。
优选的,所述采样选择模块、电流转换模块、电流源和模数转换器ADC集成在一块芯片中。
如图2所示,一种基于上述的双向电流检测电路的双向电流检测方法,包括如下步骤:步骤S1:开启双向电流检测电路,所述双向电流检测电路初始化,所述第一控制开关S1、所述第二控制开关S2、所述第三控制开关S3、所述第四控制开关S4、所述第五控制开关S5和所述第六控制开关S6都处于断开状态(参见图1),然后进入步骤S2。步骤S2:控制所述第一控制开关S1和所述第三控制开关S3闭合(参见图3),然后判断所述模数转换器ADC输出的用于表征电流大小的第一数字电压参数DOos是否大于零,如果是,则进入步骤S3,如果否,则进入步骤S4。步骤S3:判断所述待测模块是否处于充电状态(即判断电池是否处于充电状态),如果是,则控制所述第一控制开关S1和所述第四控制开关S4闭合,控制所述第二控制开关S2、所述第三控制开关S3、所述第五控制开关S5和所述第六控制开关S6断开(参见图4),并以当前输出的数字电压参数DO与所述第一数字电压参数DOos的差值作为检测结果;如果否,则控制所述第二控制开关S2和所述第五控制开关S5闭合,控制所述第一控制开关S1、所述第三控制开关S3、所述第四控制开关S4和所述第六控制开关S6断开(参见图5),并以当前输出的数字电压参数DO与所述第一数字电压参数DOos的差值作为检测结果。步骤S4:控制所述第一控制开关S1、所述第三控制开关S3和所述第六控制开关S6闭合,控制所述第二控制开关S2、所述第四控制开关S4和所述第五控制开关S5断开(参见图6),并记录所述模数转换器输出的第二数字电压参数DOos’,然后判断所述待测模块是否处于充电状态(即判断电池是否处于充电状态),如果是,则进入步骤S5,如果否,则进入步骤S6。步骤S5:控制所述第一控制开关S1、所述第四控制开关S4和所述第六控制开关S6闭合,控制所述第二控制开关S2、所述第三控制开关S3和所述第五控制开关S5断开(参见图7),并以当前输出的数字电压参数DO与所述第二数字电压参数DOos’的差值作为检测结果。步骤S6:控制所述第二控制开关S2、所述第五控制开关S5和所述第六控制开关S6闭合,控制所述第一控制开关S1、所述第三控制开关S3和所述第四控制开关S4断开(参见图8),并以当前输出的数字电压参数DO与所述第二数字电压参数DOos’的差值作为检测结果。
上述电池的充电状态或者放电状态的检测,以及控制开关的通断控制,可以由电源管理模块进行,也可以由MCU或者CPU等处理器进行。
所述方法通过在不同的阶段控制不同的开关的开闭状态,从而实现检测电路的精准检测,提高了电路的电流检测质量和效率。
具体地,在充电电流检测状态下,如图4所示,第一控制开关S1和第四控制开关S4闭合,第二控制开关S2、第三控制开关S3和第五控制开关S5打开,第六控制开关S6则视双向电流检测电路校准的结果决定打开或者闭合。假设电流检测电路已经校准过,放大器OP可以认为是理想器件。第一PMOS管MP1的电流I1与电池充电电流IC,应满足如下关系式:I1*R3=IC*RS。而第一PMOS管MP1的电流I1和第二PMOS管MP2的电流I2正比于它们的尺寸比例关系:I1/I2=(W1/L1)/(W2/L2)。因此,电流检测得到的电压VO=I2*R4=((W2/L2)/(W1/L1))*(R4/R2)*IC*RS。VO经ADC转换后,得到相应的数字电压参数DO。这里的电流检测,就是测量电流的大小,前面已经把电流量转换得到一个电压量,这个电压量可以经ADC做模数转换,可以得到对应的数字电压参数,用于表征电流大小。
具体地,在放电电流检测状态下,如图5所示,第二控制开关S2和第五控制开关S5闭合,第一控制开关S1、第三控制开关S3和第四控制开关S4打开,第六控制开关S6则视电流检测电路校准的结果决定打开或者闭合。假设电流检测电路已经校准过,放大器OP可以认为是理想器件。第一PMOS管MP1的电流I1与电池充电电流IC,应满足如下关系式:I1*R1=ID*RS。而第一PMOS管MP1的电流I1和第二PMOS管MP2的电流I2正比于它们的尺寸比例关系:I1/I2=(W1/L1)/(W2/L2)。因此,电流检测得到的电压VO=I2*R4=((W2/L2)/(W1/L1))*(R4/R1)*ID*RS。VO经ADC转换后,得到相应的数字电压参数DO,这里的电流检测,就是测量电流的大小,前面已经把电流量转换得到一个电压量,这个电压量可以经ADC做模数转换,可以得到数字电压参数,用于表征电流大小。
具体地,由于放大器OP存在失调误差,因此,需要对双向电流检测电路进行校准。校准状态下,第一控制开关S1和第三控制开关S3闭合,第二控制开关S2、第四控制开关S4和第五控制开关S5打开,起初第六控制开关S6打开(参见图3)。如果放大器OP自身的失调电压Vos为正,那么,整个系统的第一输出误差电压VOos=((W2/L2)/(W1/L1))*(R4/R2)*Vos。其中,(W2/L2)/(W1/L1)为第二PMOS管MP2与第一PMOS管MP1的尺寸比例,R4/R2为第四电阻R4和第二电阻R2的电阻比值。上述公式只是第一输出误差电压的理论计算方法,所述第一输出误差电压实际上是通过电路测出来的。反之,如果放大器OP自身的失调电压Vos为负,那么,VO=0。此时,ADC的转换结果也为0,那么,改为闭合第六控制开关S6(参见图6),从而电流I3流经第一电阻R1,为在放大器OP的正输入端叠加了一个正的电压,相当于把放大器OP的失调电压修改为一个正的电压值’,那么,整个系统的第二输出误差电压’=((W2/L2)/(W1/L1))*(R4/R2)*’ 。其中,(W2/L2)/(W1/L1)为第二PMOS管MP2与第一PMOS管MP1的尺寸比例,R4/R2为第四电阻R4和第二电阻R2的电阻比值。上述公式只是第二输出误差电压的理论计算方法,所述第二输出误差电压实际上是通过电路测出来的。上述第一输出误差电压或第二输出误差电压经过ADC转换,同样可以得到相应的第一数字电压参数或第二数字电压参数’。而正常电流检测时,则在电流检测结果DO的基础上,减去’,即得到最终的检测结果,该检测结果已经抵消了电流检测电路自身的误差。另外,无论电池的充放电电流有多大,都没有影响到误差电压的检测过程及结果。
从上述推导过程可知,该电路只需保证R1=R2=R3,同时与R4满足所需的比例关系,以及MP1与MP2的尺寸满足所需的比例关系,那么检测结果就是准确的。对于集成电路来说,满足这些相对数值关系,是比较容易实现的。
最后应说明的是:本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其它实施例的不同之处,各个实施例之间相同或相似部分互相参见即可,各实施例之间的技术方案是可以相互结合的。以上各实施例仅用于说明本发明的技术方案,而非对其限制,尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员依然可以对前述各实施例所记载的技术方案进行修改, 或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (8)

1.一种双向电流检测电路,用于检测待测模块的充电电流和放电电流,其特征在于,包括采样选择模块、电流转换模块、电流源和模数转换器,其中:
所述采样选择模块包括第一电阻、第二电阻、第三电阻、第一控制开关、第二控制开关、第三控制开关、第四控制开关和第五控制开关;其中,所述第一电阻和所述第二电阻的一端连接,并共同作为用于连接待测模块的所述采样选择模块的第一输入端,所述第一电阻的另一端则通过所述第一控制开关连接至所述电流转换模块的正输入端,所述第一电阻的另一端还通过所述第二控制开关连接至所述电流转换模块的负输入端,所述第二电阻的另一端则通过所述第三控制开关连接至所述电流转换模块的负输入端;所述第三电阻的一端作为用于连接待测模块的所述采样选择模块的第二输入端,所述第三电阻的另一端则通过第四控制开关连接至所述电流转换模块的负输入端,所述第三电阻的另一端还通过第五控制开关连接至所述电流转换模块的正输入端;
所述电流转换模块接收所述采样选择模块输出的采样电流,并转换为采样电压输出至所述模数转换器;
所述电流源通过第六控制开关连接至所述采样选择模块与所述电流转换模块的正输入端之间的公共端,用于在进行电路校准时输入校准电流;
所述模数转换器接收所述采样电压,并转换为用于表征电流大小的数字电压参数进行输出。
2.根据权利要求1所述的电路,其特征在于,所述电流转换模块包括放大器、第一PMOS管、第二PMOS管、NMOS管和第四电阻,其中:
所述放大器的正输入端作为所述电流转换模块的正输入端,分别连接所述第一控制开关、第五控制开关和第六控制开关;所述放大器的负输入端作为所述电流转换模块的负输入端,分别连接所述第二控制开关、第三控制开关和第四控制开关;所述放大器的输出端连接所述NMOS管的栅极,所述NMOS管的源极连接所述放大器的负输入端,所述NMOS管的漏极连接所述第一PMOS管的漏极;所述第一PMOS管和所述第二PMOS管的源极共同连接外部电源,所述第一PMOS管和所述第二PMOS管的栅极共同连接至所述NMOS管的漏极;所述第二PMOS管的漏极通过所述第四电阻接地,所述第二PMOS管的漏极和所述第四电阻的公共端作为所述电流转换模块的输出端,用于连接至所述模数转换器的输入端。
3.根据权利要求2所述的电路,其特征在于,所述第一电阻的阻值与所述第二电阻的阻值相等,且所述第一电阻的阻值与所述第三电阻的阻值相等。
4.根据权利要求2所述的电路,其特征在于,所述第四电阻的阻值为所述第一电阻的阻值的20倍。
5.根据权利要求2所述的电路,其特征在于,所述第二PMOS管与所述第一PMOS管的尺寸比例为5。
6.根据权利要求2所述的电路,其特征在于,所述待测模块包括待测电源和检流电阻,所述待测电源的负极通过所述检流电阻接地,所述待测电源的负极与所述检流电阻的一端相连接的公共端连接至所述采样选择模块的第一输入端,所述检流电阻的另一端则连接至所述采样选择模块的第二输入端。
7.根据权利要求1所述的电路,其特征在于,所述采样选择模块、电流转换模块、电流源和模数转换器集成在一块芯片中。
8.一种基于权利要求1至7中任意一项所述的双向电流检测电路的双向电流检测方法,其特征在于,包括如下步骤:
步骤S1:所述双向电流检测电路初始化,所述第一控制开关、所述第二控制开关、所述第三控制开关、所述第四控制开关、所述第五控制开关和所述第六控制开关都处于断开状态,然后进入步骤S2;
步骤S2:控制所述第一控制开关和所述第三控制开关闭合,然后判断所述模数转换器输出的用于表征电流大小的第一数字电压参数是否大于零,如果是,则进入步骤S3,如果否,则进入步骤S4;
步骤S3:判断所述待测模块是否处于充电状态,如果是,则控制所述第一控制开关和所述第四控制开关闭合,控制所述第二控制开关、所述第三控制开关、所述第五控制开关和所述第六控制开关断开,并以当前输出的数字电压参数与所述第一数字电压参数的差值作为检测结果;如果否,则控制所述第二控制开关和所述第五控制开关闭合,控制所述第一控制开关、所述第三控制开关、所述第四控制开关和所述第六控制开关断开,并以当前输出的数字电压参数与所述第一数字电压参数的差值作为检测结果;
步骤S4:控制所述第一控制开关、所述第三控制开关和所述第六控制开关闭合,控制所述第二控制开关、所述第四控制开关和所述第五控制开关断开,并记录所述模数转换器输出的第二数字电压参数,然后判断所述待测模块是否处于充电状态,如果是,则进入步骤S5,如果否,则进入步骤S6;
步骤S5:控制所述第一控制开关、所述第四控制开关和所述第六控制开关闭合,控制所述第二控制开关、所述第三控制开关和所述第五控制开关断开,并以当前输出的数字电压参数与所述第二数字电压参数的差值作为检测结果;
步骤S6:控制所述第二控制开关、所述第五控制开关和所述第六控制开关闭合,控制所述第一控制开关、所述第三控制开关和所述第四控制开关断开,并以当前输出的数字电压参数与所述第二数字电压参数的差值作为检测结果。
CN201810742027.6A 2018-07-09 2018-07-09 双向电流检测电路和检测方法 Withdrawn CN108594004A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810742027.6A CN108594004A (zh) 2018-07-09 2018-07-09 双向电流检测电路和检测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810742027.6A CN108594004A (zh) 2018-07-09 2018-07-09 双向电流检测电路和检测方法

Publications (1)

Publication Number Publication Date
CN108594004A true CN108594004A (zh) 2018-09-28

Family

ID=63615070

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810742027.6A Withdrawn CN108594004A (zh) 2018-07-09 2018-07-09 双向电流检测电路和检测方法

Country Status (1)

Country Link
CN (1) CN108594004A (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110018336A (zh) * 2019-04-24 2019-07-16 上海类比半导体技术有限公司 一种双向采样电路、采样方法
CN111551864A (zh) * 2020-06-22 2020-08-18 微思机器人(深圳)有限公司 应用于电池充放电的高精度双向电流检测电路及其方法
CN112013985A (zh) * 2019-05-31 2020-12-01 深圳迈瑞生物医疗电子股份有限公司 温度检测装置及温度检测方法
CN115327215A (zh) * 2022-08-22 2022-11-11 北京思凌科半导体技术有限公司 电流检测装置及电流检测系统
WO2024060614A1 (zh) * 2022-09-23 2024-03-28 圣邦微电子(北京)股份有限公司 对流过目标电阻器的目标电流进行采样的电路

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008026082A (ja) * 2006-07-19 2008-02-07 Rohm Co Ltd 電流検出回路ならびにそれを用いた充電制御回路、充電回路および電子機器
CN103376346A (zh) * 2012-04-26 2013-10-30 比亚迪股份有限公司 一种低边电流检测系统
CN104600963A (zh) * 2014-12-30 2015-05-06 上海贝岭股份有限公司 一种开关电源输出电压双模检测电路
CN104777434A (zh) * 2014-01-15 2015-07-15 深圳市瑞能实业有限公司 一种后备电源检测系统及其检测方法
CN104901359A (zh) * 2015-05-13 2015-09-09 无锡中星微电子有限公司 具有电池电流检测电路的充放电控制装置
CN205280799U (zh) * 2015-12-25 2016-06-01 无锡中感微电子股份有限公司 电压检测电路
CN106546800A (zh) * 2017-01-25 2017-03-29 北京鸿智电通科技有限公司 一种应用于快充电源的充/放电电流检测电路
CN206161720U (zh) * 2016-10-31 2017-05-10 珠海市一微半导体有限公司 电池电压检测电路
CN206321769U (zh) * 2016-11-30 2017-07-11 师康楠 一种锂电池充电检测装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008026082A (ja) * 2006-07-19 2008-02-07 Rohm Co Ltd 電流検出回路ならびにそれを用いた充電制御回路、充電回路および電子機器
CN103376346A (zh) * 2012-04-26 2013-10-30 比亚迪股份有限公司 一种低边电流检测系统
CN104777434A (zh) * 2014-01-15 2015-07-15 深圳市瑞能实业有限公司 一种后备电源检测系统及其检测方法
CN104600963A (zh) * 2014-12-30 2015-05-06 上海贝岭股份有限公司 一种开关电源输出电压双模检测电路
CN104901359A (zh) * 2015-05-13 2015-09-09 无锡中星微电子有限公司 具有电池电流检测电路的充放电控制装置
CN205280799U (zh) * 2015-12-25 2016-06-01 无锡中感微电子股份有限公司 电压检测电路
CN206161720U (zh) * 2016-10-31 2017-05-10 珠海市一微半导体有限公司 电池电压检测电路
CN206321769U (zh) * 2016-11-30 2017-07-11 师康楠 一种锂电池充电检测装置
CN106546800A (zh) * 2017-01-25 2017-03-29 北京鸿智电通科技有限公司 一种应用于快充电源的充/放电电流检测电路

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110018336A (zh) * 2019-04-24 2019-07-16 上海类比半导体技术有限公司 一种双向采样电路、采样方法
CN110018336B (zh) * 2019-04-24 2021-02-05 上海类比半导体技术有限公司 一种双向采样电路、采样方法
CN112013985A (zh) * 2019-05-31 2020-12-01 深圳迈瑞生物医疗电子股份有限公司 温度检测装置及温度检测方法
CN111551864A (zh) * 2020-06-22 2020-08-18 微思机器人(深圳)有限公司 应用于电池充放电的高精度双向电流检测电路及其方法
CN111551864B (zh) * 2020-06-22 2022-07-15 微思机器人(深圳)有限公司 应用于电池充放电的高精度双向电流检测电路及其方法
CN115327215A (zh) * 2022-08-22 2022-11-11 北京思凌科半导体技术有限公司 电流检测装置及电流检测系统
CN115327215B (zh) * 2022-08-22 2023-08-08 北京思凌科半导体技术有限公司 电流检测装置及电流检测系统
WO2024060614A1 (zh) * 2022-09-23 2024-03-28 圣邦微电子(北京)股份有限公司 对流过目标电阻器的目标电流进行采样的电路

Similar Documents

Publication Publication Date Title
CN108594004A (zh) 双向电流检测电路和检测方法
KR101901680B1 (ko) 병렬 연결된 배터리용 차동 전류 모니터링
US9933493B2 (en) Battery management system
US20130002261A1 (en) Battery pack
US11056891B2 (en) Battery stack monitoring and balancing circuit
WO2022110989A1 (zh) 绝缘阻抗检测电路、阻抗检测方法、变流器及光伏离心机
US20140176148A1 (en) Voltage detecting device for assembled battery
CN107579508A (zh) 一种电源保护装置以及使用所述装置的终端
CN104635123B (zh) 对电动汽车的高压线束的绝缘性能进行测量的装置和方法
CN206788249U (zh) 电动汽车直流高压系统绝缘电阻测量装置
CN208421060U (zh) 一种双向电流检测电路
CN106997007A (zh) 电动汽车直流高压系统绝缘电阻测量装置及其测量方法
CN109085510A (zh) 一种多充放电通道的电流在线检测与自动校准电路和方法
CN104198783B (zh) 具有温度补偿特性的电源检测电路及受电设备
CN109900950A (zh) 一种高精度的连续时间双向电流采样电路及实现方法
CN108957334B (zh) 电池采样系统
CN105203958B (zh) 电池状态监视电路和电池装置
CN208334494U (zh) 一种用于进行双向电流检测的电路
CN111983316B (zh) 一种iso检测方法和装置
US20140312914A1 (en) System and Method for Measuring Battery Voltage
CN209387708U (zh) 一种检测电路和基于此电路的电能计量芯片及设备
CN218383170U (zh) Bms芯片的功能验证电路
CN109030928A (zh) 用于进行双向电流检测的电路和电流检测方法
CN107290673A (zh) 一种电池管理测试系统的被动均衡电路及其测试方法
CN103743942B (zh) 一种含固体继电器的配电模件的火工品漏电流检测方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB02 Change of applicant information
CB02 Change of applicant information

Address after: 519000 2706, No. 3000, Huandao East Road, Hengqin new area, Zhuhai, Guangdong

Applicant after: Zhuhai Yiwei Semiconductor Co.,Ltd.

Address before: 519000 room 105-514, No. 6, Baohua Road, Hengqin new area, Zhuhai, Guangdong

Applicant before: AMICRO SEMICONDUCTOR Co.,Ltd.

WW01 Invention patent application withdrawn after publication
WW01 Invention patent application withdrawn after publication

Application publication date: 20180928