CN108844515A - 一种水下土工膜的监测方法及系统 - Google Patents

一种水下土工膜的监测方法及系统 Download PDF

Info

Publication number
CN108844515A
CN108844515A CN201810631717.4A CN201810631717A CN108844515A CN 108844515 A CN108844515 A CN 108844515A CN 201810631717 A CN201810631717 A CN 201810631717A CN 108844515 A CN108844515 A CN 108844515A
Authority
CN
China
Prior art keywords
monitoring
monitoring node
ess
geomembrane
row
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810631717.4A
Other languages
English (en)
Other versions
CN108844515B (zh
Inventor
董新美
何文龙
王玉太
徐运海
何鑫
张立华
程素珍
刘莉莉
魏兆珍
贾翠兰
陈丕华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Water Resources Research Institute of Shandong Province
Original Assignee
Water Resources Research Institute of Shandong Province
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Water Resources Research Institute of Shandong Province filed Critical Water Resources Research Institute of Shandong Province
Priority to CN201810631717.4A priority Critical patent/CN108844515B/zh
Publication of CN108844515A publication Critical patent/CN108844515A/zh
Application granted granted Critical
Publication of CN108844515B publication Critical patent/CN108844515B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • G01B21/32Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring the deformation in a solid
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Or Calibration Of Command Recording Devices (AREA)

Abstract

本发明公开了一种水下土工膜的监测方法及系统,包括的步骤一:设置至少三行监测节点,构成监测节点阵列,在各个行内的监测节点的应力应变监测装置之间连接有绳索,步骤二:各个行中的监测节点的应力应变监测装置均与本行的控制总线连接,各个行的所述控制总线均与设置在堤岸上的控制箱电连接;步骤三:控制箱中的控制器将各个信号上传至云端服务器,控制中心的中心服务器的内部程序进行判断和比较,将最先发出信号或信号峰值大的监测节点的位置坐标初步确定为土工膜形变或破损位置的坐标。本发明的技术方案,在对库底或渠底的渗漏防治中,大大减少人力物力的投入,具有较大的经济效益和应用前景。

Description

一种水下土工膜的监测方法及系统
技术领域
本发明涉及土石坝、河渠等防渗工程技术领域,特别是一种水下土工膜的监测方法及 系统。
背景技术
目前,土工膜已大量用于土石坝防渗工程中,包括水库大坝、平原水库库底及围坝或 者是渠底的防渗工程等。与其它防渗形式相比,土工膜用于土石坝防渗工程,具有防渗效 果好、施工简单、造价低的优点。土工膜作为一种以高分子聚合物为基本原料的防水阻隔 型材料,其主要成分为:低密度聚乙烯(LDPE)土工膜、高密度聚乙烯(HDPE)土工膜和EVA土工膜。土工膜的防渗原理是以塑料薄膜的不透水性隔断土坝漏水通道,以其较大的抗拉强度和延伸率承受水压和适应坝体变形。土工膜用于土石坝防渗工程,由于缺乏有效的监测技术,特别是由于土工膜下地基变形引起膜体损坏无法快速定位、修复,导致土工膜的应用受到了很大的限制。
此外,在城市建设及城市配套水利工程中,对于地质条件较差、缺乏连续不透水层的 地区采用土工膜进行防渗也成为首选。主要原因在于土工膜属于柔性材料,对水下地基变 形的适应能力很强,在未遭受外力刺穿、撕裂的情况下,其老化速度能够满足多数水利工 程的经济寿命需求,特别适用于多地震地区和岩溶地区的防渗铺盖。
土工膜用于土石坝防渗工程,土工膜的完整性是保证防渗工程质量的关键因素。土工 膜的完整性主要受水下地基变形的影响,水下地基变形一般有两类情况:一类是膜下地基 塌陷,造成土工膜部分悬空;另一类是膜下地基隆起以及气体膨胀。上述两种情况均会导 致土工膜局部受力过大从而损坏。土工膜局部受损后,由于缺乏有效的监测技术,目前存 在“开裂部位难以确定”这一重大技术缺陷,使得土工膜修复难以进行。由于渗水穿越土 工膜后迅速在土体内扩散,即使预埋监测仪器也无法在小范围内确定损伤部位。这一弊端 将使得膜体开裂初期短暂抢修时机的丧失,使土工膜撕裂和渗透破坏急剧扩展,不仅造成 库水大量渗漏,而且会严重威胁到土石坝的安全运行。
因此,对水下土工膜进行有效监测是急需解决的问题。
发明内容
本发明所解决的技术问题是:针对水下起防渗作用的土工膜意外破损后,如何能做到 迅速发现并精确定位的技术问题。
为实现上述目的,本发明提出一种水下土工膜的监测方法,包括的步骤如下:
步骤一,在库底或渠底水域内设置至少三行监测节点,构成奇数行或偶数行的监测节 点阵列,其中,所述偶数行的各个监测节点分别设置在所述奇数行的各个相邻的两个监测 节点间距区域之间,各个所述监测节点中包括设有的应力应变监测装置,在各个行内的监 测节点中的应力应变监测装置之间连接有绳索,相邻行的相邻监测节点中的应力应变监测 装置之间通过绳索连接构成三角形网孔,其中,相邻奇数行中的首个监测节点中的应力应 变监测装置之间也连接绳索,相邻奇数行中的末端监测节点中的应力应变监测装置之间也 通过绳索进行连接;
步骤二,监测节点阵列中的各个绳索之间保持张紧并将监测节点固定安装在土工膜朝 下的一面上,将土工膜连同朝下一面上的监测节点一起敷设在水下的库底或渠底表面上, 各个行中的监测节点中的应力应变监测装置均与本行的控制总线连接,各个行的所述控制 总线均与设置在堤岸上的控制箱电连接;
步骤三,当任意一处土工膜发生形变,位于土工膜背面的相应位置的监测节点中的应 力应变监测装置首先感受到应力作用而发出信号,同时,与该应力应变监测装置相连接的 绳索受到牵扯,使周边监测节点中的应力应变监测装置也感受到土工膜的形变而发出信号, 各个所述信号都会通过各自所在行的控制总线传输至控制箱中,控制箱中的控制器将各个 信号上传至云端服务器,控制中心的中心服务器的内部程序对发出信号进行时间排序以及 将信号与土工膜所受应力峰值的阈值下限比较,舍弃小于阈值下限的应力峰值信号,记录 大于阈值下限的应力峰值信号,阈值下限可设为80~140N/125px,其中N单位为牛顿,PX 为像素;
将信号峰值最大或最先发出信号的应力应变监测装置所在监测节点的坐标作为土工膜 形变或破损位置的坐标位置;获悉该坐标信号的技术人员对相应的监测节点及其周围区域 进行排查,即可获得相对精准的土工膜形变或破损位置,为进一步应急处理提供技术支持。
另外,根据本发明实施例可以具有如下附加的技术特征:
根据本发明的一个实施例,位于奇数行中的首个所述监测节点的应力应变监测装置包 括盘体,所述盘体包括扇形盘和与所述扇形盘配套的扇形盖,在所述扇形盖的两条直边的 外侧设置有翻沿,所述翻沿上设有安装孔,在所述扇形盘内与弧线边正对一侧的位置设有 集线台,所述集线台上设有接线塞,在集线台靠近扇形盘的弧线边的一侧的台面边缘上设 有三个螺栓孔,三个连接片的一端分别通过螺栓与三个螺栓孔配合而紧固在集线台上,三 个连接片的另一端分别各自连接有应力应变传感器,在每个应力应变传感器的远离所述连 接片的另一端也设有螺栓孔,压板通过螺栓与螺栓孔的配合将绳索的一端压接在各自所述 应力应变传感器远离所述连接片的另一端上,所述扇形盘的侧壁上设有防水塞,所述绳索 通过防水塞穿出扇形盘与相邻的其他监测节点的应力应变监测装置连接,所述应力应变传 感器的信号线分别通过所述接线塞与本行内的控制总线电连接。
一种水下土工膜的监测方法的系统,包括在库底或渠底内的水域中设置至少三行监测 节点,构成奇数行或偶数行的监测节点阵列,其中,所述偶数行的各个监测节点分别设置 在所述奇数行的各个相邻的两个监测节点间距区域之间,各个所述监测节点中包括设有的 应力应变监测装置,在各个行内的监测节点的应力应变监测装置之间连接有绳索,相邻行 的相邻监测节点中的应力应变监测装置之间通过绳索连接构成三角形网孔,其中,相邻奇 数行中的首个监测节点的应力应变监测装置之间也连接绳索,相邻奇数行中的末端监测节 点的应力应变监测装置之间也通过绳索进行连接;所述应力应变监测装置中包括应力应变 传感器;
监测节点阵列中的各个绳索之间保持张紧并将监测节点固定安装在土工膜朝下的一面 上,土工膜连同朝下一面上的监测节点一起敷设在水下的库底或渠底表面上,各个行中的 监测节点的应力应变监测装置均与本行的控制总线连接,各个行的所述控制总线均与设置 在堤岸上的控制箱电连接;所述控制箱与云端服务器通讯,所述云端服务器通过网关与控 制中心的中心服务器通信,所述云端服务器还与移动终端通信。
所述控制箱中包括设有的控制器,还包括与控制器连接的无线发射模块,无线发射模 块通过无线路由器与云端服务器通讯。所述控制器为PLC控制器,所述绳索为不锈钢丝绳。
本技术方案的工作原理是,在采用敷设土工膜对水下工程进行防渗处理的具体应用中, 针对土工膜的膜体在地基变化以及外力等作用下容易受损,严重时将导致库底或渠底渗漏 等事故发生的实际情况,采取在土工膜朝下的一面上安装多个监测节点,并将相邻监测节 点之间通过绳索连接起来构成网孔网络结构,当水下的土工膜受力发生形变乃至破损的初 期,最近的监测节点的应力应变监测装置受到途经形变区域相应绳索的牵引而产生警示信 号,同时与该应力应变监测装置相连接的其他绳索也受到牵扯,使周边的应力应变监测装 置也会或多或少的感受到土工膜的形变信号,各个信号通过控制总线先后上传至云端服务 器,再经云端服务器与控制中心的服务器通信,控制中心的服务器通过内部程序对获得信 号,这里,设立的绳索在参与构建监测节点阵列网孔并起到应力信号联动作用的同时还起 到加强筋的作用,可以增强水下土工膜抗拉能力,变相提高土工膜抵御外力避免破损的能 力,从而实现最好的应力监测方式:就是使土工膜永远不受或少受应力作用的良好效果。 不利的情况是当水下的土工膜受应力发生形变乃至破损的初期,由于绳索导致有可能获取 的应力数据信号值较小,这可以通过在后期的控制中心服务器的程序中,降低监测信号阈 值下限的方式,弥补因绳索导致监测灵敏度降低的问题,通常情况下,土工膜的应力抗拉 强度为≥250N/125px,这里采取阈值下限设为80~140N/125px,人为降低阈值,在不增加 现有设备的情况下,提高接收土工膜所受应力信号的灵敏度。从而保障对土工膜受应力发 生形变乃至破损的初期就可以及时响应。
当水下土工膜下的某处地基隆起或有气体积聚时,在重重水压以及其他外力的作用下, 土工膜同样会变形甚至破裂,距离该位置的最近的应力应变检测装置感受到形变信号,同 时与该应力应变检测装置相连接的绳索也受到牵扯,使周边的应力应变检测装置也会或多 或少的感受到土工膜的形变信号,这些信号都会通过各自所在行的控制总线与控制箱中的 控制器连接,控制器上传至云端服务器,直至控制中心的服务器,中心服务器的内部程序 进行判断和比较,解算出最先到达以及峰值最大的土工膜形变信号作为故障点坐标值,相 关决策部门人员对该监测节点及其周围区域进行排查,即可获得相对精准的土工膜破损位 置,为及时处理争取了时间,满足相关部门人员的需要。
相关决策人员也可以通过移动终端直接访问云端服务器,实时掌握水下土工膜的变形 状态信息,做到在第一时间即可进行预判,获得膜体开裂初期宝贵的抢修时机,努力将风 险降到最小,防止事故的扩大,
本发明的工作原理成熟、可靠,在不需要增加太多投入的前提下,实现对水下土工膜 形变或破损位置的定位,相比现有漫无目标的判断方式,本技术方案,对渗漏点的判定位 置更为精准,在对库底或渠底的渗漏防治中,大大减少人力物力的投入,具有较大的经济 效益和应用前景。
本发明的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明 显,或通过本发明的实践了解到。
附图说明
本发明的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显 和容易理解,
图1是一种水下土工膜的监测方法的流程示意图;
图2是监测节点阵列中位于奇数行中的首个所述监测节点的扇形盘结构示意图;
图3是图2的扇形盘侧视示意图;
图4是监测节点阵列中位于首行或位于未行内部的中段监测节点的方形监测盘结构示 意图;
图5是图4的方形监测盘结构侧视示意图;
图6是监测节点阵列中位于偶数行的首个和尾个监测节点的五边形监测盘示意图;
图7是图6的五边形监测盘侧视示意图;
图8是监测节点阵列中除首行和未行以外,且在行内除首个和尾个监测节点的中间监 测节点的正六边形监测盘示意图;
图9是图8的正六边形监测盘侧视示意图;
图10是图8带地锚的正六边形监测盘侧视示意图;
图11是一种水下土工膜应力应变监测方法的系统的示意图;
图12是接线塞局部放大结构示意图;
图13是绳索限位装置示意图;
图14是图13中的棘轮与绳索配合示意图;
其中:1.水库底或渠底,2.监测节点,3.绳索,4.控制总线,5.无线路由器,6.云端服务器,7.移动终端,8.中心服务器,9.网关,10.控制箱,11.土工膜,12.扇形盘,13. 翻沿,14.应力应变传感器,15.防水塞,16.螺栓,17.压板,18.连接片,19.集线台,20. 接线塞,21.扇形盖,22.方形监测盘,23.方形盖,24.五边形监测盘,25.五边形盖,26. 信号线,27.气囊,28.凸起柱,29.联通管,30.上安装座,31.棘轮,32.下安装座,33.径 向缺口,34.锥形体,35.横扭杆,36.棘轮主轴,37.下凹槽,38.上凹槽管,39.侧壁镂空 孔.40.正六边形监测盘,41.正六边形盖,42.固定锚。
具体实施方式
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同 或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描 述的实施例是示例性的,仅用于解释本发明,而不能理解为对本发明的限制。下面结合附 图进一步说明;
本监测方法及系统可被应用在水库底或渠底1,在对水库的水库底或渠道的渠底中敷 设的土工膜11的应力监测中,
图1至图14中提供了一种水下土工膜的监测方法,包括的步骤如下:
所述步骤一包括,在库底或渠底水域内设置至少三行监测节点2,构成奇数行或偶数 行的监测节点阵列,其中,所述偶数行的各个监测节点2分别设置在所述奇数行的各个相 邻的两个监测节点2间距区域之间,各个所述监测节点2中包括设有的应力应变检测装置, 在各个行内的监测节点2中的应力应变检测装置之间连接有绳索3,相邻行的相邻监测节 点2中的应力应变检测装置之间通过绳索3连接构成三角形网孔,其中,相邻奇数行中的首个监测节点2中的应力应变检测装置之间也连接绳索3,相邻奇数行中的末端监测节点2的应力应变检测装置之间也通过绳索3进行连接;
另外,图11中的B处所示,在监测节点阵列中,如图4、5中所示,位于首行或位于未行内部的中段监测节点2的应力应变检测装置包括方形监测盘22和与所述方形监测盘22配套的方形盖23;所述方形盖23的左、右两边之间的上、下两条直边的外侧设置有翻沿 13,所述翻沿13上设有安装孔,面向所述方形监测盘22,包括在所述方形监测盘22内关 于左、右两边对称的对称中心轴线上且靠近偏上侧的所述直边位置设有集线台19,所述集 线台19上设有接线塞20,在所述集线台19上设有以所述方形监测盘22内的左、右两边 的对称中心轴线为对称轴的两对螺栓孔,两对连接片18的一端通过螺栓16分别与该两对 螺栓孔配合且紧固在集线台19上,两对连接片18的另一端分别各自独立连接两对应力应 变传感器14,其中的一对应力应变传感器14的轴向轴线的连线共线,且与所述方形监测 盘22的左、右两边之间的上、下两条直边相平行,另外一对应力应变传感器14的轴向轴 线关于所述方形监测盘22内的左、右两边的对称中心轴线对称呈八字型,在每个应力应变 传感器14的远离所述连接片18的另一端也设有螺栓孔,压板17通过螺栓16与该螺栓孔 的配合将绳索3的一端压接在应力应变传感器14远离所述连接片18的另一端上,所述方 形监测盘22的侧壁上设有防水塞15,所述绳索3通过防水塞15穿出方形监测盘22与相 邻的其他监测节点2的应力应变检测装置连接,所述应力应变传感器14的信号线26分别 通过所述接线塞20与本行内的控制总线4电连接。
所述步骤二包括,监测节点阵列中的各个绳索3之间保持张紧并将各个监测节点2上 设有的应力应变检测装置固定安装在土工膜11朝下的一面上,将土工膜11连同安装在朝 下一面的监测节点2的应力应变检测装置一起敷设在水库底或渠底表面上,各个行中监测 节点2的应力应变检测装置均与本行的控制总线4连接,各个行的所述控制总线4均与水设置在堤岸上的控制箱10电连接。
所述步骤三包括,当任意一处土工膜11发生形变,位于土工膜11背面的相应位置的 监测节点2中的应力应变检测装置受到应力作用而发出数据信号,同时,与该应力应变检 测装置相连接的绳索3也受到牵扯,使周边的应力应变检测装置也会感受到土工膜11的形 变而发出数据信号,各个所述数据信号都会通过各自所在行的控制总线4传输至控制箱10 中,控制箱10中的控制器将各个数据信号上传至云端服务器6,控制中心的中心服务器8的内部程序进行判断和比较,对数据信号发出时间排序以及将数据信号与土工膜所受应力峰值的阈值下限比较,舍弃小于阈值下限的应力峰值信号,记录大于阈值下限的应力峰值信号,阈值下限可设为80或100或140N/125px,N为牛顿,PX为土工膜的像素;将最先 发出数据信号或者数据信号峰值最大的监测节点2的位置坐标初步确定为土工膜11形变或 破损的位置坐标,获悉该坐标信号的技术人员对相应的监测节点2及其周围区域进行排查, 即可获得相对精准的土工膜11形变或破损位置,为进一步应急处理提供技术支持。
图11中的A处所示,位于奇数行中的首个所述监测节点2的应力应变检测装置中包括 扇形盘12,如图2、3中所示,所述扇形盘12和扇形盖21配套,在所述扇形盖21的两条 直边的外侧设置有翻沿13,所述翻沿13上设有安装孔,这样可以利用翻沿13上的安装孔, 通过缝制或铆接等方式将扇形盘12连接在土工膜11上的朝下一面上,即土工膜11的背面。 在所述扇形盘12内与弧线边正对一侧的位置设有集线台19,所述集线台19上设有接线塞 20,在集线台19靠近扇形盘12的弧线边的一侧的台面边缘上设有三个螺栓孔,三个连接 片18的一端分别通过螺栓16与三个螺栓孔配合而紧固在集线台19上,三个连接片18的 另一端分别各自连接有应力应变传感器14,在每个应力应变传感器14的远离所述连接片 18的另一端也设有螺栓孔,压板17通过螺栓16与螺栓孔的配合将绳索3的一端压接在应 力应变传感器14远离所述连接片18的另一端上,所述扇形盘12的侧壁上设有防水塞15, 所述绳索3通过防水塞15穿出扇形盘12与相邻的其他监测节点2中的应力应变检测装置 连接,所述应力应变传感器14的信号线26分别通过所述接线塞20与本行内的控制总线4 电连接。
图11中,展示了一种水下土工膜监测的方法的系统,包括在水库底或渠底1内的水域 中设置至少三行监测节点2,构成奇数行或偶数行的监测节点阵列,其中,所述偶数行的各个监测节点2分别设置在所述奇数行的各个相邻的两个监测节点2间距区域之间,各个所述监测节点2中包括设有的应力应变检测装置,在各个行内的监测节点2中的应力应变检测装置之间连接有绳索3,相邻行的相邻监测节点2中的应力应变检测装置之间通过绳索3连接构成三角形网孔,其中,相邻奇数行中的首个监测节点2中的应力应变检测装置 之间也连接绳索3,相邻奇数行中的末端监测节点2的应力应变检测装置之间也通过绳索3 进行连接;
监测节点阵列中的各个绳索3之间保持张紧并将监测节点2固定安装在土工膜11朝下 的一面上,土工膜11连同朝下一面上的监测节点2一起敷设在水下的水库底或渠底1表面 上,各个行中的监测节点2的应力应变检测装置均与本行的控制总线4连接,各个行的所 述控制总线4均与岸上或堤坝上设置的控制箱上设置的控制箱10电连接;所述控制箱10与云端服务器6通讯,所述云端服务器6通过网关9与控制中心的中心服务器8通信,所 述云端服务器6还与移动终端7通信。
所述控制箱10中包括设有的控制器,还包括与控制器连接的无线发射模块,无线发射 模块通过无线路由器5与云端服务器6通讯。
所述控制器为PLC控制器,所述绳索3为不锈钢丝绳。应力应变检测装置通过网络与 控制中心的中心服务器8通讯,网络可以是3G或4G网络。
PLC控制器安装在控制箱10中,与电源、启动开关、指示灯等相应外围电气配件电连 接均属于本领域技术人员常规技术,因此不再赘述。
此外,图11中的C处所示,在监测节点阵列中,如图6、7中所示,位于偶数行的首个和尾个监测节点的应力应变检测装置中包括五边形监测盘24和与所述五边形监测盘24配套的五边形盖25,面向所述五边形监测盘24,在水平方向,两条相互平行的上端边和下端边分别位于所述五边形盖25的上侧和下侧,且上端边和下端边的外侧各自设置有翻沿13,在所述翻沿13上设有安装孔,五边形监测盘24的五个边包括相互平行的上直边和下直边,与所述上、下直边分别垂直的左直边,右侧边包括上段边和下段边,所述上段边的一端与上直边的右端部连接,所述下段边的一端与下直边的右端部连接,所述上段边和下段边的各自的另一端相互连接在一起并且上段边和下段边的连接交点远离五边形监测盘24的左直边形成外凸,上段边和下段边之间存在大于零而小于180度的夹角,在所述五边形监测盘24内的中部设有集线台19,所述集线台19上设有接线塞20,在靠近所述集线台19的 上侧和下侧的边缘分别各设置一对螺栓孔,两对螺栓孔均关于集线台19对称,所述五边形 监测盘中在靠近所述集线台的右侧的边缘设有一个螺栓孔,为满足偶数行的首个和末个监 测节点的五边形监测盘的方向需要,可以将五边形监测盘通过翻转180度使用即可;其中, 集线台的右侧的边缘的螺栓孔的径向中心正对所述上段边和下段边的连接交点形成的顶角且位于该顶角的角平分线的延长线上,而所述集线台19的上侧、下侧边缘各设置的一对螺栓孔的径向中心,处在所述五边形监测盘24上、下直边的两端所在的两对顶角的相互交叉连接的对角线上。螺栓孔的径向中心处于交叉的对角线上,这样方便连接在应力应变传感器14上的绳索无需折弯即可顺着顶角处穿出。有利于提高传感器对应力感知的灵敏性。
五个连接片18的一端通过螺栓16分别与螺栓孔配合而紧固在集线台19上,五个连接 片18的另一端分别各自独立连接有应力应变传感器14,在每个应力应变传感器14的远离 所述连接片18的另一端设有紧固孔,压板17通过螺栓16与紧固孔的配合将绳索的一端压 接在应力应变传感器14远离所述连接片18的另一端上,所述五边形监测盘24的侧壁上设 有防水塞15,五个所述绳索通过防水塞15穿出侧壁与相邻的其他监测节点连接,五个所述应力应变传感器14的信号线26分别通过所述接线塞20与本行内的控制总线4电连接。
最后,图11中的D处所示,在监测节点阵列中,如图8、9中所示,除首行和未行以外,且在行内除首个和尾个监测节点的中间监测节点包括正六边形监测盘40和与所述正六边形监测盘40配套的正六边形盖41,面向所述正六边形监测盘40,在水平方向,两条相互 平行的直边分别位于所述正六边形盖41的上侧和下侧,且两条所述直边的外侧各自设置有翻沿13,在所述翻沿13上设有安装孔,所述正六边形监测盘40的六个顶角为三对关于盘 内的对称中心对称的对称顶角,在所述正六边形监测盘40内的对称中心处设有集线台19, 所述集线台19上设有接线塞20,在靠近所述集线台19的上侧和下侧以及左侧和右侧的边 缘设置六个螺栓孔,六个螺栓孔构成关于盘内的对称中心对称的三对,每对螺栓孔的径向 中心分别对应位于正六边形监测盘40的三对对称顶角之间的对角线在集线台19上的投影上,
六个连接片18的一端分别通过螺栓16与螺栓孔配合而紧固在集线台19上,六个连接 片18的另一端分别各自独立连接有应力应变传感器14,在每个应力应变传感器14的远离 所述连接片18的另一端设有紧固孔,压板17通过螺栓16与紧固孔的配合将绳索的一端压 接在应力应变传感器14远离所述连接片18的另一端上,所述正六边形监测盘40的侧壁上 设有防水塞15,六个所述绳索通过防水塞15穿出侧壁与相邻的其他监测节点连接,六个所述应力应变传感器14的信号线26分别通过所述接线塞20与本行内的控制总线4电连接。
如图10中所示,正六边形监测盘还可以设有固定锚42,因为正六边形监测盘往往设 置在整个土工膜11的中部区域,相比土工膜11的边缘区域,位移量小,因此可以利用固定锚42相对保持定位,固定锚42可以抓在水底的泥中,使各个正六边形监测盘40相对固 定在水底,也就相当于人为建立多个原点坐标,当土工膜11有破损或形变时,绳索对节点 内的应力应变监测装置14实施力道,中心服务器8根据传输来的数据信号,直接获得这些 固定的正六边形监测盘原点的相对坐标并作为参照点,相比遍历整个水底区域的找寻破损或形变位置,相当于将水底区域化整为零,可以用较少的程序运行更为迅速的获得土工膜11的破损或形变位置。
图12中,提供一种接线塞20,所述接线塞20分别设置在扇形盘12、方形监测盘22、五边形监测盘24、正六边形监测盘40的盘体中的集线台19位置,所述接线塞20包括由 盘体内穿出的中空管以及与中空管露出盘体一端连接的法兰盘,在所述中空管内壁上安装 多个凸起柱28,所述凸起柱28位于中空管的径向方向上,多个所述凸起柱28沿所述中空 管的轴向方向排布,在所述中空管露出盘体外部的管口位置以及管内凸起柱28之间设有若 干气囊27,所述气囊27之间通过联通管29联通,信号线26穿过所述气囊27和凸起柱28 的间隙伸到盘体外,以方形监测盘22为例,当方形监测盘22连同土工膜11安装在水下后, 在水压力的作用下,位于盘体外部的管口处的气囊27被压缩,由于气囊27之间通过联通 管29相互联通,管口外的气囊27被压缩后,位于接线塞20的中空管内的气囊27膨胀, 进一步包裹在经接线塞20通过的信号线26的周圈,在气囊27的包围下,信号线26途径 管径内交错设置的凸起柱28而变得更加逶迤曲折,气囊27和凸起柱28配合增加了管内的 曲折程度,一方面保障监测盘内防水密封效果,另一方面,由于凸起柱28为质柔的橡胶材 质,当方形监测盘22中的应力应变传感器14受到应力作用,发生微弱位移时,信号线26 可以在中空管内自由伸缩,可以进一步阻碍水渗入盘内,有利于接线塞20的防水。另外每 个应力应变传感器采用技术成熟的大应力应变片,与大应力应变片连接的信号线在接线塞 20内逶迤曲折,曲折的信号线可以有缓冲余量,可以减少信号线在大应力形变中对大应力 应变片引线端的拉力,避免信号线26与内部的应力应变传感器14的接线端因受力过大而 断掉,致使无法传送应力信号的情况发生,这样大大提高了监测盘工作的可靠性。
应力应变监测装置的盘体上的接线塞20的露出各个盘体的法兰盘与盘体之间涂有密 封胶,以此确保接线塞20安装牢靠,应力应变传感器采用大应力应变片为压电材料,为无 源元件无需单独设有电源,因此各个监测盘内对防水要求并不高。
图13、14中,提供一种绳索限位装置,为保障监测阵列中的绳索在应力作用下,有效 位移,不因附着物的羁绊发生偏离,可以在绳索途经的水库底或渠底的地面设置绳索限位 装置,绳索限位装置包括上安装座30,所述上安装座30的左、右两个侧边设置翻沿13,所述翻沿13上设有安装孔,在所述上安装座30的下底面设有上凹槽管38,所述上凹槽管 38通过并平行所述上安装座30的左、右对称中心轴线,所述上凹槽管38为下方开口的凹 槽管,在上凹槽管38的中段一侧上设有侧壁镂空孔39,所述上安装座30与位于正下方的 下安装座32配合连接,所述下安装座32上与所述上凹槽管38对应位置设有下凹槽37, 在所述下凹槽37对应上凹槽管38的侧壁镂空孔39位置设有棘轮31,所述棘轮31通过棘 轮主轴36与下安装座32正下方的锥形体34配合,所述锥形体34包括上部平面和下部的 锥形钻,锥形钻的侧壁上设有螺旋纹,起到使用中钻头作用,省时省力,在所述上部平面 的径向中心位置设有沿下部的锥形钻的轴向轴线方向的沉孔,位于所述锥形钻上且靠近上 部平面的两个相对侧壁上设有径向缺口33,所述径向缺口33和所述沉孔之间联通,所述 棘轮主轴36与所述沉孔配合,所述棘轮主轴36的下端与下方的横扭杆35的中部连接,所 述横扭杆35的两个端部位于所述径向缺口33内,当把绳索扣合在上安装座30和下安装座 32的下凹槽37和上凹槽管38中,并将锥形体34植入水库底或渠底的泥内,当绳索在受 到应力作用发生位移时,会触动棘轮31转动,棘轮31是单向轮,只会朝一个方向转动, 在棘轮31的带动下,棘轮主轴36带动径向缺口33内的横扭杆35转动并将力矩作用在锥 形体34上,导致锥形体34下部的锥形钻往泥内钻,因应力作用在绳索上的位移有限,因 此锥形钻也不会发生太大的进给,仅使绳索组成的节点阵列连同其上敷设的土工膜11紧密 贴合在水库底或渠底上,避免土工膜11自身位移;此外,即便土工膜11下方有气体时, 在绳索以及锥形体34作用下,土工膜11仍然会贴敷在水库底或渠底上,相当于将气体均 摊在土工膜11的下方较大区域内,避免土工膜11局部鼓包,也就延缓或避免了气体积聚 在土工膜11较小的一点上,导致局部受力而破损,在绳索和绳索限位装置的作用下,土工 膜11具备较强的抗拉效果和较牢靠的“抓地”效果,从两个方面减少水下土工膜11的意 外破损。此外,棘轮主轴36与下安装座32之间还可以设置扭矩传感器,与应力应变传感 器处理类似,将扭矩传感器的信号线同样通过相应的数据总线接至控制箱内以及信号上传 网络送至中心服务器8,成为对水下土工膜应力监测的补充,从而建立起应力监测新的途 径。
这里,当绳索受另一个方向的相反的应力拉动时,绳索反方向运动,单向运动的棘轮 31将不参与运动,从而保障了锥形钻只向水库底或渠底的底部钻洞,避免整个绳索限位装 置从水库底或渠底的泥里被旋出来;
通过绳索限位装置可以保障绳索的不打绞的状态,同时凹槽结构还能清除附着在绳索 上的泥或其他附着物,使土工膜连同绳索可以满足水库底或渠底或者部分有起伏的水底工 况的敷设。此外,虽然各个绳索对各个盘体已经有束缚,盘体本身不会有较大的位移,但 若将绳索限位装置连接在扇形盘12或方形监测盘22或五边形监测盘24或正六边形监测盘 40的盘体的下方并扎入泥中,在不影响应力监测的情况下实现对盘体位移幅度的限制,进 一步减少或避免应力应变中盘体对土工膜本体的牵拽幅度,这样,整个系统将获得更为可 靠的运行保障。
在本说明书的描述中,参考术语“一个实施例”等的描述意指结合该实施例或示例描 述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明 书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特 征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。尽 管已经示出和描述了本发明的实施例,本领域的普通技术人员可以理解:在不脱离本发明 的原理和宗旨的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范 围由权利要求及其等同物限定。

Claims (3)

1.一种水下土工膜的监测方法,其特征在于,包括的步骤如下:
步骤一,在库底或渠底水域内设置至少三行监测节点,构成奇数行或偶数行的监测节点阵列,其中,所述偶数行的各个监测节点分别设置在所述奇数行的各个相邻的两个监测节点间距区域之间,各个所述监测节点中包括设有的应力应变监测装置,在各个行内的监测节点中的应力应变监测装置之间连接有绳索,相邻行的相邻监测节点中的应力应变监测装置之间通过绳索连接构成三角形网孔,其中,相邻奇数行中的首个监测节点中的应力应变监测装置之间也连接绳索,相邻奇数行中的末端监测节点中的应力应变监测装置之间也通过绳索进行连接;
步骤二,监测节点阵列中的各个绳索之间保持张紧并将监测节点固定安装在土工膜朝下的一面上,将土工膜连同朝下一面上的监测节点一起敷设在水下的库底或渠底表面上,各个行中的监测节点中的应力应变监测装置均与本行的控制总线连接,各个行的所述控制总线均与设置在堤岸上的控制箱电连接;
步骤三,当任意一处土工膜发生形变,位于土工膜背面的相应位置的监测节点中的应力应变监测装置首先感受到应力作用而发出信号,同时,与该应力应变监测装置相连接的绳索受到牵扯,使周边监测节点中的应力应变监测装置也感受到土工膜的形变而发出信号,各个所述信号都会通过各自所在行的控制总线传输至控制箱中,控制箱中的控制器将各个信号上传至云端服务器,控制中心的中心服务器的内部程序对发出信号进行时间排序以及将信号与土工膜所受应力峰值的阈值下限比较,舍弃小于阈值下限的应力峰值信号,记录大于阈值下限的应力峰值信号,阈值下限可设为80~140N/125px,其中N单位为牛顿,PX为像素;
将信号峰值最大或最先发出信号的应力应变监测装置所在监测节点的坐标作为土工膜形变或破损位置的坐标位置;获悉该坐标信号的技术人员对相应的监测节点及其周围区域进行排查,即可获得相对精准的土工膜形变或破损位置,为进一步应急处理提供技术支持。
2.根据权利要求1所述的一种水下土工膜的监测方法,其特征在于,位于奇数行中的首个所述监测节点的应力应变监测装置包括盘体,所述盘体包括扇形盘和与所述扇形盘配套的扇形盖,在所述扇形盖的两条直边的外侧设置有翻沿,所述翻沿上设有安装孔,在所述扇形盘内与弧线边正对一侧的位置设有集线台,所述集线台上设有接线塞,在集线台靠近扇形盘的弧线边的一侧的台面边缘上设有三个螺栓孔,三个连接片的一端分别通过螺栓与三个螺栓孔配合而紧固在集线台上,三个连接片的另一端分别各自连接有应力应变传感器,在每个应力应变传感器的远离所述连接片的另一端也设有螺栓孔,压板通过螺栓与螺栓孔的配合将绳索的一端压接在各自所述应力应变传感器远离所述连接片的另一端上,所述扇形盘的侧壁上设有防水塞,所述绳索通过防水塞穿出扇形盘与相邻的其他监测节点的应力应变监测装置连接,所述应力应变传感器的信号线分别通过所述接线塞与本行内的控制总线电连接。
3.根据权利要求2所述的一种水下土工膜的监测方法的系统,其特征在于,包括在库底或渠底内的水域中设置至少三行监测节点,构成奇数行或偶数行的监测节点阵列,其中,所述偶数行的各个监测节点分别设置在所述奇数行的各个相邻的两个监测节点间距区域之间,各个所述监测节点中包括设有的应力应变监测装置,在各个行内的监测节点的应力应变监测装置之间连接有绳索,相邻行的相邻监测节点中的应力应变监测装置之间通过绳索连接构成三角形网孔,其中,相邻奇数行中的首个监测节点的应力应变监测装置之间也连接绳索,相邻奇数行中的末端监测节点的应力应变监测装置之间也通过绳索进行连接;所述应力应变监测装置中包括应力应变传感器;
监测节点阵列中的各个绳索之间保持张紧并将监测节点固定安装在土工膜朝下的一面上,土工膜连同朝下一面上的监测节点一起敷设在水下的库底或渠底表面上,各个行中的监测节点的应力应变监测装置均与本行的控制总线连接,各个行的所述控制总线均与设置在堤岸上的控制箱电连接;所述控制箱与云端服务器通讯,所述云端服务器通过网关与控制中心的中心服务器通信,所述云端服务器还与移动终端通信。
CN201810631717.4A 2018-06-19 2018-06-19 一种水下土工膜的监测方法及系统 Active CN108844515B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810631717.4A CN108844515B (zh) 2018-06-19 2018-06-19 一种水下土工膜的监测方法及系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810631717.4A CN108844515B (zh) 2018-06-19 2018-06-19 一种水下土工膜的监测方法及系统

Publications (2)

Publication Number Publication Date
CN108844515A true CN108844515A (zh) 2018-11-20
CN108844515B CN108844515B (zh) 2023-06-16

Family

ID=64202938

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810631717.4A Active CN108844515B (zh) 2018-06-19 2018-06-19 一种水下土工膜的监测方法及系统

Country Status (1)

Country Link
CN (1) CN108844515B (zh)

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4725785A (en) * 1985-12-17 1988-02-16 Southwest Research Institute Directional potential analyzer method and apparatus for detecting and locating leaks in geomembrane liners
US5221570A (en) * 1991-09-03 1993-06-22 Cem Gokcen Multilayered coextruded geomembrane
US5567932A (en) * 1995-08-01 1996-10-22 Sandia Corporation Geomembrane barriers using integral fiber optics to monitor barrier integrity
DE10151021A1 (de) * 2001-10-16 2003-04-30 Infineon Technologies Ag Sensor-Anordnung
US20060254366A1 (en) * 2003-09-09 2006-11-16 Caroline Williamson Sensor and sensor array for monitoring a structure
US20070279632A1 (en) * 2004-03-24 2007-12-06 Philippe Delmas Method for Locating and Measuring Deformations in a Work of Civil Engineering
CN101539396A (zh) * 2009-04-09 2009-09-23 北京佳讯飞鸿电气股份有限公司 一种监测隧道应力形变的应用系统
CN101561430A (zh) * 2009-05-25 2009-10-21 重庆交通大学 压电阵列融合机敏网结构裂缝监测系统及监测和安装方法
CN101793502A (zh) * 2010-02-20 2010-08-04 昆明理工大学 借助于光纤应变测定内置土工膜破损位置的方法
US20110051123A1 (en) * 2009-09-03 2011-03-03 Honda Motor Co., Ltd. Optical fiber sensor, pressure sensor, end effector and sensor signal processor
CN103575664A (zh) * 2013-10-08 2014-02-12 南京航空航天大学 基于新型集成式复合传感器的结构多尺度健康监测装置与方法
US20170122726A1 (en) * 2015-04-15 2017-05-04 General Electric Company Data Acquisition Devices, Systems and Method for Analyzing Strain Sensors and Monitoring Component Strain
CN106895816A (zh) * 2015-12-17 2017-06-27 通用电气公司 具有基于阵列的应变传感器的构件及用于监测其的方法
CN106931896A (zh) * 2017-03-31 2017-07-07 四川大学 土工膜防渗土石坝变形监测的光纤传感技术与系统
CN206583402U (zh) * 2017-03-06 2017-10-24 东莞前沿技术研究院 一种形变检测装置
CN107389531A (zh) * 2017-08-18 2017-11-24 上海甚致环保科技有限公司 用于土工膜的渗漏监测系统
CN107702689A (zh) * 2017-10-11 2018-02-16 北京国华恒源科技开发有限公司 一种地表沉降监测的监测系统及监测方法

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4725785A (en) * 1985-12-17 1988-02-16 Southwest Research Institute Directional potential analyzer method and apparatus for detecting and locating leaks in geomembrane liners
US5221570A (en) * 1991-09-03 1993-06-22 Cem Gokcen Multilayered coextruded geomembrane
US5567932A (en) * 1995-08-01 1996-10-22 Sandia Corporation Geomembrane barriers using integral fiber optics to monitor barrier integrity
DE10151021A1 (de) * 2001-10-16 2003-04-30 Infineon Technologies Ag Sensor-Anordnung
US20060254366A1 (en) * 2003-09-09 2006-11-16 Caroline Williamson Sensor and sensor array for monitoring a structure
US20070279632A1 (en) * 2004-03-24 2007-12-06 Philippe Delmas Method for Locating and Measuring Deformations in a Work of Civil Engineering
CN101539396A (zh) * 2009-04-09 2009-09-23 北京佳讯飞鸿电气股份有限公司 一种监测隧道应力形变的应用系统
CN101561430A (zh) * 2009-05-25 2009-10-21 重庆交通大学 压电阵列融合机敏网结构裂缝监测系统及监测和安装方法
US20110051123A1 (en) * 2009-09-03 2011-03-03 Honda Motor Co., Ltd. Optical fiber sensor, pressure sensor, end effector and sensor signal processor
CN101793502A (zh) * 2010-02-20 2010-08-04 昆明理工大学 借助于光纤应变测定内置土工膜破损位置的方法
CN103575664A (zh) * 2013-10-08 2014-02-12 南京航空航天大学 基于新型集成式复合传感器的结构多尺度健康监测装置与方法
US20170122726A1 (en) * 2015-04-15 2017-05-04 General Electric Company Data Acquisition Devices, Systems and Method for Analyzing Strain Sensors and Monitoring Component Strain
CN106895816A (zh) * 2015-12-17 2017-06-27 通用电气公司 具有基于阵列的应变传感器的构件及用于监测其的方法
CN206583402U (zh) * 2017-03-06 2017-10-24 东莞前沿技术研究院 一种形变检测装置
CN106931896A (zh) * 2017-03-31 2017-07-07 四川大学 土工膜防渗土石坝变形监测的光纤传感技术与系统
CN107389531A (zh) * 2017-08-18 2017-11-24 上海甚致环保科技有限公司 用于土工膜的渗漏监测系统
CN107702689A (zh) * 2017-10-11 2018-02-16 北京国华恒源科技开发有限公司 一种地表沉降监测的监测系统及监测方法

Also Published As

Publication number Publication date
CN108844515B (zh) 2023-06-16

Similar Documents

Publication Publication Date Title
CN109461287B (zh) 一种地质灾害监测与预警装置
CN208533464U (zh) 一种采用扇形监测盘的水下土工膜监测系统
CN112459807A (zh) 一种隧道软岩大变形支护加固装置及方法
CN113818476A (zh) 海上风力发电的基础构件及其施工方法
CN110594490A (zh) 一种塌陷区管道保护装置
CN108759769A (zh) 一种采用五边形监测盘的水下土工膜监测方法
CN108844515A (zh) 一种水下土工膜的监测方法及系统
CN208238772U (zh) 一种水下土工膜的监测系统
CN108547261A (zh) 一种采用扇形监测盘的水下土工膜监测系统及方法
CN108548512A (zh) 一种采用固定锚的正六边形监测盘的水下土工膜监测方法
CN108505499A (zh) 一种海上风电高桩承台基础靠泊系统及施工方法
CN108801349A (zh) 一种采用方形监测盘的水下土工膜监测方法
CN208847164U (zh) 一种应用节点阵列监测水下土工膜的系统
CN108571945A (zh) 一种应用节点阵列监测水下土工膜的方法
CN104499508B (zh) 一种填埋场特殊边坡土工膜固定结构及其固定方法
CN116558474A (zh) 一种重力式码头基床沉降监测系统及其安装方法
CN104452798A (zh) 海上风机基础结构、设备及其施工方法
CN212452555U (zh) 一种无浮力式双壁管自升式平台桩腿
CN107135999A (zh) 一种水泥板组装而成的重力式锚泊基础及其施工方法
CN207083863U (zh) 一种水泥板组装而成的重力式锚泊基础
CN212721390U (zh) 分布式堤防安全监测系统
CN208183816U (zh) 一种模拟不同抗弯强度的预设断面支护桩试验装置
CN220057632U (zh) 一种拱桥斜拉扣挂扣索锚固装置
CN216766021U (zh) 一种适用于振冲碎石桩的监测辅助装置
CN214460149U (zh) 一种堤坝溃口快速封堵装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant