CN108843310B - 运用分形理论确定基质-高渗条带水驱剩余油动用规律的方法 - Google Patents
运用分形理论确定基质-高渗条带水驱剩余油动用规律的方法 Download PDFInfo
- Publication number
- CN108843310B CN108843310B CN201810559937.0A CN201810559937A CN108843310B CN 108843310 B CN108843310 B CN 108843310B CN 201810559937 A CN201810559937 A CN 201810559937A CN 108843310 B CN108843310 B CN 108843310B
- Authority
- CN
- China
- Prior art keywords
- residual oil
- image
- box
- grid
- counting dimension
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 title claims abstract description 59
- 238000000034 method Methods 0.000 title claims abstract description 38
- 230000035699 permeability Effects 0.000 title abstract description 5
- 238000006073 displacement reaction Methods 0.000 claims abstract description 35
- 238000009826 distribution Methods 0.000 claims abstract description 32
- 238000013508 migration Methods 0.000 claims abstract description 24
- 230000005012 migration Effects 0.000 claims abstract description 24
- 230000008859 change Effects 0.000 claims abstract description 21
- 239000011148 porous material Substances 0.000 claims abstract description 20
- 238000004519 manufacturing process Methods 0.000 claims abstract description 16
- 238000002474 experimental method Methods 0.000 claims abstract description 7
- 238000012545 processing Methods 0.000 claims abstract description 5
- 238000002347 injection Methods 0.000 claims description 44
- 239000007924 injection Substances 0.000 claims description 44
- 238000000605 extraction Methods 0.000 claims description 10
- 230000000007 visual effect Effects 0.000 claims description 10
- 238000004364 calculation method Methods 0.000 claims description 7
- 238000007781 pre-processing Methods 0.000 claims description 6
- 238000003709 image segmentation Methods 0.000 claims description 5
- 239000007788 liquid Substances 0.000 claims description 4
- 229920006395 saturated elastomer Polymers 0.000 claims description 3
- 238000011160 research Methods 0.000 abstract description 8
- 230000008569 process Effects 0.000 abstract description 7
- 230000007547 defect Effects 0.000 abstract description 2
- 238000000638 solvent extraction Methods 0.000 abstract 1
- 239000011521 glass Substances 0.000 description 11
- 238000001259 photo etching Methods 0.000 description 6
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 4
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 4
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 4
- 238000011161 development Methods 0.000 description 4
- 230000018109 developmental process Effects 0.000 description 4
- 238000002360 preparation method Methods 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 3
- 238000011084 recovery Methods 0.000 description 3
- 238000009738 saturating Methods 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 239000006059 cover glass Substances 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 239000012153 distilled water Substances 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 239000008398 formation water Substances 0.000 description 2
- 239000003292 glue Substances 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 239000003208 petroleum Substances 0.000 description 2
- 229920002120 photoresistant polymer Polymers 0.000 description 2
- 206010011416 Croup infectious Diseases 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 201000010549 croup Diseases 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B49/00—Testing the nature of borehole walls; Formation testing; Methods or apparatus for obtaining samples of soil or well fluids, specially adapted to earth drilling or wells
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/10—Segmentation; Edge detection
- G06T7/136—Segmentation; Edge detection involving thresholding
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/10—Segmentation; Edge detection
- G06T7/194—Segmentation; Edge detection involving foreground-background segmentation
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Geology (AREA)
- Mining & Mineral Resources (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Environmental & Geological Engineering (AREA)
- Fluid Mechanics (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
- Measuring And Recording Apparatus For Diagnosis (AREA)
Abstract
一种运用分形理论确定基质‑高渗条带水驱剩余油动用规律的方法。主要目的在于克服剩余油运移规律研究方法过于单一的缺点,本发明提出采用分形理论确定基质‑高渗条带水驱剩余油动用规律的方法。具体解决方案为:制作微观物理模型,通过微观驱油装置进行基质‑高渗条带水驱驱油实验,收集渗流过程的连续图像,根据实际情况将驱替范围分区,通过图像处理,去除实际孔隙骨架,提取完整剩余油分布形态,按分区网格计算网格内剩余油计盒维数,总结相同网格及相邻网格计盒维数变化曲线,对比相邻网格计盒维数变化规律,确定基质‑高渗条带水驱剩余油动用规律。
Description
技术领域
本发明隶属于油气田开发领域,尤其涉及到一种分形理论研究剩余油分布规律的装置与方法。
背景技术
随着油田开发的不断深入,国内大多数油田皆已进入高含水、高采出程度的“双高”阶段,针对二次采油未能采出的未波及区的剩余油和波及区的残余油,认识剩余油为油田二次采油及三次采油提供重要依据尤为重要。剩余油又分为宏观剩余油和微观剩余油两大类。目前微观方面关于剩余油的研究更侧重微观驱替机理及剩余油分布形态。更多的是采用微观可视模型,虽然直观,但是驱替过程中多区域同时流动,运移规律显得抽象,缺少对确定基质-高渗条带化学驱剩余油分布及运移规律的方法。此外,剩余油研究方法较为单一,缺少用直观的规律曲线来分析剩余油分布及运移规律的方法。分形几何理论研究的是具有统计自相似性的对象,自诞生以来,在理论研究和实际应用方面都得到了快速发展,已有研究将分形理论用在孔隙结构、裂缝评价、储层非均质性描述,但关于剩余油方面目前只有计盒维数的计算公式,尚无具体运用分形理论研究剩余油分布及运移规律的方法。
发明内容
为了解决背景技术中所提到的技术问题,本发明提供一种运用分形理论确定基质-高渗条带水驱剩余油动用规律的方法,该种方法将分形理论运用到剩余油分布研究领域,采用分形计盒维数定量化确定基质-高渗条带水驱剩余油动用规律,从而克服现有技术中的缺陷。
本发明的技术方案是:该种运用分形理论确定基质-高渗条带水驱剩余油动用规律的方法,其特征在于包括如下步骤:
发明步骤一:布有基质-高渗条带的微观可视模型的制备
微观模型制备的基本原理是利用曝光技术将设计好的储层孔隙结构转移到涂有感光胶的玻璃片上并显影,然后利用氢氟酸腐蚀将显影部分刻蚀出具有一定深度的孔隙结构,而其他部分因分别被光刻胶和蜡保护而不被腐蚀,最后盖上盖玻片,这样便得到可视化驱替用的光刻玻璃岩心微观模型。设制长4.5mm宽4.5mm的微观可视模型,并在对角线处布置基质高渗条带,其最大宽度不超过对角线长度的5分之1。基质高渗条带两侧的喉道半径为1-2μm,高渗条带处喉道半径为3-4μm。
发明步骤二:将步骤一中获得的微观物理模型置入微观驱油装置中进行微观驱油实验,采集驱替全程图像
根据上述所制模型,实验步骤如下:
(1)用乙醇、石油醚、蒸馏水清洗光刻玻璃模型;
(2)将模型抽真空,饱和所模拟地层水;
(3)45℃条件下模型饱和油,并在此温度下静置24h;
(4)以0.01ml/min的驱替速度向模型中注入水直至含水率达到98%;
(5)采集驱替全程图像。实验装置如图1。
微量泵通过管线和注水活塞容器的下部阀门连接,活塞容器的上部阀门通过管线和光刻玻璃岩心模型入口的控制阀门连接,光刻玻璃岩心模型出口的控制阀门通过管线和量筒连接。所述微量泵给整个驱替装置提供动力。所述注水活塞容器为注入水的容器。所述光刻玻璃为与实际储层接近的模型。所述量筒承接采出液。所述六通提供多个通路开关控制。所述恒温箱使整个实验流程保持在地层温度下。
发明步骤三:将步骤二中采集到的驱替全程图像进行剩余油图像提取.
(1)将步骤二中采集到的驱替全程图像的RGB格式图像通过photoshop软件转化为灰度图像并对图像进行预处理,所述预处理的步骤包括进行亮度、对比度和锐化的处理以使得剩余油和孔隙能够得到清晰显示;
(2)采用迭代阀值法通过photoshop软件,对于预处理后的图像分割图像中的剩余油,提出剩余油分布完整图像;
进行图像分割时,最重要的部分就是如何选取阈值,如果阈值选择不合理,很容易将目标对象理解成为背景图像,或者将背景图像理解为目标对象。以步骤2中所获得的驱替图像中的一张图像,渗流图像为例,来说明具体路径。
具体路径如下:
①求出渗流图像中的最大灰度值Zmax和最小灰度值Zmin,并设置初始值,T0=(Zmin+Zmax)/2;
②根据阈值Tk(k=0,1,2,3…)将渗流图像分割成目标图像和背景图像两部分,再按照公式(1)和公式(2)求出这两部分的平均灰度值ZO和ZB;
式中,Z(i,j)为图像中像素点(i,j)的灰度值;N(I,j)为像素点(i,j)的加权系数,一般为1。
③求出新的阈值,Tk+1=(ZO+ZB)/2;
④如果Tk= Tk+1,则迭代结束,否则k=k+1,重复②—④。
上述的KTZ是通过photoshop软件按照公式算的,在photoshop软件里设置完阈值就提取出来了
发明步骤四:通过MATLAB软件对第三步获取的剩余油图像网格化处理并计算剩余油的计盒维数,具体路径如下:
(1)设置像素点,图像大小为A×B个像素点;
(2)划分网格:用大小为n×n网格去覆盖剩余油全部图像。n是整数,则分割比率为r=n/A,原图被分成了A/n个网格块,其中n序列为区域图像A和B的最大公约数的全部因数;
(3)被占用的判定规则:任何一个网格块只要包含剩余油就被认为是被占用的网格块,统计总共被占的网格块数并记为Nr,此时就获得了一组(r,Nr);
(4)计算剩余油占有网格数:改变网格大小,重新获取r,Nr,具体步骤重复(2)、(3)过程,就能得到一系列(r,Nr);
(5)计盒维数的计算:对(ln1/r,lnNr)进行线性拟合,运用最小二乘法,其中直线的斜率值D就是该图像的计盒维数。
发明步骤五:通过Photoshop软件对步骤四中已进行完网格化处理的剩余油图像九等分;
其中,通过Photoshop软件添加图像长和宽的三等分点所在直线将图像分成九个区域;靠近注入介质端所在区域为注入端,靠近采出液体端所在区域为采出端,图像中心所在区域为注采中部,这三个区域为主流线区;所述主流线区的两侧区域为两翼区,其中,靠近注入端的区域为近井端,靠近采出端的区域为远井端,靠近注采中部的区域为盲端;在所述盲端与注采中部的边界上任意选取两处作为特征区,用于观察主流线区域是否波及到盲端;
发明步骤六:对步骤五中得到的主流线区域、两翼区域、主流线与两翼之间的区域以及特征区,计算这些区域的计盒维数并绘制计盒维数随PV数变化曲线;
计算该区域的计盒维数具体路径如下:
(1)设置像素点,图像大小为A×B个像素点;
(2)划分网格:用大小为n×n网格去覆盖剩余油全部图像。n是整数,则分割比率为r=n/A,原图被分成了A/n个网格块,其中n序列为区域图像A和B的最大公约数的全部因数;
(3)被占用的判定规则:任何一个网格块只要包含剩余油就被认为是被占用的网格块,统计总共被占的网格块数并记为Nr,此时就获得了一组(r,Nr);
(4)计算剩余油占有网格数:改变网格大小,重新获取r,Nr,具体步骤重复(2)、(3)过程,就能得到一系列(r,Nr);
(5)计盒维数的计算:对(ln1/r,lnNr)进行线性拟合,运用最小二乘法,其中直线的斜率值D就是该图像的计盒维数
发明步骤七:利用经过步骤六所获得的四组曲线分析水驱剩余油分布及运移规律,确定的具体路径如下:
(1)利用对应主流线区域的计盒维数随 PV 数变化曲线图按照如下规律确定水驱条件下主流线剩余油分布及运移规律,即:当计盒维数处于0.5-0.7时,剩余油零散分布在孔喉中呈孤立状。当计盒维数处于0.7-0.9时,部分孔喉空间充满剩余油,呈斑块状形态分布。随着水驱的进行,剩余油沿着主流线区阻力最小的方向运移。
(2)利用对应两翼区域的计盒维数随 PV 数变化曲线图按照如下规律确定水驱条件下两翼剩余油分布及运移规律,即:当计盒维数处于0.9-1.1时,剩余油呈条带状形态分布在少数连通的孔喉中,此时剩余油多数被驱替。当计盒维数处于1.1-1.3时,剩余油在孔喉网络中大部分空间充满,此时绝大多数剩余油都未被驱替。
(3)利用对应主流线与两翼之间的区域的计盒维数随PV数变化曲线图,定量分析主流线与两翼间剩余油分布及运移规律;
(4)利用对应特征区的计盒维数随 PV 数变化曲线图,按照如下规律确定水驱
条件下特征区剩余油分布及运移规律,即:当计盒维数减小时,说明水驱波及到侧翼。
本发明具有如下有益效果:为了克服剩余油运移规律研究方法过于单一的缺点,本发明提出采用分形理论研究剩余油分布规律。在本发明中,制作微观物理模型,通过微观驱油装置进行驱油实验,收集渗流过程的连续图像,根据实际情况将驱替范围分区,通过图像处理,去除实际孔隙骨架,提取完整剩余油分布形态,按分区网格计算网格内剩余油计盒维数,总结相同网格及相邻网格计盒维数变化曲线,对比相邻网格计盒维数变化规律,获取剩余油的分布及运移规律。本发明通过计算剩余油分布的分形维数,能够准确描述不同区域剩余油分布的复杂程度,分形维数越大,剩余油分布越复杂,驱替效果越不好,通过分形维数曲线的变化趋势,来分析驱替过程中剩余油的分布及运移规律,对油田开发中的开发方案具有重要意义。
附图说明:
图1是本发明具体实施时所采用的驱替实验装置图。
图2是本发明具体实施时采集到的原始图像。
图3是本发明具体实施时锐化处理后的图像。
图4是本发明具体实施时,去骨架后完整剩余油图像的提取图。
图5是本发明具体实施时剩余油图像九等分的区域划分示意图。
图6是本发明具体实施时主流线区维数随注入PV数变化曲线图。
图7是本发明具体实施时侧翼区域维数随注入PV数变化曲线图。
图8是本发明具体实施时主流线及侧翼相邻区域维数随注入PV数变化曲线图。
图9是本发明具体实施时特征区维数随注入PV数变化曲线图。
图中1-注入端;2-注采中部;3-采出端;4、7分别为近井两翼;5、8分别为盲端;6、9分别为远井两翼;10、11分别为特征区;12-微量泵;13-注水活塞容器;14-摄像头;15-光刻玻璃岩心模型;16-计算机;17-量筒;18-六通;19-恒温箱;20-饱和油活塞容器。
具体实施方式:
下面结合附图对本发明作进一步说明:
发明步骤一:布有基质-高渗条带的微观可视模型的制备
微观模型制备的基本原理是利用曝光技术将设计好的储层孔隙结构转移到涂有感光胶的玻璃片上并显影,然后利用氢氟酸腐蚀将显影部分刻蚀出具有一定深度的孔隙结构,而其他部分因分别被光刻胶和蜡保护而不被腐蚀,最后盖上盖玻片,这样便得到可视化驱替用的光刻玻璃岩心微观模型。设制长4.5mm宽4.5mm的微观可视模型,并在对角线处布置基质高渗条带,其最大宽度不超过对角线长度的5分之1。基质高渗条带两侧的喉道半径为1-2μm,高渗条带处喉道半径为3-4μm。
步骤二:将步骤一中获得的微观物理模型置入微观驱油装置中进行微观驱油实验,采集驱替全程图像.
实验步骤如下:
(1)用石油醚、乙醇、蒸馏水清洗微观仿真玻璃刻蚀模型;
(2)将清洗干净后的玻璃刻蚀模型抽真空后,饱和模拟地层水;
(3)20℃条件下在模型中饱和油,并在此温度条件下静置老化24h;
(4)以0.01ml/min的驱替速度向模型中注入水直至含水率达到98%;
(5)分析微观驱替图像。
发明步骤三:将步骤二中采集到的驱替全程图像进行剩余油图像提取.
(1)将步骤二中采集到的驱替全程图像的RGB格式图像通过photoshop软件转化为灰度图像并对图像进行预处理,所述预处理的步骤包括进行亮度、对比度和锐化的处理以使得剩余油和孔隙能够得到清晰显示;
(2)采用迭代阀值法通过photoshop软件,对于预处理后的图像分割图像中的剩余油,提出剩余油分布完整图像;
进行图像分割时,最重要的部分就是如何选取阈值,如果阈值选择不合理,很容易将目标对象理解成为背景图像,或者将背景图像理解为目标对象。以步骤2中所获得的驱替图像中的一张图像,渗流图像为例,来说明具体路径。具体路径如下:
①求出渗流图像中的最大灰度值Zmax和最小灰度值Zmin,并设置初始值,T0=(Zmin+Zmax)/2;
②根据阈值Tk(k=0,1,2,3…)将渗流图像分割成目标图像和背景图像两部分,再按照公式(1)和公式(2)求出这两部分的平均灰度值ZO和ZB;
式中,Z(i,j)为图像中像素点(i,j)的灰度值;N(l,j)为像素点(i,j)的加权系数,一般为1。
③求出新的阈值,Tk+1=(ZO+ZB)/2;
④如果Tk= Tk+1,则迭代结束,否则k=k+1,重复②—④。
经上述计算图像阀值T为28,通过photoshop软件选取上述阀值,即可得到分割的剩余油图像。如图4所示。
步骤四:通过MATLAB软件对第三步获取的剩余油图像网格化处理并计算剩余油的计盒维数,具体路径如下:
具体步骤如下:
(1)设置像素点,图像大小为80×60个像素点;
(2)划分网格:用大小为n×n网格去覆盖剩余油全部图像。n是整数,则分割比率为r=n/A原图被分成了A/n个网格块,其中n序列为区域图像240和180的最大公约数的全部因数即(80,40,20,16,8,4);
(3)被占用的判定规则:任何一个网格块只要包含剩余油就被认为是被占用的网格块,统计总共被占的网格块数并记为Nr,此时就获得了一组(r,Nr);
(4)计算剩余油占有网格数:改变网格大小,重新获取r,Nr,具体步骤重复(2)、(3)过程,就能得到一系列(r,Nr);
(5)计盒维数的计算:对(ln1/r,lnNr)进行线性拟合,运用最小二乘法,其中直线的斜率值D就是该图像的计盒维数。
发明步骤五:通过Photoshop软件对步骤四中已进行完网格化处理的剩余油图像九等分;
其中,通过Photoshop软件添加图像长和宽的三等分点所在直线将图像分成九个区域;靠近注入介质端所在区域为注入端,靠近采出液体端所在区域为采出端,图像中心所在区域为注采中部,这三个区域为主流线区;所述主流线区的两侧区域为两翼区,其中,靠近注入端的区域为近井端,靠近采出端的区域为远井端,靠近注采中部的区域为盲端;在所述盲端与注采中部的边界上任意选取两处作为特征区,用于观察主流线区域是否波及到盲端;上述区域如图5所示。
发明步骤六:对步骤五中得到的主流线区域、两翼区域、主流线与两翼之间的区域以及特征区,计算这些区域的计盒维数并绘制计盒维数随PV数变化曲线;
计算该区域的计盒维数具体路径如下:
(1)设置像素点,图像大小为A×B个像素点;
(2)划分网格:用大小为n×n网格去覆盖剩余油全部图像。n是整数,则分割比率为r=n/A,原图被分成了A/n个网格块,其中n序列为区域图像A和B的最大公约数的全部因数;
(3)被占用的判定规则:任何一个网格块只要包含剩余油就被认为是被占用的网格块,统计总共被占的网格块数并记为Nr,此时就获得了一组(r,Nr);
(4)计算剩余油占有网格数:改变网格大小,重新获取r,Nr,具体步骤重复(2)、(3)过程,就能得到一系列(r,Nr);
(5)计盒维数的计算:对(ln1/r,lnNr)进行线性拟合,运用最小二乘法,其中直线的斜率值D就是该图像的计盒维数
发明步骤七:利用经过步骤六所获得的四组曲线分析水驱剩余油分布及运移规律,确定的具体路径如下:
(1)利用对应主流线区域的计盒维数随 PV 数变化曲线图按照如下规律确定水驱条件下主流线剩余油分布及运移规律,即:当计盒维数处于0.5-0.7时,剩余油呈孤粒状分布,孔喉中剩余油分布零散,常分布在独立的孔喉中。当计盒维数处于0.7-0.9时,部分孔喉空间充满剩余油,呈斑块状形态分布。随着水驱的进行,剩余油沿着主流线区阻力最小的方向运移。 如图6所示为主流线上区域计盒维数的变化曲线,在水驱结束时,注入端与注采中部剩余油的分形维数介于0.5-0.7之间,说明剩余油呈孤粒状,水驱动用程度完全。而采出端的计盒维数介于0.7-0.9,说明剩余油呈斑块状,水驱动用程度较为完全。随着水驱的进行,注入端区域计盒维数在注入量0至0.2PV区间快速下降,说明注入端受注入水驱替导至剩余油不断减少,在0.2PV之后,计盒维数趋于平缓,说明注入端已无水驱可动剩余油。而注采中部在注入端计盒维数下降中维数上下波动,说明注采中部的剩余油受到注入水的波及以及近井1区剩余油的注入,注入PV数从0.1PV至0.25PV区间时,计盒维数大幅下降,说明注入水已进入注采中部驱替剩余油,维数在0.25PV后,维数趋于平缓,因注采中部已无可动剩余油,水驱动用程度趋于完全。采出端的计盒维数在0.15PV前上下波动,说明采出端剩余油受到注入水的波及以及其他区域剩余油注入,在注入量0.15PV至0.3PV区间计盒维数大幅下降,说明注入水的进入驱替了采出端剩余油,在0.3PV后计盒维数趋于平缓,从而说明水驱优势通道的形成,水驱动用完全。
(2)利用对应两翼区域的计盒维数随 PV 数变化曲线图按照如下规律确定水驱条件下两翼剩余油分布及运移规律,即:当计盒维数处于0.9-1.1时,剩余油呈条带状形态分布在少数连通的孔喉中,此时剩余油多数被驱替。当计盒维数处于1.1-1.3时,剩余油在孔喉网络中大部分空间充满,此时绝大多数剩余油都未被驱替。
如图7所示为侧翼端区域计盒维数的变化曲线,水驱结束后,近井端计盒维数为1.1,剩余油维数处于条状和网络状的临界,说明剩余油呈条带状分布在孔吼,形态接近网络状,而盲端和远井端维数介于1.1-1.3之间,剩余油呈网络状分布于孔喉中,绝大多数剩余油未被驱替。随着水驱的进行,近井端计盒维数在注入量0至0.15PV区间上下波动,说明近井端的剩余油受到注入水的波及以及注入端1区剩余油的注入。后在注入量为0.15PV时,计盒维数趋于平缓,说明近井端已无水驱可动剩余油。盲端在水驱全程受注入水波及程度小,维数下降幅度小,仅有少量剩余油被动用,后在注入量为0.1PV时盲端已无水驱可动剩余油。远井端同盲端相同,如图所示。仅在注入量0至0.1PV维数略微下降,说明注入水仅略微波及远井端后迅速沿高渗条带驱替,在注入量为0.1PV后,已无水驱可动剩余油。
(3)利用对应主流线与两翼之间的区域的计盒维数随 PV 数变化曲线图按照如下规律确定水驱条件下主流线与两翼间剩余油分布及运移规律, 如图7所示,注采中部较两翼计盒维数变化幅度大,维数变化剧烈。说明由于主流线方向渗透率较两翼方向高,注入水进入模型后仅沿高渗条带进行驱替,注采中部剩余油动用程度较两翼高。
(4)利用对应特征区的计盒维数随 PV 数变化曲线图,按照如下规律确定水驱
条件下特征区剩余油分布及运移规律,即:当计盒维数减小时,说明水驱波及到侧翼。
如图9所示特征区10的计盒维数在注入量0至0.1PV区间下降,说明特征点区域的剩余油受注入水波及,导致剩余油发生运移,后在注入量0.1PV至0.15PV区间,计盒维数上升,说明主流线区域剩余油运移至特征区10,而在注入量0.15PV后,计盒维数降至0,说明特征10区剩余油受到注入水驱替,主流线的注入水已扩散至特征区10,特征区11同理。
Claims (1)
1.一种运用分形理论确定基质-高渗条带水驱剩余油动用规律的方法,其特征在于包括如下步骤:
步骤一,布有基质-高渗条带的微观可视模型的制备;
步骤二,将步骤一中获得的微观物理模型置入微观驱油装置中进行微观驱油实验,采集驱替全程图像;
步骤三,将步骤二中采集到的驱替全程图像进行剩余油图像提取;具体路径如下:
(1)将步骤二中采集到的驱替全程图像的RGB格式图像通过Photoshop软件转化为灰度图像并对图像进行预处理,所述预处理的步骤包括进行亮度、对比度和锐化的处理以使得剩余油和孔隙能够得到清晰显示;
(2)采用迭代阀值法通过Photoshop软件,对于预处理后的图像分割图像中的剩余油,提出剩余油分布完整图像;
步骤四,通过MATLAB软件对第三步获取的剩余油图像网格化处理并计算初始饱和剩余油图像的计盒维数,具体路径如下:
(1)设置像素点,图像大小为A×B个像素点;
2)划分网格:用大小为n×n网格去覆盖剩余油全部图像;n是整数,则分割比率为r=n/A,原图被分成了A/n个网格块,其中n序列为区域图像A和B的最大公约数的全部因数;
(3)被占用的判定规则:任何一个网格块只要包含剩余油就被认为是被占用的网格块,统计总共被占的网格块数并记为Nr,此时就获得了一组(r,Nr);
(4)计算剩余油占有网格数:改变网格大小,重新获取r,Nr,具体步骤重复(2)、(3)过程,就能得到一系列(r,Nr);
(5)计盒维数的计算:对(ln1/r,lnNr)进行线性拟合,运用最小二乘法,其中直线的斜率值D就是该图像中剩余油的计盒维数;
步骤五:通过Photoshop软件对步骤四中已进行完网格化处理的剩余油图像九等分;其中,通过Photoshop软件添加图像长和宽的三等分点所在直线将图像分成九个区域;靠近注入介质端所在区域为注入端,靠近采出液体端所在区域为采出端,图像中心所在区域为注采中部,这三个区域为主流线区;所述主流线区的两侧区域为两翼区,其中,靠近注入端的区域为近井端,靠近采出端的区域为远井端,靠近注采中部的区域为盲端;在所述盲端与注采中部的边界上任意选取两处作为特征区,用于观察主流线区域是否波及到盲端;
步骤六,对步骤五中得到的主流线区域、两翼区域、主流线与两翼之间的区域以及特征区,计算这些区域的计盒维数并绘制计盒维数随PV数变化曲线;计算这些区域的计盒维数具体路径如下:
(1)设置像素点,图像大小为A×B个像素点;
(2)划分网格:用大小为n×n网格去覆盖剩余油全部图像;n是整数,则分割比率为r=n/A,原图被分成了A/n个网格块,其中n序列为区域图像A和B的最大公约数的全部因数;
(3)被占用的判定规则:任何一个网格块只要包含剩余油就被认为是被占用的网格块,统计总共被占的网格块数并记为Nr,此时就获得了一组(r,Nr);
(4)计算剩余油占有网格数:改变网格大小,重新获取r,Nr,具体步骤重复(2)、(3)过程,就能得到一系列(r,Nr);
(5)计盒维数的计算:对(ln1/r,lnNr)进行线性拟合,运用最小二乘法,其中直线的斜率值D就是该图像的计盒维数;
步骤七,利用经过步骤六所获得的四组曲线分析水驱剩余油分布及运移规律,确定的具体路径如下:
(1)利用对应主流线区域的计盒维数随 PV 数变化曲线图按照如下规律确定水驱条件下主流线剩余油分布及运移规律,即:当计盒维数处于0.5-0.7时,剩余油零散分布在孔喉中呈孤立状;当计盒维数处于0.7-0.9时,部分孔喉空间充满剩余油,呈斑块状形态分布;随着水驱的进行,剩余油沿着主流线区阻力最小的方向运移;
(2)利用对应两翼区域的计盒维数随 PV 数变化曲线图按照如下规律确定水驱条件下两翼剩余油分布及运移规律,即:当计盒维数处于0.9-1.1时,剩余油呈条带状形态分布在少数连通的孔喉中,此时剩余油多数被驱替;当计盒维数处于1.1-1.3时,剩余油在孔喉网络中大部分空间充满,此时绝大多数剩余油都未被驱替;
(3)利用对应主流线与两翼之间的区域的计盒维数随PV数变化曲线图,定量分析主流线与两翼间剩余油分布及运移规律;
(4)利用对应特征区的计盒维数随 PV 数变化曲线图,按照如下规律确定水驱条件下特征区剩余油分布及运移规律,即:当计盒维数减小时,说明水驱波及到侧翼。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810559937.0A CN108843310B (zh) | 2018-06-02 | 2018-06-02 | 运用分形理论确定基质-高渗条带水驱剩余油动用规律的方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810559937.0A CN108843310B (zh) | 2018-06-02 | 2018-06-02 | 运用分形理论确定基质-高渗条带水驱剩余油动用规律的方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN108843310A CN108843310A (zh) | 2018-11-20 |
CN108843310B true CN108843310B (zh) | 2021-11-12 |
Family
ID=64210512
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810559937.0A Expired - Fee Related CN108843310B (zh) | 2018-06-02 | 2018-06-02 | 运用分形理论确定基质-高渗条带水驱剩余油动用规律的方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108843310B (zh) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110984971B (zh) * | 2019-10-14 | 2023-06-02 | 中国石油天然气股份有限公司 | 一种基于形成机理分析的微观剩余油分类方法 |
CN114113096B (zh) * | 2020-08-28 | 2023-08-22 | 中国石油天然气股份有限公司 | 驱替过程的处理方法和装置 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6775578B2 (en) * | 2000-09-01 | 2004-08-10 | Schlumberger Technology Corporation | Optimization of oil well production with deference to reservoir and financial uncertainty |
WO2004095259A1 (en) * | 2003-03-26 | 2004-11-04 | Exxonmobil Upstream Research Company | Performance prediction method for hydrocarbon recovery processes |
CN102339339B (zh) * | 2010-07-23 | 2014-01-15 | 中国石油化工股份有限公司 | 一种分析缝洞型油藏剩余油分布的方法 |
US8881587B2 (en) * | 2011-01-27 | 2014-11-11 | Schlumberger Technology Corporation | Gas sorption analysis of unconventional rock samples |
CN104076046B (zh) * | 2013-03-28 | 2016-08-31 | 中国石油化工股份有限公司 | 多孔介质中剩余油微观分布图像采集与定量表征方法 |
CN105551004A (zh) * | 2015-12-29 | 2016-05-04 | 中国石油大学(华东) | 一种基于岩心ct图像处理的剩余油微观赋存表示方法 |
CN107153074B (zh) * | 2017-03-21 | 2019-10-29 | 山东省科学院海洋仪器仪表研究所 | 一种基于高精度成像的微观剩余油定量评价方法 |
CN108062789B (zh) * | 2017-12-20 | 2021-06-01 | 中国石油天然气股份有限公司 | 岩心样品选取方法和装置 |
-
2018
- 2018-06-02 CN CN201810559937.0A patent/CN108843310B/zh not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
CN108843310A (zh) | 2018-11-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108868715B (zh) | 运用分形理论确定基质-高渗条带化学驱剩余油分布及运移规律的方法 | |
Bijankhan et al. | Dimensional analysis and stage-discharge relationship for weirs: a review | |
CN108843310B (zh) | 运用分形理论确定基质-高渗条带水驱剩余油动用规律的方法 | |
CN106703776A (zh) | 压裂参数优选方法 | |
CN108843311B (zh) | 运用分形理论确定水驱剩余油分布及运移规律的方法 | |
CN106600440A (zh) | 一种低渗透油藏调剖堵水动态指标选井的方法 | |
CN112267873A (zh) | 一种模拟地层条件的单裂缝调驱可视化实验装置及方法 | |
CN104712328A (zh) | 快速评价复杂油藏中单个流动单元动用状况的方法 | |
CN108952696B (zh) | 运用分形理论确定化学驱剩余油分布及运移规律的方法 | |
CN108678738B (zh) | 运用分形理论确定基质-高渗条带功能型聚合物驱剩余油分布及运移规律的方法 | |
CN108825222B (zh) | 运用分形理论确定功能型聚合物驱剩余油分布及运移规律的方法 | |
CN111460647B (zh) | 用于多轮次吞吐后水平井分段靶向注汽量的定量调配方法 | |
CN110286027A (zh) | 考虑红柳根系影响的河岸土体冲刷参数的量化方法 | |
CN116432449A (zh) | 一种考虑相渗时变的底水油藏高倍数水驱数值模拟表征方法 | |
CN110909466A (zh) | 提高差孔隙分选储层平均毛管压力曲线计算精度的方法 | |
CN106599444A (zh) | 一种盐渍土路基上盐分隔断处置方法 | |
CN114692432A (zh) | 一种城市暴雨积水模拟实时订证的预报系统及方法 | |
CN109989747A (zh) | 一种油田注采井组开发非均匀程度定量表征方法 | |
CN107227946A (zh) | 驱替实验的实验数据获取方法及系统 | |
CN115705452A (zh) | 整装砂岩油藏开发中后期的新型采收率预测方法 | |
CN114645699B (zh) | 一种特高含水期油藏开发均衡性快速评价方法 | |
CN116861714B (zh) | 一种确定缝洞型油藏水驱波及程度的方法 | |
CN114880825A (zh) | 一种海上油田非均匀井距下井间驱替程度表征方法 | |
CN111091476A (zh) | 针对强非均质地层的油藏数值模拟方法 | |
CN110761755A (zh) | 一种低渗透油田水驱开发效果评价方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20211112 |