CN108837795A - 一种土壤水体重金属吸附还原剂的制备方法 - Google Patents

一种土壤水体重金属吸附还原剂的制备方法 Download PDF

Info

Publication number
CN108837795A
CN108837795A CN201810380134.9A CN201810380134A CN108837795A CN 108837795 A CN108837795 A CN 108837795A CN 201810380134 A CN201810380134 A CN 201810380134A CN 108837795 A CN108837795 A CN 108837795A
Authority
CN
China
Prior art keywords
magnetic
reducing agent
metal adsorption
preparation
soil water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
CN201810380134.9A
Other languages
English (en)
Inventor
李金花
沈辉
费佳伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang Huayuan Pigment Ltd By Share Ltd
Original Assignee
Zhejiang Huayuan Pigment Ltd By Share Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang Huayuan Pigment Ltd By Share Ltd filed Critical Zhejiang Huayuan Pigment Ltd By Share Ltd
Priority to CN201810380134.9A priority Critical patent/CN108837795A/zh
Publication of CN108837795A publication Critical patent/CN108837795A/zh
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/281Treatment of water, waste water, or sewage by sorption using inorganic sorbents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/70Treatment of water, waste water, or sewage by reduction
    • C02F1/705Reduction by metals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K17/00Soil-conditioning materials or soil-stabilising materials
    • C09K17/02Soil-conditioning materials or soil-stabilising materials containing inorganic compounds only
    • C09K17/04Soil-conditioning materials or soil-stabilising materials containing inorganic compounds only applied in a physical form other than a solution or a grout, e.g. as granules or gases
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Hydrology & Water Resources (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Soil Sciences (AREA)
  • Materials Engineering (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Processing Of Solid Wastes (AREA)
  • Compounds Of Iron (AREA)

Abstract

本发明涉及一种土壤水体重金属吸附还原剂的制备方法。该方法包括以下的步骤:1)取磁性Fe3O4,原始粒径在0.05~0.2μm;2)将磁性Fe3O4进行焙烧,焙烧过程中通入过量H2,利用氢气对磁性Fe3O4进行还原,最后生成颗粒状的单质铁,颗粒状的单质铁的粒径控制在0.02~0.1μm;3)对生成的单质微粒子的Fe置于100℃焙烧炉中,并充满N2和H2;4)然后再对焙烧炉中缓慢通入空气,同时停止H2的加入,最终使得微粒子铁表面包覆Fe3O4,而内部则仍为单质Fe,最终得到重金属吸附还原剂。本发明的吸附还原剂具有吸附率高,安全环保的特点。

Description

一种土壤水体重金属吸附还原剂的制备方法
技术领域
本发明涉及一种土壤水体重金属吸附还原剂的制备方法。
背景技术
土壤和水体的重金属污染主要来源有人为污染源和自然污染源。自然污染源主要来自重金属的工业矿床和含重金属元素岩石风华而成的地表土壤。许多重金属矿床或富含重金属的岩石,即使埋深达到200-300m或被百余米后的土壤覆盖,仍可成为地表生态系统中某些重金属污染的深部来源,从而使得地表重金属超标。认为污染源主要是人们的各种生产使得重金属元素大量“活化”。另外,重金属元素从大气中沉降总量也相当惊人,大气中沉降的重金属也可归纳为认为污染源之一。在某些人为排放源周围,Pb、Cr、Hg等重金属对附近的土壤,食物,地下水,居住环境造成相当大的不良影响,一方面通过食物、饮水和灰尘等方式进入人体,从而导致致癌、致畸率大大提高。另一方面,通过对土壤中微生物的伤害,导致土壤失效。
目前为止,世界上对处理重金属主要有两种思路:
1、通过提取/分离土壤水泥重金属,降低土壤水体重金属含量,从而减小重金属的危害。
2、通过增加土壤重金属的稳定性,降低重金属的迁移能力和生物有效性。
厦门鹏源有限公司针对上述第二种思路申请的专利号为:201310589410.X的专利公开了一种重金属吸附剂,但该吸附剂仅以物理吸附方法对重金属进行吸附和固化,并没有改变重金属的化合价态,故其对重金属的控制能力具有一定的局限性。虽然关于重金属吸附剂方面的专利很多,但都仅为吸附作用,仍具有较大的局限性。
发明内容
为了解决上述的技术问题,本发明的目的是提供一种土壤水体重金属吸附还原剂的制备方法,该方法制备得到的吸附还原剂通过吸附土壤重金属并对其进行还原,使溶出率较高的高价态重金属向低价态低溶出率的重金属转化,并最终达到吸附还原固化重金属的作用。
为了实现上述的目的,本发明采用了以下的技术方案:
一种土壤水体重金属吸附还原剂的制备方法,该方法包括以下的步骤:
1)取磁性Fe3O4,磁性Fe3O4的原始粒径在0.05~0.2μm;
2)将磁性Fe3O4进行焙烧,焙烧过程中通入过量H2,焙烧温度控制在450~550℃左右,利用氢气对磁性Fe3O4进行还原,焙烧过程中对粉末状的磁性Fe3O4进行立体式翻滚,使H2的接触面更大,反应更充分,焙烧时间控制在5-10h,最后生成颗粒状的单质铁,颗粒状的单质铁的粒径控制在0.02~0.1μm;
3)对生成的单质微粒子的Fe置于100℃焙烧炉中,并充满N2和H2,利用氮气保护单质微粒子Fe表面不被轻易氧化;
4)然后再对焙烧炉中缓慢通入空气,同时停止H2的加入,使得空气能够对单质微粒子Fe表面充分反应,反应温度控制在95~110℃,氧化时间控制在10-15h,最终使得微粒子铁表面包覆Fe3O4,而内部则仍为单质Fe,最终得到重金属吸附还原剂。
作为优选,所述的步骤1)磁性Fe3O4的合成步骤包括:
1)将摩尔比为1:0.5~1.5的铁盐和亚铁盐混合物置于容器中,加入一定量水,配置成铁离子浓度为1.0mol/L~2.0mol/L的溶液;
2)在容器中加入乙醇和油酸,乙醇和油酸体积百分比浓度均为0.8%~1.5%;
3)用氨水对容器中的溶液进行调碱至PH1.0~1.4,再用28%~35%重量百分比浓度的液碱对其调碱至PH7.4~8.1;
4)调碱结束后,对盛有混合溶液的容器进行升温,并将温度控制在38℃~42℃;
5)从升温开始,待其反应0.8~1.5小时后,进行压滤、漂洗、烘干、粉碎,即可得到成品Fe3O4
步骤1)的工艺为我公司申请的201310254657.6一种磁性氧化铁黑的制备方法,利用该法制得磁性氧化铁黑具有原始粒径小,且具有较强的磁性,而普通合成法所制备的氧化铁黑由于原始粒径大,所以不适合用作该吸附还原剂的前驱体。
作为优选,所述的乙醇和油酸体积百分比浓度均为0.1%。
作为优选,所述的铁盐为氯化铁或硫酸铁。
作为优选,所述的亚铁盐为氯化亚铁或硫酸亚铁。
本发明由于采用了上述的技术方案,该方法制备得到的吸附还原剂通过吸附土壤重金属并对其进行还原,使溶出率较高的高价态重金属向低价态低溶出率的重金属转化,并最终达到吸附还原固化重金属的作用。本发明的吸附还原剂具有吸附率高,安全环保的特点。
具体实施方式
实施例1:
1.将摩尔比为1:1的氯化铁和氯化亚铁混合物置于容器中,加入一定量水,配置成铁离子浓度为1.5mol/L的溶液;
2.在容器中加入乙醇和油酸,乙醇和油酸体积百分比浓度均为1%;
3.用氨水对容器中的溶液进行调碱至pH1.4,再用28%~35%重量百分比浓度的液碱对其调碱至PH7.4~8.1;
4.调碱结束后,对盛有混合溶液的容器进行升温,并将温度控制在42℃;
5.从升温开始,待其反应1.5小时后,进行压滤、漂洗、烘干、粉碎,即可得到磁性氧化铁黑。
6.取500g通过上述方式制备的磁性氧化铁黑,保证磁性氧化铁黑的原始粒径在0.1μm左右。
7.将上述方式制备的磁性氧化铁黑进行焙烧,焙烧炉的容积为0.5m3,焙烧过程中通入过量H2,并隔绝氧气进入,焙烧温度控制在500℃左右,利用氢气对磁性氧化铁黑进行还原,焙烧过程中对粉末状的磁性氧化铁黑进行立体式翻滚,使H2的接触面更大,反应更充分,焙烧时间控制在5-10h,最后生成颗粒状的单质铁,颗粒状的单质铁的粒径控制在0.05μm。
8.对生成的单质微粒子的Fe置于100℃焙烧炉中,并充满N2和H2,利用氮气保护单质微粒子Fe表面不被轻易氧化。
9.然后再对焙烧炉中缓慢通入空气,空气量为1m3/h,同时停止H2的加入,使得空气能够对单质微粒子Fe表面充分反应,反应温度控制在100℃左右,氧化时间控制在10-15h,最终使得微粒子铁表面包覆Fe3O4,而内部则仍为单质Fe.最终得到重金属吸附还原剂A。
对比例:
1.取普通合成法氧化铁黑500g,普通合成法氧化铁黑的原始粒径在0.3μm左右。
7.将普通合成法氧化铁黑氧化铁黑进行焙烧,焙烧炉的容积为0.5m3,焙烧过程中通入过量H2,并隔绝氧气进入,焙烧温度控制在500℃左右,利用氢气对普通合成法氧化铁黑进行还原,焙烧过程中对粉末状的普通合成法氧化铁黑进行立体式翻滚,使H2的接触面更大,反应更充分,焙烧时间控制在5-10h,最后生成颗粒状的单质铁,颗粒状的单质铁的粒径控制在0.15μm。
8.对生成的单质微粒子的Fe置于100℃焙烧炉中,并充满N2和H2,利用氮气保护单质微粒子Fe表面不被轻易氧化。
9.然后再对焙烧炉中缓慢通入空气,空气量为1m3/h,同时停止H2的加入,使得空气能够对单质微粒子Fe表面充分反应,反应温度控制在100℃左右,氧化时间控制在10-15h,最终使得微粒子铁表面包覆Fe3O4,而内部则仍为单质Fe.最终得到重金属吸附还原剂B。
评价方法:
取0.25gFe-Fe3O4粉末,加入到25l硝酸铅溶液中(p0=5mg/L),在不同时刻,用0.25μm的水性过滤膜滤得澄清液,澄清液中硝酸铅的质量浓度记为p1,采用火焰原子吸收法,测定不同时刻测定澄清液中铅离子的质量浓度,则四氧化三铁对Cr、Pb、离子的吸附率为:μ=(p0-p1/p0)×100%,
利用试验样品A对硝酸铅溶液进行除重金属处理后得到滤液A’,利用试验样品B对硝酸铅溶液进行除重金属处理后得到滤液B’,未经任何物质处理的硝酸铅溶液C’
试验样品 处理前 处理后 吸附率
A’ 5mg/L 0.85mg/L 83.0%
B’ 5mg/L 3.15mg/L 37.0%
C’(空白对比样) 5mg/L 5mg/L 0%

Claims (5)

1.一种土壤水体重金属吸附还原剂的制备方法,其特征在于,该方法包括以下的步骤:
1)取磁性Fe3O4,磁性Fe3O4的原始粒径在0.05~0.2μm;
2)将磁性Fe3O4进行焙烧,焙烧过程中通入过量H2,焙烧温度控制在450~550℃左右,利用氢气对磁性Fe3O4进行还原,焙烧过程中对粉末状的磁性Fe3O4进行立体式翻滚,使H2的接触面更大,反应更充分,焙烧时间控制在5-10h,最后生成颗粒状的单质铁,颗粒状的单质铁的粒径控制在0.02~0.1μm;
3)对生成的单质微粒子的Fe置于100℃焙烧炉中,并充满N2和H2,利用氮气保护单质微粒子Fe表面不被轻易氧化;
4)然后再对焙烧炉中缓慢通入空气,同时停止H2的加入,使得空气能够对单质微粒子Fe表面充分反应,反应温度控制在95~110℃,氧化时间控制在10-15h,最终使得微粒子铁表面包覆Fe3O4,而内部则仍为单质Fe,最终得到重金属吸附还原剂。
2.根据权利要求1所述的一种土壤水体重金属吸附还原剂的制备方法,其特征在于,步骤1)磁性Fe3O4的合成步骤包括:
1)将摩尔比为1:0.5~1.5的铁盐和亚铁盐混合物置于容器中,加入一定量水,配置成铁离子浓度为1.0mol/L~2.0mol/L的溶液;
2)在容器中加入乙醇和油酸,乙醇和油酸体积百分比浓度均为0.8%~1.5%;
3)用氨水对容器中的溶液进行调碱至PH1.0~1.4,再用28%~35%重量百分比浓度的液碱对其调碱至PH7.4~8.1;
4)调碱结束后,对盛有混合溶液的容器进行升温,并将温度控制在38℃~42℃;
5)从升温开始,待其反应0.8~1.5小时后,进行压滤、漂洗、烘干、粉碎,即可得到成品磁性Fe3O4
3.根据权利要求2所述的一种土壤水体重金属吸附还原剂的制备方法,其特征在于,乙醇和油酸体积百分比浓度均为0.1%。
4.根据权利要求2所述的一种土壤水体重金属吸附还原剂的制备方法,其特征在于,所述的铁盐为氯化铁或硫酸铁。
5.根据权利要求2所述的一种土壤水体重金属吸附还原剂的制备方法,其特征在于,所述的亚铁盐为氯化亚铁或硫酸亚铁。
CN201810380134.9A 2018-04-25 2018-04-25 一种土壤水体重金属吸附还原剂的制备方法 Withdrawn CN108837795A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810380134.9A CN108837795A (zh) 2018-04-25 2018-04-25 一种土壤水体重金属吸附还原剂的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810380134.9A CN108837795A (zh) 2018-04-25 2018-04-25 一种土壤水体重金属吸附还原剂的制备方法

Publications (1)

Publication Number Publication Date
CN108837795A true CN108837795A (zh) 2018-11-20

Family

ID=64212334

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810380134.9A Withdrawn CN108837795A (zh) 2018-04-25 2018-04-25 一种土壤水体重金属吸附还原剂的制备方法

Country Status (1)

Country Link
CN (1) CN108837795A (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103301809A (zh) * 2013-07-01 2013-09-18 湖南大学 磁性载铁有序介孔碳及其制备方法和应用
CN103599922A (zh) * 2013-11-20 2014-02-26 厦门鹏原实业有限公司 土壤重金属吸附剂

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103301809A (zh) * 2013-07-01 2013-09-18 湖南大学 磁性载铁有序介孔碳及其制备方法和应用
CN103599922A (zh) * 2013-11-20 2014-02-26 厦门鹏原实业有限公司 土壤重金属吸附剂

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
YUEPENG PANG 等: "Core-shell Fe3O4@Fe ultrafine nanoparticles as advanced anodes for Li-ion batteries", 《JOURNAL OF ALLOYS AND COMPOUNDS》 *
何泰石: "《最新高中化学 方法•思维•训练》", 30 April 1992, 光明日报出版社 *
黄希祜: "《钢铁冶金原理》", 30 November 1990, 冶金工业出版社 *

Similar Documents

Publication Publication Date Title
Ma et al. Efficient adsorption of Selenium (IV) from water by hematite modified magnetic nanoparticles
Wu et al. Removal of antimony (III) and antimony (V) from drinking water by ferric chloride coagulation: Competing ion effect and the mechanism analysis
Shan et al. Efficient removal of trace antimony (III) through adsorption by hematite modified magnetic nanoparticles
Tuna et al. Removal of As (V) from aqueous solution by activated carbon-based hybrid adsorbents: Impact of experimental conditions
Esmadi et al. Sorption of cobalt (II) by amorphous ferric hydroxide
Peng et al. Manganese dioxide nanosheet suspension: a novel absorbent for cadmium (II) contamination in waterbody
CN103212364B (zh) 一种铁锰复合氧化物及其制备方法和水体除砷的应用
Jia et al. Adsorption of Pb2+, Zn2+, and Cd2+ from waters by amorphous titanium phosphate
Yang et al. Competitive adsorption of As (V) with co-existing ions on porous hematite in aqueous solutions
Zhou et al. A comparison of water treatment sludge and red mud as adsorbents of As and Se in aqueous solution and their capacity for desorption and regeneration
Liu et al. The role of nano-sized manganese coatings on bone char in removing arsenic (V) from solution: implications for permeable reactive barrier technologies
Syczewski et al. Phosphogypsum and clay mineral/phosphogypsum ceramic composites as useful adsorbents for uranium uptake
Rahman et al. Development of polyacrylamide chromium oxide as a new sorbent for solid phase extraction of As (III) from food and environmental water samples
Saha et al. Rapid and selective magnetic separation of uranium in seawater and groundwater using novel phosphoramidate functionalized citrate-Fe3O4@ Ag nanoparticles
Zou et al. Adsorption characteristics of uranyl ions by manganese oxide coated sand in batch mode
Wei et al. Novel phosphonate-functionalized composite sorbent for the recovery of lanthanum (III) and terbium (III) from synthetic solutions and ore leachate
Fernández-Calviño et al. Influence of mussel shell on As and Cr competitive and non-competitive sorption–desorption kinetics in a mine soil: stirred flow chamber experiments
CN107803179A (zh) 用于水处理的除砷吸附剂的制备方法及其产品和应用
Snyder et al. Adsorption mechanisms and transport behavior between selenate and selenite on different sorbents
CN108371937A (zh) 一种土壤水体重金属吸附还原剂
Seder-Colomina et al. Uranium (VI) scavenging by amorphous iron phosphate encrusting sphaerotilus natans filaments
Mengistu et al. Surface-complexation modelling for describing adsorption of phosphate on hydrous ferric oxide surface
Ahmad et al. Synthesis, characterization of silica nanoparticles and adsorption removal of Cu2+ ions in aqueous solution
CN108837795A (zh) 一种土壤水体重金属吸附还原剂的制备方法
Esmaeeli et al. Magnetization and modification of ETS-4 titanosilicate for removal of fluoride from aqueous solutions

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WW01 Invention patent application withdrawn after publication

Application publication date: 20181120

WW01 Invention patent application withdrawn after publication