CN108832293A - 一种用于近场二维扫描的基片集成波导漏波缝隙阵天线 - Google Patents

一种用于近场二维扫描的基片集成波导漏波缝隙阵天线 Download PDF

Info

Publication number
CN108832293A
CN108832293A CN201810677187.7A CN201810677187A CN108832293A CN 108832293 A CN108832293 A CN 108832293A CN 201810677187 A CN201810677187 A CN 201810677187A CN 108832293 A CN108832293 A CN 108832293A
Authority
CN
China
Prior art keywords
near field
gap
wave
antenna
plated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810677187.7A
Other languages
English (en)
Other versions
CN108832293B (zh
Inventor
程钰间
吴亚飞
柏航
樊勇
宋开军
张波
林先其
张永鸿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Electronic Science and Technology of China
Original Assignee
University of Electronic Science and Technology of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Electronic Science and Technology of China filed Critical University of Electronic Science and Technology of China
Priority to CN201810677187.7A priority Critical patent/CN108832293B/zh
Publication of CN108832293A publication Critical patent/CN108832293A/zh
Application granted granted Critical
Publication of CN108832293B publication Critical patent/CN108832293B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/48Earthing means; Earth screens; Counterpoises
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/20Non-resonant leaky-waveguide or transmission-line antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/22Longitudinal slot in boundary wall of waveguide or transmission line
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/061Two dimensional planar arrays
    • H01Q21/068Two dimensional planar arrays using parallel coplanar travelling wave or leaky wave aerial units

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Waveguide Aerials (AREA)

Abstract

本发明提供了一种用于近场二维扫描的基片集成波导漏波缝隙阵天线,介质基板层内有位若干排单排金属化通孔线列和与之相连的双排金属化通孔线列,单排金属化通孔相邻两排间距各不相同以产生馈电相位差,双排金属化通孔相邻两排之间宽度均相同,上金属覆铜层上开设有垂直贯穿上金属覆铜层的若干排缝隙,其中各排缝隙的缝隙位置各不相同,上下交错排布形成三角结构,沿天线馈电端到匹配端方向,相邻单个辐射缝隙之间的间距逐渐减小,以产生近场聚焦所需相位分布,本发明通过缝隙位置实现了近场二维天线阵面的口径相位的精确补偿,给出了近场二维扫描基片集成波导天线阵的设计过程,提出了一种三角排布的拓扑,可以抑制杂散辐射改善天线性能。

Description

一种用于近场二维扫描的基片集成波导漏波缝隙阵天线
技术领域
本发明属于近场聚焦天线领域,具体涉及到毫米波近场二维扫描基片集成波导漏波缝隙阵天线。
背景技术
随着近场聚焦天线在微波毫米波成像、无线输能、门禁及射频识别等领域的广泛应用,对其扫描范围、扫描速率及性能提出了越来越高的要求。
相控阵天线能够实现二维扫描满足近场应用的扫描速率要求,但是因其复杂的结构和高昂的成本不适用于毫米波或更高频段。为实现高频高速近场二维扫描,将一维频率扫描和一维相位扫描结合是一种有效形式。将频扫和相扫结合的近场二维扫描体制对毫米波近场二维扫描天线阵的设计提出了以下要求:(1)不同于远场,如果利用E面和H面分别独立设计的方法综合近场二维天线阵面,对于大口径阵列天线会产生较大相位误差,需要对其综合方法做出修正。(2)在毫米波实现近场二维扫描,传统微带线等开放结构因其高插损特性已不适用,需要用封闭结构传输线作为设计载体。(3)为了实现近场二维扫描,需要将单根频扫天线在另一维度进行组阵,因此对频扫天线提出了宽度均匀的要求,并且为了确保天线的扫描性能,频扫天线的宽度不宜超过半个波长。(4)对于频扫天线,因其宽度被限制,只能通过天线单元位置来产生近场聚焦相位,会导致出现过大的单元间距,导致栅瓣和杂散辐射的出现,对阵列的栅瓣和杂散辐射抑制方法提出了挑战。
用来实现近场聚焦扫描的现有技术。方案一是通过弯折的微带线馈电网络结合多层板技术来实现的(详见:P.F.Li,S.W.Qu,S.Yang and Z.P.Nie,“Microstrip arrayantenna with 2-D steerable focus in near-field region,”IEEE Trans.AntennasPropag.,vol.65,no.9,pp.4607-4617,Sep.2017.),但是传统微带线和多层板技术的高插损特性不适用于毫米波或更高频设计,并且该方案中将E面和H面分开独立设计的天线阵列综合方法将会在大阵列近场聚焦天线设计中产生较大的误差。方案二是对阵列宽度进行修正来综合近场聚焦相位(详见:A.J.Martínez-Ros,J.L.Gómez-Tornero,and G.Goussetis,“Holographic pattern synthesis with modulated substrate integrated waveguideline-source leaky-wave antennas,”IEEE Trans.Antennas Propag.,vol.61,no.7,pp.3466–3474,Jul.2013.),但是波动的传输线宽度将会对频率产生不同的响应,导致天线的频率扫描性能恶化,同时波动的宽度为另一维度的组阵设计增加了难度。方案三是对辐射单元间距进行调整来实现相位调控(详见:S.Clauzier,S.Avrillon,L.Le Coq,M.Himdi,F.Colombel,and E.Rochefort,“Slotted waveguide antenna with a near-fieldfocused beam in one plane,”IET Microw.Antennas Propag.,vol.9,no.7,pp.634–639,2015.),但是因为近场平方律相位加速特性,会产生过大的单元间距,从而导致栅瓣和杂散辐射的出现,无法满足近场聚焦的扫描需求。
近年来得到广泛应用的基片集成波导,不仅具有波导结构的低插损和低泄漏辐射特性,还具有微带线的高集成度特性,并且具备易加工低成本的优势,为毫米波或更高频缝隙阵近场聚焦天线提供了良好的设计载体,但基于基片集成波导的近场二维扫描天线阵列的设计还有很多困难需要突破,因此用于近场二维扫描的基片集成波导缝隙阵天线有很重要的研究价值。
发明内容
本发明目的在于克服毫米波近场二维扫描天线阵的设计中的四个难点。首先对E面和H面单独设计方法进行了改进,提出了全息相位补偿方法,通过缝隙位置的调整从而实现近场二维扫描天线阵口径相位的精确补偿,进一步为抑制过大缝隙间距产生的杂散辐射,提出了一种准三角缝隙阵拓扑结构。
为实现含上述发明目的,本发明技术方案如下:
一种用于近场二维扫描的基片集成波导漏波缝隙阵天线,该天线为平面结构,从下往上依次包括层叠的下金属覆铜层、介质基板层及上金属覆铜层,所述介质基板层内有位于基板始端的若干排单排金属化通孔线列和与之相连的双排金属化通孔线列,每排金属通孔线列均包括若干金属化通孔,每个金属化通孔均贯穿下金属覆铜层和上金属覆铜层,所述若干排单排金属化通孔相邻两排间距为a和b,间距不同以产生馈电相位差,所述双排金属化通孔相邻两排之间距离c均相同,构成基片集成波导结构;所述上金属覆铜层上开设有垂直贯穿上金属覆铜层的若干排缝隙,其中各排缝隙的缝隙位置各不相同,上下交错排布形成三角结构,所述各排缝隙均由若干个沿相邻两行双排金属化通孔线列中心线上下排布的纵向辐射缝隙组成;沿天线馈电端到匹配端方向,相邻纵向辐射缝隙之间的间距逐渐减小,以产生近场聚焦所需相位分布,所述下金属覆铜层为完整的金属,为天线提供金属地。
优选地,在上述的一种用于近场二维扫描的基片集成波导漏波缝隙阵天线,相邻纵向辐射缝隙之间的间距各不相同,以产生近场聚焦所需相位分布,其位置满足:
其中lij为缝隙第i排第j个缝隙的位置,l0为馈电口位置,为聚焦在频扫维度所需的相位分布,β是基片集成波导内的相位传播常数,N*是非零的正整数。
优选地,整个天线口径面上共有15排缝隙,各排缝隙由18根沿相邻两行双排金属化通孔线列中心线上下排布的纵向缝隙组成。
优选地,各辐射缝隙有相同的缝隙宽度和长度;从天线馈电端到匹配端,第j排的第i个缝隙和第j+1排的第i个缝隙距离相邻两行双排金属化通孔线列中心线的偏移距离相等,i≥1,j≥1。
优选地,在上述的一种用于近场二维扫描的基片集成波导漏波缝隙阵天线,所述单排金属化通孔线列的总长度为l,相邻两排间距为a和b,对应的基片集成波导内的传播常数分别为β1和β2,则产生的馈电相位差为:
Δψ=(β12)l
本发明的有益效果在于:
(1):本发明提出一种用于毫米波近场二维扫描天线阵的设计中口径相位的精确补偿方法,称为全息相位补偿方法。
(2):本发明通过缝隙位置的调整从而实现近场二维扫描天线阵口径相位的精确补偿。
(3):本发明提出一种新型近场扫描基片集成波导缝隙阵天线的组阵拓扑,准三角布阵形式,并给出详细操作过程,可以抑制栅瓣并且改善天线性能。
(4):本发明给了基于全息相位补偿方法和准三角布阵形式的近场二维扫描缝隙阵天线阵的详细设计过程。
附图说明
图1为用于近场二维扫描的基片集成波导漏波缝隙阵天线的侧视图。
图2(a)为用于近场二维扫描的基片集成波导漏波缝隙阵天线的结构示意图。
图2(b)为图2(a)中A的局部放大图。
图3为近场扫描基片集成波导漏波缝隙阵天线二维阵面结构示意图。
图4为E面和H面单独设计方法误差理论计算结果。
图5为E面和H面单独设计方法和近场精确设计方法的仿真结果对比图。
图6为单根近场聚焦基片集成波导漏波缝隙阵天线原理示意图。
图7为单根近场聚焦基片集成波导漏波缝隙阵天线缝隙位置示意图。
图8为近场聚焦基片集成波导漏波缝隙阵天线的两种组阵拓扑。
图9为近场聚焦基片集成波导漏波缝隙阵天线的两种组阵拓扑的理论计算结果对比图。
图10为实施例中用于近场二维扫描的基片集成波导漏波缝隙阵天线的尺寸图。
图11为近场二维扫描天线的整体示意图。
图12为实施例中用于近场二维扫描的基片集成波导漏波缝隙阵天线的扫描仿真图。
1为下金属覆铜层,2为介质基板层,3为上金属覆铜层,4为阵列中心线,21为单排金属化通孔线列,22为双排金属化通孔线列,5为相邻两行双排金属化通孔线列中心线,6为缝隙,31为奇数排缝隙,32为偶数排缝隙,7为Rotman透镜,8为基片集成波导漏波缝隙阵天线,9为基片集成波导匹配负载。
具体实施方式
下面结合附图和实施例对本发明做进一步详细说明:
本实施例中首先提供一个用于近场二维扫描的基片集成波导漏波缝隙阵天线。
该用于近场扫描的基片集成波导漏波缝隙阵天线为平面结构,从下往上依次包括层叠的下金属覆铜层1、介质基板层2及上金属覆铜层3,如图1所示。图2(a)给出了该天线的整体结构图。所述介质基板层2内有位于基板始端的若干排单排金属化通孔线列21和与之相连的双排金属化通孔线列22,每排金属通孔线列均包括若干金属化通孔,每个金属化通孔均贯穿下金属覆铜层1和上金属覆铜层3,所述若干排单排金属化通孔21相邻两排间距为a和b,间距不同以产生馈电相位差,所述双排金属化通孔22相邻两排之间距离c均相同,构成基片集成波导结构;所述上金属覆铜层3上开设有垂直贯穿上金属覆铜层3的若干排缝隙,其中各排缝隙的缝隙位置各不相同,上下交错排布形成三角结构,所述各排缝隙均由若干个沿相邻两行双排金属化通孔线列中心线5上下排布的纵向辐射缝隙组成;沿天线馈电端到匹配端方向,相邻纵向辐射缝隙之间的间距逐渐减小,以产生近场聚焦所需相位分布,所述下金属覆铜层1为完整的金属,为天线提供金属地。
相邻纵向辐射缝隙之间的间距各不相同,以产生近场聚焦所需相位分布,其位置满足:
其中lij为缝隙第i排第j个缝隙的位置,l0为馈电口位置,为聚焦在频扫维度所需的相位分布,β是基片集成波导内的相位传播常数,N*是非零的正整数。
整个天线口径面上共有15排缝隙,各排缝隙由18根沿相邻两行双排金属化通孔线列中心线5上下排布的纵向缝隙组成。
各辐射缝隙有相同的缝隙宽度和长度;从天线馈电端到匹配端,第j排的第i个缝隙和第j+1排的第i个缝隙距离相邻两行双排金属化通孔线列中心线的偏移距离相等,i≥1,j≥1。
所述单排金属化通孔线列21的总长度为l,相邻两排间距为a和b,对应的基片集成波导内的传播常数分别为β1和β2,则产生的馈电相位差为:
Δψ=(β12)l
下面给出基片集成波导漏波缝隙阵天线的具体步骤:
S1:通过全息相位补偿方法得到近场二维天线阵面的精确口径相位
图3给出了近场基片集成波导漏波缝隙阵天线二维阵面的结构示意图,阵列位于xoy平面上,近场焦点为F(x0,y0,z0)。为了将二维辐射缝隙的能量在F处聚焦,二维天线阵面的口径相位应该满足式(1),本发明中称之为全息相位分布:
其中(x0,y0,z0)为近场聚焦点的坐标,(x,y,z)为近场天线阵面上的任意一点的坐标。
目前为止,关于近场二维扫描天线的相关文献较少。在有限的参考文献中,近场二维扫描的口径相位是参考远场的E面和H面单独设计的方法,被分为两部分进行设计:它们分别满足式(2)和(3)
显然,与全息设计方法相比,通过E面和H面单独设计方法得到的相位存在相位误差Δφ,Δφ由式(4)决定。为了验证这部分误差的大小,在Matlab中进行仿真可以得到图4。从图中可以看出,当天线口径逐渐变大时,相位误差Δφ也逐渐变大以至于不能被忽略,并且误差在阵面的±45°方向最大。另外因为相位误差的存在,天线阵的口径效率会降低。因此E面和H面单独设计方法不能直接用在大口径近场二维扫描天线阵的设计中。
为了消除相位误差Δφ,在计算时将Δφ考虑进去,即
是采用全息相位补偿方法时,二维天线阵面需要满足的口径相位。对于漏波天线,可以通过调整缝隙单元的位置满足该口径相位。图5为E面和H面单独设计方法和全息相位补偿方法的仿真结果对比图,从图中可以看出全息相位补偿方法的聚焦效果明显优于E面和H面单独设计方法,天线的辐射杂散较小。
S2:单根均匀宽度的基片集成波导漏波缝隙阵天线的设计
通过近场二维阵面口径相位精确计算方法可以得到缝隙单元在二维阵面上的位置,下面通过单根基片集成波导缝隙阵天线的设计,给出二维天线阵面其他参数的确定原则。单根基片集成波导漏波缝隙阵天线的结构示意图如图6所示,为了实现近场聚焦,漏波缝隙阵天线需要满足左半边缝隙辐射能量尽可能等于右半边缝隙辐射能量,具体地:
1):二维天线阵面口径相位需要满足方程(1)-(5)。
2):左半边缝隙的辐射能量尽可能等于右半边缝隙辐射能量。
条件一用来确定缝隙位置,图7给出了单根基片集成波导漏波缝隙阵天线的缝隙位置分布图,从图中可以看出,漏波天线的缝隙分布不均匀并且阵列左边缝隙间距大于阵列右边缝隙间距;条件二用来确定各缝隙的长度、宽度以及偏移量。综合条件一和条件二就可以得到单根基片集成波导漏波缝隙阵天线的最终尺寸。对于基片集成波导漏波缝隙阵天线整体而言,各辐射缝隙有相同的缝隙宽度和长度,从天线馈电端到匹配端,第i排的第j个缝隙和第i+1排的第j个缝隙距离相邻两行双排金属化通孔线列中心线的偏移距离相等。至此,天线阵的各辐射缝隙的缝隙宽度、长度以及偏移量全部确定。
S3:通过设计相邻缝隙阵的馈电相位差实现准三角布阵拓扑
完成单根基片集成波导缝隙阵天线的设计之后,为了实现近场二维扫描,需要将单根基片集成波导漏波缝隙阵天线在基片集成波导宽度方向进行组阵,最常见的组阵方式是直接将单根缝隙阵沿宽度方向并联排列,即图8(a)中的矩形网格组阵拓扑,这也是远场领域最常用到的布阵方式。但是因为近场的特殊性,当天线的口径过大时,会导致天线单元间距过大,从而抬升天线副瓣,使天线性能恶化,矩形网格组阵拓扑会加剧性能恶化。
本发明中提出一种准三角布阵拓扑,如图8(b)所示。该种拓扑具体操作过程如下:假设相邻缝隙阵的馈电存在Δψ的相对相位,因为缝隙阵天线可以通过调整缝隙位置改变辐射能量的相位,为了保证相邻缝隙阵的辐射能量在聚焦点处是同相的,则两缝隙阵的缝隙单元位置应该在传输方向上有一段错位,且电磁波在该段错位的传输相位应该等于Δψ。对于一个二维天线阵面,通过准三角布阵方式得到的天线阵面,奇数排缝隙阵31跟偶数排缝隙阵32应该交错排布。
因为基片集成波导的宽度决定了β,因此长度一样但宽度不同的基片集成波导内的传输相位不同。可以看到奇数排缝隙阵31和偶数排缝隙阵32分别对应单排金属化通孔线列21中不同宽度的基片集成波导输入口,通过调整单排金属化通孔线列21的长度以及不同的基片集成波导宽度可以产生奇数排缝隙阵31跟偶数排缝隙阵32的馈电相位差Δψ,假设单排金属化通孔线列21长度为l,相邻两列间距分别为a和b,对应的基片集成波导内的传播常数分别为β1和β2,则产生的馈电相位差为:
Δψ=(β12)l (6)
通过调整单排金属化通孔线列21的长度l以及相邻两列间距分别为a和b就可以实现基片集成波导缝隙阵天线的三角布阵形式。
因为近场聚焦二维缝隙阵天线阵面沿中心对称线4对称,因此文中给出一半天线结构的主要尺寸图,如图10所示。实施例中天线的中心频率为35GHz,选用的基板为Tly-5,厚度为1.575mm,金属铜厚度为0.0175mm。基片集成波导宽度为3.56mm,其传播常数β=491rad/m,令偶数排缝隙阵和奇数排缝隙阵的馈电相对相位为Δψ=78°。经过优化综合可以得到各缝隙位置和其他参数如表1所示。
表1实施例中用于近场二维扫描的基片集成波导漏波缝隙阵天线的具体尺寸。(单位为m m)。
图11给出了近场二维扫描天线的整体图,结构7为Rotman透镜,用以实现相位扫描效果,结构8为本发明中的基片集成波导漏波缝隙阵天线,用以实现频率扫描效果,结构9为基片集成波导匹配负载,用以连接结构8的各输出端口。图12给出了实施例的近场聚焦二维天线阵面的仿真结果,当天线阵的馈电相位不变,改变馈电频率时,波束在y方向扫描,扫描范围为–22mm<y<22mm。当天线阵的馈电频率不变,改变天线阵的馈电相位时,波束在x方向扫描,扫描范围为–90mm<x<90mm。一维频率扫描,一维相位扫描,共同作用以实现近场的二维扫描。
以上所述,仅为本发明的具体实施方式,本说明书中所公开的任一特征,除非特别叙述,均可被其他等效或具有类似目的的替代特征加以替换;所公开的所有特征、或所有方法或过程中的步骤,除了互相排斥的特征和/或步骤以外,均可以任何方式组合。

Claims (5)

1.一种用于近场二维扫描的基片集成波导漏波缝隙阵天线,其特征在于:该天线为平面结构,从下往上依次包括层叠的下金属覆铜层(1)、介质基板层(2)及上金属覆铜层(3),所述介质基板层(2)内有位于基板始端的若干排单排金属化通孔线列(21)和与之相连的双排金属化通孔线列(22),每排金属通孔线列均包括若干金属化通孔,每个金属化通孔均贯穿下金属覆铜层(1)和上金属覆铜层(3),所述若干排单排金属化通孔(21)相邻两排间距为a和b,间距不同以产生馈电相位差,所述双排金属化通孔(22)相邻两排之间距离c均相同,构成基片集成波导结构;所述上金属覆铜层(3)上开设有垂直贯穿上金属覆铜层(3)的若干排缝隙,其中各排缝隙的缝隙位置各不相同,上下交错排布形成三角结构,所述各排缝隙均由若干个沿相邻两行双排金属化通孔线列中心线(5)上下排布的纵向辐射缝隙组成;沿天线馈电端到匹配端方向,相邻纵向辐射缝隙之间的间距逐渐减小,以产生近场聚焦所需相位分布,所述下金属覆铜层(1)为完整的金属,为天线提供金属地。
2.根据权利要求1所述的一种用于近场二维扫描的基片集成波导漏波缝隙阵天线,其特征在于:相邻纵向辐射缝隙之间的间距各不相同,以产生近场聚焦所需相位分布,其位置满足:
其中lij为缝隙第i排第j个缝隙的位置,l0为馈电口位置,为聚焦在频扫维度所需的相位分布,β是基片集成波导内的相位传播常数,N*是非零的正整数。
3.根据权利要求1所述的一种用于近场二维扫描的基片集成波导漏波缝隙阵天线,其特征在于:整个天线口径面上共有15排缝隙,各排缝隙由18根沿相邻两行双排金属化通孔线列中心线(5)上下排布的纵向缝隙组成。
4.根据权利要求1所述的一种用于近场二维扫描的基片集成波导漏波缝隙阵天线,其特征在于:各辐射缝隙有相同的缝隙宽度和长度;从天线馈电端到匹配端,第j排的第i个缝隙和第j+1排的第i个缝隙距离相邻两行双排金属化通孔线列中心线的偏移距离相等,i≥1,j≥1。
5.根据权利要求1所述的一种用于近场二维扫描的基片集成波导漏波缝隙阵天线,其特征在于:所述单排金属化通孔线列(21)的总长度为l,相邻两排间距为a和b,对应的基片集成波导内的传播常数分别为β1和β2,则产生的馈电相位差为:
Δψ=(β12)l。
CN201810677187.7A 2018-06-27 2018-06-27 一种用于近场二维扫描的基片集成波导漏波缝隙阵天线 Active CN108832293B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810677187.7A CN108832293B (zh) 2018-06-27 2018-06-27 一种用于近场二维扫描的基片集成波导漏波缝隙阵天线

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810677187.7A CN108832293B (zh) 2018-06-27 2018-06-27 一种用于近场二维扫描的基片集成波导漏波缝隙阵天线

Publications (2)

Publication Number Publication Date
CN108832293A true CN108832293A (zh) 2018-11-16
CN108832293B CN108832293B (zh) 2020-12-18

Family

ID=64138818

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810677187.7A Active CN108832293B (zh) 2018-06-27 2018-06-27 一种用于近场二维扫描的基片集成波导漏波缝隙阵天线

Country Status (1)

Country Link
CN (1) CN108832293B (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112186364A (zh) * 2020-09-28 2021-01-05 林伟 紧凑多层收发天线装置的实现方法
CN112688046A (zh) * 2020-12-04 2021-04-20 华南理工大学 一种近场聚焦全息阵列天线及调控方法
CN113437535A (zh) * 2021-08-30 2021-09-24 南京隼眼电子科技有限公司 天线阵列、天线系统以及电子设备
CN114759362A (zh) * 2022-04-29 2022-07-15 中国电子科技集团公司第十四研究所 一种具备二维扫描能力的长缝阵列天线
CN116845587A (zh) * 2023-08-11 2023-10-03 成都辰星迅联科技有限公司 一种扫描范围扩展的离散型victs天线单元
CN117954858B (zh) * 2024-03-26 2024-05-28 中国人民解放军空军预警学院 一种漏波天线扫描率的提升方法和多层基片漏波天线

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101291017A (zh) * 2008-05-27 2008-10-22 东南大学 基于罗特曼透镜原理的基片集成波导多波束天线
US8968292B2 (en) * 2009-02-20 2015-03-03 Covidien Lp Leaky-wave antennas for medical applications
US20150263429A1 (en) * 2011-08-31 2015-09-17 Mehrnoosh Vahidpour Micromachined millimeter-wave frequency scanning array
CN105186141A (zh) * 2015-09-24 2015-12-23 广东顺德中山大学卡内基梅隆大学国际联合研究院 一种基于siw的平面漏波天线
CN205141135U (zh) * 2015-11-30 2016-04-06 杭州电子科技大学 高增益宽角度双频段扫描天线
CN106299660A (zh) * 2016-09-17 2017-01-04 西安电子科技大学 一种低副瓣脊基片集成波导缝隙阵列天线
CN106571532A (zh) * 2016-10-31 2017-04-19 哈尔滨工业大学 一种具有大圆极化波束扫描范围的基片集成波导漏波天线
CN107069230A (zh) * 2017-01-16 2017-08-18 东南大学 一种天线结构及设计方法
CN206441875U (zh) * 2017-01-16 2017-08-25 东南大学 一种天线结构
US20170288313A1 (en) * 2016-03-31 2017-10-05 Cubtek Inc. Dual slot siw antenna unit and array module thereof
CN107546495A (zh) * 2017-07-14 2018-01-05 电子科技大学 一种毫米波圆锥面共形基片集成波导缝隙阵列天线
CN207303352U (zh) * 2017-06-30 2018-05-01 安徽四创电子股份有限公司 一种siw缝隙串馈阵列天线系统

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101291017A (zh) * 2008-05-27 2008-10-22 东南大学 基于罗特曼透镜原理的基片集成波导多波束天线
US8968292B2 (en) * 2009-02-20 2015-03-03 Covidien Lp Leaky-wave antennas for medical applications
US20150263429A1 (en) * 2011-08-31 2015-09-17 Mehrnoosh Vahidpour Micromachined millimeter-wave frequency scanning array
CN105186141A (zh) * 2015-09-24 2015-12-23 广东顺德中山大学卡内基梅隆大学国际联合研究院 一种基于siw的平面漏波天线
CN205141135U (zh) * 2015-11-30 2016-04-06 杭州电子科技大学 高增益宽角度双频段扫描天线
US20170288313A1 (en) * 2016-03-31 2017-10-05 Cubtek Inc. Dual slot siw antenna unit and array module thereof
CN106299660A (zh) * 2016-09-17 2017-01-04 西安电子科技大学 一种低副瓣脊基片集成波导缝隙阵列天线
CN106571532A (zh) * 2016-10-31 2017-04-19 哈尔滨工业大学 一种具有大圆极化波束扫描范围的基片集成波导漏波天线
CN107069230A (zh) * 2017-01-16 2017-08-18 东南大学 一种天线结构及设计方法
CN206441875U (zh) * 2017-01-16 2017-08-25 东南大学 一种天线结构
CN207303352U (zh) * 2017-06-30 2018-05-01 安徽四创电子股份有限公司 一种siw缝隙串馈阵列天线系统
CN107546495A (zh) * 2017-07-14 2018-01-05 电子科技大学 一种毫米波圆锥面共形基片集成波导缝隙阵列天线

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YI LIU等: "A low sidelobe multibeam slot array antenna fed by rotman lens", 《2016 LOUGHBOROUGH ANTENNAS & PROPAGATION CONFERENCE (LAPC)》 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112186364A (zh) * 2020-09-28 2021-01-05 林伟 紧凑多层收发天线装置的实现方法
CN112186364B (zh) * 2020-09-28 2023-01-10 林伟 紧凑多层收发天线装置的实现方法
CN112688046A (zh) * 2020-12-04 2021-04-20 华南理工大学 一种近场聚焦全息阵列天线及调控方法
CN112688046B (zh) * 2020-12-04 2022-03-29 华南理工大学 一种近场聚焦全息阵列天线及调控方法
CN113437535A (zh) * 2021-08-30 2021-09-24 南京隼眼电子科技有限公司 天线阵列、天线系统以及电子设备
CN113437535B (zh) * 2021-08-30 2022-04-26 南京隼眼电子科技有限公司 天线阵列、天线系统以及电子设备
CN114759362A (zh) * 2022-04-29 2022-07-15 中国电子科技集团公司第十四研究所 一种具备二维扫描能力的长缝阵列天线
CN116845587A (zh) * 2023-08-11 2023-10-03 成都辰星迅联科技有限公司 一种扫描范围扩展的离散型victs天线单元
CN116845587B (zh) * 2023-08-11 2023-12-29 成都辰星迅联科技有限公司 一种扫描范围扩展的离散型victs天线单元
CN117954858B (zh) * 2024-03-26 2024-05-28 中国人民解放军空军预警学院 一种漏波天线扫描率的提升方法和多层基片漏波天线

Also Published As

Publication number Publication date
CN108832293B (zh) 2020-12-18

Similar Documents

Publication Publication Date Title
CN108832293A (zh) 一种用于近场二维扫描的基片集成波导漏波缝隙阵天线
Chen et al. High gain, broadband and dual-polarized substrate integrated waveguide cavity-backed slot antenna array for 60 GHz band
Cheng et al. Design of a monopulse antenna using a dual V-type linearly tapered slot antenna (DVLTSA)
Zhu et al. 60 GHz substrate-integrated waveguide-based monopulse slot antenna arrays
CN108987911A (zh) 一种基于siw的毫米波波束赋形微带阵列天线及设计方法
Hamberger et al. A planar dual-polarized microstrip 1-D-beamforming antenna array for the 24-GHz band
CN108550981A (zh) 工作于tm210谐振模式的w波段双极化缝隙天线及馈电网络
CN101533961B (zh) 基于八端口结的共基片多波束天线
CN103560336A (zh) Ku频段双频双极化微带平面反射阵天线
CN108232439B (zh) 一种基片集成波导缝隙馈电的线型阵列天线及平面阵列天线
CN107579344A (zh) 毫米波基片集成波导双圆极化低副瓣共口径阵列天线
CN207910068U (zh) 双极化天线阵列和双极化相控阵天线
CN112201933B (zh) 一种紧凑轻便型多扫描体制的阵列天线
CN201383549Y (zh) 辐射效率高的多波束天线
CN107293851A (zh) 加载变容二极管的指型缝隙单元及可重构反射阵列天线
Chen et al. Compact substrate integrated waveguide (SIW) monopulse network for $ Ku $-band tracking system applications
CN102637958B (zh) 一种复合左右手传输线型窄带大范围频率扫描天线
CN109818158A (zh) 一种采用l形缝隙单元的宽带siw背腔缝隙天线阵列
CN106450748A (zh) 腔体耦合缝隙辐射单元
Sun et al. Millimeter-wave high-gain magneto-electric dipole antenna array with pillbox corporate feed network
Fan et al. A wideband and low-profile discrete dielectric lens using 3-D printing technology
CN210182584U (zh) 一种波束赋形天线结构
CN111262025A (zh) 集成基片间隙波导波束扫描漏波天线
Chu et al. Frequency beam-steering antenna with large scanning angle and low sidelobe in brick configuration aiming for 2-D expansion
CN108539422A (zh) 三维蜿蜒基片集成波导近场聚焦扫描漏波缝隙阵天线

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant