CN108827341B - 用于确定图像采集装置的惯性测量单元中的偏差的方法 - Google Patents

用于确定图像采集装置的惯性测量单元中的偏差的方法 Download PDF

Info

Publication number
CN108827341B
CN108827341B CN201810244044.7A CN201810244044A CN108827341B CN 108827341 B CN108827341 B CN 108827341B CN 201810244044 A CN201810244044 A CN 201810244044A CN 108827341 B CN108827341 B CN 108827341B
Authority
CN
China
Prior art keywords
frame
image
given
reference point
previously acquired
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810244044.7A
Other languages
English (en)
Other versions
CN108827341A (zh
Inventor
P·斯特克
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fotonation Ltd
Original Assignee
Fotonation Ireland Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fotonation Ireland Ltd filed Critical Fotonation Ireland Ltd
Publication of CN108827341A publication Critical patent/CN108827341A/zh
Application granted granted Critical
Publication of CN108827341B publication Critical patent/CN108827341B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/68Control of cameras or camera modules for stable pick-up of the scene, e.g. compensating for camera body vibrations
    • H04N23/681Motion detection
    • H04N23/6811Motion detection based on the image signal
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C25/00Manufacturing, calibrating, cleaning, or repairing instruments or devices referred to in the other groups of this subclass
    • G01C25/005Manufacturing, calibrating, cleaning, or repairing instruments or devices referred to in the other groups of this subclass initial alignment, calibration or starting-up of inertial devices
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/20Analysis of motion
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/20Analysis of motion
    • G06T7/246Analysis of motion using feature-based methods, e.g. the tracking of corners or segments
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/70Determining position or orientation of objects or cameras
    • G06T7/73Determining position or orientation of objects or cameras using feature-based methods
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/68Control of cameras or camera modules for stable pick-up of the scene, e.g. compensating for camera body vibrations
    • H04N23/681Motion detection
    • H04N23/6812Motion detection based on additional sensors, e.g. acceleration sensors
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10004Still image; Photographic image
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10016Video; Image sequence
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10028Range image; Depth image; 3D point clouds
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30244Camera pose
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Theoretical Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Image Analysis (AREA)
  • Studio Devices (AREA)

Abstract

本发明题为“用于确定图像采集装置的惯性测量单元中的偏差的方法”。本发明提供了一种用于确定图像采集装置的惯性测量单元中的偏差的方法,所述方法包括基于所述图像采集装置的透镜投射模型将图像帧内的至少一个参考点映射到3D球面空间中,从而为每个参考点提供3D空间中的相应锚定点。对于给定图像帧内的参考点,在所述给定帧与先前采集的帧之间的所述参考点处获得帧间运动的估计;从所述惯性测量单元获得在所述给定帧和所述先前采集的帧中所述参考点的采集时间的装置取向的度量,所述度量包含偏差分量;根据在所述给定帧和所述先前采集的帧中的装置取向的所述度量的差值将相应锚定点投射到3D空间,以提供3D矢量Vm;将从所述给定帧到所述先前采集的帧的所述点的所述估计的帧间运动的结果投射到3D空间中,以提供3D矢量Ve;以及使用3D矢量Vm和Ve的交叉乘积Vc来更新偏差分量值。

Description

用于确定图像采集装置的惯性测量单元中的偏差的方法
技术领域
本发明涉及用于确定图像采集装置的惯性测量单元中的偏差的方法。
背景技术
已知包含例如陀螺仪的惯性测量单元(IMU)可准确地测量装置(诸如相机)的取向的短期或相对变化,但受到恒定误差(偏差)的影响,该恒定误差可另外随时间推移而改变(漂移)。
可通过使用包括磁力计、加速度计或其他基准点的其他传感器对这种漂移进行确定和补偿,但对于装置使用或增加这种功能和成本可能是不可行或不期望的。还应当理解,即使在可用的情况下,磁力计本身也需要周期性地重新校准,并且因此不一定总是依靠其来校正其他传感器漂移。
在“Bias Compensation of Gyroscopes in Mobiles with Optical Flow”,AASRI Procedia 9,2014,pp152-157(“具有光流的移动设备中陀螺仪的偏差补偿”,AASRIProcedia 9,2014年,第152-157页)中,LászlóKundra和Péter Ekler考虑了使用陀螺仪的问题,其中原始角速率与非零偏差的积分造成估计取向的连续漂移。传感器融合算法使用来自装置相机的光流。取向估计器和偏差消除方法基于互补滤波器,其与用于光流特征的自适应可靠性滤波器相结合。将融合结果的反馈与原始陀螺仪角速率相结合以补偿偏差。
这种方法的问题在于发现帧之间的全局变换并将其转换为相机取向变化是极其CPU密集的。使用运动矢量直接导致由错误运动估计(异常值)引起的较大误差。实际上,一种潜在的实施方式建议在确定光流时采用RANSAC算法来拒绝此类异常值,但这将増加显著的计算开销,从而使得该方法在便携式图像采集装置诸如智能电话中实现是不可行的或者没有吸引力的。
本发明的目的是提供用于确定IMU传感器偏差的改进方法。
发明内容
根据本发明,提供了用于确定图像采集装置的惯性测量单元中的偏差的方法。该方法包括:基于所述图像采集装置的透镜投射模型将图像帧内的至少一个参考点映射到3D球面空间中,从而为每个参考点提供3D空间中的相应锚定点。该方法还包括:对于给定图像帧内的所述至少一个参考点中的至少一者:在所述给定帧与先前采集的帧之间的所述参考点处获得帧间运动的估计;从所述惯性测量单元获得在所述给定帧和所述先前采集的帧中所述参考点的采集时间的装置取向的度量,所述度量包含偏差分量;根据在所述给定帧和所述先前采集的帧中的装置取向的所述度量中的差值将相应锚定点投射到3D空间,以提供3D矢量Vm;将从所述给定帧到所述先前采集的帧的所述点的所述估计的帧间运动的结果投射到3D空间中,以提供3D矢量Ve;提供所述3D矢量Vm和Ve的交叉乘积Vc。该方法进一步包括:针对一个或多个图像帧中多个参考点获得作为所述交叉乘积Vc的函数的更新的偏差分量值。
本发明发现在仅具有陀螺仪的装置IMU中特别实用。但即使有加速度计可用,它也只可用于确定除1条轴线以外所有轴线的偏差补偿。补偿与重力矢量平行的轴线是不可能的。
在另一方面,提供了被布置为执行上述方法的图像处理装置;以及包含计算机可读指令的计算机程序产品,当在图像处理装置中执行时,该计算机可读指令被布置为执行上述方法。
附图说明
现在将参考附图以举例的方式描述本发明的实施方案,在附图中:
图1示意性地示出了可在其上实现本发明的实施方案的图像采集装置;
图2示出了指示两个连续图像之间的估计的帧间移动的运动矢量的示例性阵列;
图3示出了将来自图像的参考点以及测量的IMU运动;和估计的运动映射到3D单位球体中;
图4示出了在图像区域的3D空间中估计的运动Ve和测量的运动Vm对锚定点V的影响的差值,以及矢量Vm和Ve的交叉乘积Vc;以及
图5是示出根据本发明的实施方案的方法的流程图。
具体实施方式
参见图1,图像采集装置10通常包括图像处理流水线(IPP)12,该图像处理流水线从图像传感器(未示出)获取采集的图像数据,对原始图像数据进行基本处理诸如色彩平衡,并经由系统总线20向系统存储器14写入采集的图像或图像的部分。可通过IPP 12在24fps至多从60fps至甚至240fps的帧速率下采集图像帧。
此类图像采集装置10可包括下游专用图像处理单元,该下游专用图像处理单元可分析采集的图像并处理此类图像以从图像提取信息或校正图像。此类处理可包括面部检测和跟踪、对象识别或失真校正,诸如PCT专利申请WO2014/005783(参考:FN-384)中所公开的。其他处理可确定帧间运动,例如,如WO2014/146983(参考:FN-389)和PCT专利申请号PCT/EP2017/050390(参考:FN-495)中所公开的。
在本说明书中,此类处理单元(其可为专用硬件模块或通用中央处理单元(CPU))被指示为处理单元(PU)16,该处理单元能够运行低级固件/软件,或者就CPU、应用软件而言,能够从存储器14获取图像信息并进一步处理图像。
在本说明书中,我们参考由IPP 12提供的图像,然而应当理解,这些图像可包括单独采集的图像或视频序列内的图像。
已知图像采集装置10包括惯性测量单元(IMU)18,该惯性测量单元可在图像采集期间指示装置移动的轨迹,使得处理单元16能够使用该信息来校正采集的图像以考虑由非自愿或非期望的装置运动在图像捕获期间所造成的模糊,或者稳定视频序列。实际上,PCT专利申请号PCT/EP2017/050390(参考:FN-495)公开了这种校正可如何考虑光学图像稳定(OIS),该光学图像稳定可由透镜在图像采集期间执行。应当注意,以下描述基于OIS被关闭的假设,但是在已知的情况下,这可在所描述的实施方案的变型中被考虑。
IMU 18传感器可包括:在三个空间轴(X,Y,Z)中的每一者周围提供旋转速度测量的陀螺仪传感器;以及在图像序列捕获期间提供平移加速度的测量和重力方向的加速度计。IMU还可包括指示装置相对于地球磁场的绝对角取向的磁力计。
如上所述,IMU传感器和陀螺仪传感器特别易于受到偏差和漂移的影响。
本发明的实施方案使用基于图像的运动估计,尽管长期受到噪声和其他干扰的影响,但该基于图像的运动估计可提供与IMU传感器中的偏差(B)成比例的指示符。
参见图2,在一个实施方案中,采用上文提及的帧间图像运动的估计,诸如PCT专利申请WO2014/146983(参考;FN-389-PCT)和PCT专利申请号PCT/EP2017/050390(参考:FN-495-PCT)中所公开的。
该估计包括在输入图像上延伸的256个2D运动矢量(指出了其中两个E1、E2,这些运动矢量可被存储为圆形坐标(极坐标)或笛卡尔坐标)的16×16阵列E[]。应当注意,在这种情况下,常见的是图像采集装置采用滚动快门技术,其中在连续曝光间隔期间从图像传感器读取图像的一个或多个像素线(行)。
还应当注意,仅出于示例性目的提供了运动矢量阵列,但可使用运动矢量的任何布置,甚至是随机的。
因此,在帧曝光期间采集的IMU测量需要与提供估计的运动矢量阵列E[]的每一行的图像部分的采集时间同步或关联。因此,例如,假设从上到下读取字段的开始(SOF),包含E2的移动阵列的行的IMU测量将在包含E1的移动阵列的行的那些IMU测量之前。然而,应当理解,在采集图像的一部分与先前采集的帧中图像的对应部分的时间之间应用相同间隔df。
参见图3,本发明方法通过使用基于透镜投射模型的向后相机投射将256个参考点映射到3D空间中的单位球体上而开始,每个参考点对应于16×16估计的运动矢量阵列E[]的单元,诸如PCT专利申请号PCT/EP2017/050390(参考:FN-495-PCT)中所述。参考点可取自每个单元的中心,但这并不是必需的。
这是一次性操作,并且映射的点充当3D空间中的锚定点并在处理所有帧时被用作参考。在图3中,示出了从原点O延伸的两个这样的锚定点V1和V2。
在下一个步骤中,基于由IMU 18测量的相机取向,根据在先前采集的帧中它们各自的位置来变换3D锚定点,诸如V1和V2。因此,该实施方案试图根据其在给定图像中的采集时间处的测量取向和其在先前采集的图像中相同点的采集的时间处的测量取向的差值来确定3D空间中与参考点V1的位置相对应的位置。
这是通过确定在给定帧和前一帧中阵列E[](每一行共享相同时间)中采集每个估计的运动矢量的时间t来完成的。
然后使用由IMU 18测量的相机位置来确定当前帧以及先前采集的帧中阵列E[]的每一行的相机取向。这些测量可以四元数形式表示为表示在时间t处的相机取向的四元数函数Q(t)。Q(t)通过以间隔dt取样的角速度ω的数值积分获得。ω的值可通过陀螺仪测量为包含陀螺仪的局部坐标系轴周围的角速度的矢量:
ω=[ωxyz]
在不考虑偏差的情况下,考虑到在先前陀螺仪样本时间的装置取向Q(t-dt),可将更新的四元数
Figure GDA0004155459120000053
定义为:
Figure GDA0004155459120000051
在这种情况下,用点表示四元数乘法。因此,在间隔dt之后装置的新取向可计算如下:
Figure GDA0004155459120000052
并且这可归一化如下:
Figure GDA0004155459120000061
如所解释的,陀螺仪测量包含被称为陀螺仪偏差的恒定误差B=[Bx,By,Bz]。如果不消除,则偏差会导致随时间推移的误差积累,这会显著影响装置取向的测量。当偏差已知时,更新的四元数公式可具有以下形式:
Figure GDA0004155459120000062
在已知时间t和帧间隔df处的相机取向的情况下,可以计算前一帧中由V(例如V1、V2)表示的3D空间中点的位置,该前一帧由Vm表示:
Vm=V·(Q(t)-1·Q(t-df))。
-1次幂表示四元数共轭操作。
从以上描述将看出,使用四元数函数来确定Vm在计算上是高效的,然而,还可使用诸如旋转矩阵的其他技术来根据给定帧和先前采集的帧中的参考点的测量的取向来确定矢量Vm的坐标。
现在,如果我们考虑来自通过图像分析方法估计的阵列E[]的运动矢量之一被指示为
Figure GDA0004155459120000063
其中A对应于与3D空间锚定点V对应的2D参考点。因此,Y表示先前采集的帧中2D空间中A的位置。在已知相机的传感器定时的情况下,可以确定捕获点A下方像素的时间t,并将其与点Vm的基于测量的运动的位置关联。作为2D参考点位置上2D运动矢量/>
Figure GDA0004155459120000064
的结果,还可将点Y投射到3D空间中,再次使用与参考点相同的透镜投射模型变换,以形成3D空间中估计的矢量Ve
因此,在已知3D空间中与每个估计的运动矢量的结束点相同时间处的测量的取向Vm的情况下,我们可提供3D空间中对应的估计的取向Ve
在理想情况下,在不存在测量和估计误差的情况下,测量的和估计的运动应具有相同的效果(Vm=Ve)。然而,在实际情况下,将存在一些误差Vm≠Ve,如由以下各项之间的差值所指示:Vm1和Ve1;以及图3中的Vm2和Ve2;以及由图4中的Vm和Ve之间的差值所指示。
应当理解,阵列E[]内任何估计的运动矢量
Figure GDA0004155459120000071
和其在3D空间中的对应物Ve可包含由于噪声或由于被成像的场景内的对象运动而引起的误差。然而,差值的分量包括由IMU传感器偏差引起的系统误差,并且本发明方法试图尽可能有效地识别该误差。
如LászlóKundra和Péter Ekler所建议,识别系统误差的一种方法是使用最小二乘法来估计测量的矢量Vm和估计的矢量Ve之间的旋转矩阵。然而,由于运动矩阵中可存在显著数量的异常值,因此需要诸如RANSAC的方法来可靠地确定该旋转矩阵,并且这将消耗大量的CPU功率。另外,旋转矩阵将必须转换为旋转角度以补偿陀螺偏差并且这将増加若干成本高的三角函数。
另一方面,参见图4,本实施方案利用上文所确定的3D矢量的交叉乘积:
Vc=Vm×Ve
因为这与Vm和Ve之间的角度密切相关,并且该值可用于对上文所用的偏差估计B加以校正。
度量Vc的简单使用将取得一个帧或多个帧上的阵列E[]的单元中的至少一些的值的平均值/均值。然而,这样的度量将受到高水平噪声的影响,因为估计的运动测量尤其可包含由视差和移动对象引起的显著异常值。这些异常值将可能会显著影响平均值,导致较高的估计误差。
另一方面,使用中值往往更有效地消除异常值。然而,这种情况通常需要:
显著量的存储器,以保存对可能用于多个过去帧的所有矢量Vc的校正,以提供可靠的中值测量;并且
对大量数据进行分类,例如甚至对每一帧的256次测量进行分类,
对于便携式装置CPU或处理模块来说将是挑战。
在一些实施方案中,采用不需要存储器或分类的中值M的估计。第k个样本的一种此类估计M的递归公式如下:
Mk=Mk-1+ηsign(sk-Mk-1),
其中η是非常小的值(例如0.000001)并且s为当前样本值。
在这种情况下,该方法可用于如下直接从交叉乘积矢量Vc更新偏差矢量B的估计值:
B=B-1+ηsign(Vc),
其中B-1表示来自先前迭代的偏差估计。
然后可将该偏差值B用于上文的四元数测量中以实时在任何给定时刻提供更精确的相机取向测量。每次计算四元数更新时,使用B的最新估计值。即使随着时间推移的偏差漂移,这也提供了恒定的校正更新。
将会看到,使用该实施方案,根据源自多个帧的信息来更新偏差分量,而不存在需要存储值并确定大量值的中值的处理负担。
在以上所公开的实施方案的改进中,只有在运动估计后标记为有效的任何给定估计运动矢量阵列E[]内的选定矢量才用于偏差估计。事实上,可使用阵列E[]的运动矢量
Figure GDA0004155459120000081
的有效性或权重因子来改善偏差估计的稳健性。另外,在没有细节或运动速度非常快以导致阵列E[]的所有矢量被拒绝的场景的情况下,最后已知的偏差估计仍可使用。这种错误或异常情况不影响偏差估计或防止相机取向的计算。
现在参见图5,上述方法可概述如下。在步骤50处,使用透镜投射模型将对应于图像的估计的运动矢量阵列E[]内单元的参考点映射到3D球面空间中的锚定点。在步骤52处,采集新帧。在步骤54处,相对于先前采集的帧计算所采集帧的估计的运动矢量阵列E[]。在步骤56处,对于每个估计的运动阵列E[]的单元中的至少一些,例如指示有效运动度量的那些单元,使用透镜投射模型将根据单元的2D运动矢量变换的对应参考点映射到3D球面空间中,以提供3D空间中的矢量Ve。在步骤58处,使用由惯性测量单元提供的取向测量,根据针对当前帧的单元的采集时间与先前采集帧中的单元的采集时间的测量取向的差值来变换对应于单元的锚定点,以提供3D空间中的矢量Vm。(应当理解,步骤56和58可颠倒。)在步骤60处,确定矢量Ve和Vm的交叉乘积Vc。在步骤62处,使用交叉乘积的符号来更新偏差估计。如果帧中还存在运动矢量,则现在该方法返回到步骤52以处理下一个运动矢量。
这种方法可容易地扩展,以与WO2014/146983(参考:FN-389)和PCT专利申请号PCT/EP2017/050390(参考:FN-495)中所公开的其他运动估计方法共同起作用。例如,运动估计可基于来自正在成像的场景内的跟踪或匹配的特征点,而不对该方法产生任何显著改变。
因此,确定并比较测量的取向和基于估计的运动的取向的帧内参考点不需要在帧上有规律地分布,或者甚至不必在整个帧上分布。

Claims (13)

1.一种用于确定图像采集装置的惯性测量单元中的偏差的方法,包括:
基于所述图像采集装置的透镜投射模型将一个或多个图像帧之中的给定帧内的至少一个参考点映射到3D球面空间中,从而为每个参考点提供3D空间中的相应锚定点;
对于所述给定帧内的所述至少一个参考点:
在所述给定帧与先前采集的帧之间的所述参考点处获得帧间运动的估计;
从所述惯性测量单元获得在所述给定帧和所述先前采集的帧中所述参考点的采集时间的装置取向的度量,所述度量包含偏差分量;
根据在所述给定帧和所述先前采集的帧中的装置取向的所述度量中的差值将相应锚定点投射到3D空间,以提供3D矢量Vm
将从所述给定帧到所述先前采集的帧的所述点的所述估计的帧间运动的结果投射到3D空间中,以提供3D矢量Ve
提供所述3D矢量Vm和Ve的交叉乘积Vc,以及
针对所述一个或多个图像帧中多个参考点获得作为所述交叉乘积Vc的函数的更新的偏差分量值。
2.根据权利要求1所述的方法,包括对给定透镜投射模型仅执行一次所述映射。
3.根据权利要求1所述的方法,包括用滚动快门采集每个帧,使得给定帧内的一个参考点的采集时间不同于来自另一行所述帧的参考点的采集时间。
4.根据权利要求1所述的方法,其中所述先前采集的帧是紧接的先前采集的帧。
5.根据权利要求1所述的方法,包括将装置取向Q确定为:
Figure FDA0004155459090000021
其中
Q为表示在时间t处装置取向的四元数函数Q(t),
dt为样本间隔,
Figure FDA0004155459090000022
为四元数更新函数:/>
Figure FDA0004155459090000023
ω=[ωxyz]为瞬时装置角速度;并且
B为所述偏差分量。
6.根据权利要求5所述的方法,包括使所述装置取向Q归一化以将所述取向保持在所述3D球面空间中的单位球体上。
7.根据权利要求5所述的方法,还包括如下计算所述矢量Vm:Vm=V·(Q(t)-1·Q(t-df)),其中V是3D空间内的锚定点,t是所述给定帧内参考点的所述采集时间;并且df是所述给定帧和所述先前采集的帧之间的间隔。
8.根据权利要求1所述的方法,其中获得所述更新的偏差分量值确定如下:B=B-1+ηsign(Vc),其中η是变量并且η<<1且η>0,并且其中B-1是所述偏差分量的先前估计。
9.根据权利要求1所述的方法,其中所述参考点以规则模式分布在图像上。
10.根据权利要求1所述的方法,还包括仅选择被确定为有效的给定图像帧的参考点。
11.根据权利要求1所述的方法,还包括仅选择确定一些运动的给定图像帧的参考点。
12.一种被布置用于执行根据权利要求1所述的方法的图像处理装置。
13.一种计算机可读存储介质,包括计算机可读指令,当在图像处理装置中被执行时,所述计算机可读指令被布置为执行根据权利要求1所述的方法。
CN201810244044.7A 2017-03-24 2018-03-23 用于确定图像采集装置的惯性测量单元中的偏差的方法 Active CN108827341B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US15/468,409 2017-03-24
US15/468,409 US10097757B1 (en) 2017-03-24 2017-03-24 Method for determining bias in an inertial measurement unit of an image acquisition device

Publications (2)

Publication Number Publication Date
CN108827341A CN108827341A (zh) 2018-11-16
CN108827341B true CN108827341B (zh) 2023-07-07

Family

ID=61580950

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810244044.7A Active CN108827341B (zh) 2017-03-24 2018-03-23 用于确定图像采集装置的惯性测量单元中的偏差的方法

Country Status (3)

Country Link
US (3) US10097757B1 (zh)
EP (1) EP3379202B1 (zh)
CN (1) CN108827341B (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3060114B1 (fr) * 2016-12-13 2019-05-17 Commissariat A L'energie Atomique Et Aux Energies Alternatives Procede d'aide a la navigation, produit programme d'ordinateur et centrale de navigation inertielle associes
FR3090170B1 (fr) * 2018-12-12 2020-11-27 Safran Electronics & Defense Dispositif et procédé d’hybridation inertielle/vidéo
US10997731B2 (en) * 2019-06-14 2021-05-04 Rockwell Collins, Inc. Motion vector vision system integrity monitor
CN112129317B (zh) * 2019-06-24 2022-09-02 南京地平线机器人技术有限公司 信息采集时间差确定方法、装置以及电子设备、存储介质
CN110458887B (zh) * 2019-07-15 2022-12-06 天津大学 一种基于pca的加权融合室内定位方法
CN112414400B (zh) * 2019-08-21 2022-07-22 浙江商汤科技开发有限公司 一种信息处理方法、装置、电子设备和存储介质
US20230046465A1 (en) * 2021-07-30 2023-02-16 Gopro, Inc. Holistic camera calibration system from sparse optical flow
US11538192B1 (en) 2021-08-10 2022-12-27 Fotonation Limited Method for calibrating a vehicle cabin camera

Family Cites Families (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3543809A1 (de) * 1985-12-12 1987-06-19 Bosch Gmbh Robert Permanentmagneterregte synchronmaschine
JP3513950B2 (ja) 1993-12-14 2004-03-31 株式会社ニコン 像振れ補正カメラ
US5912676A (en) 1996-06-14 1999-06-15 Lsi Logic Corporation MPEG decoder frame memory interface which is reconfigurable for different frame store architectures
US6130912A (en) 1998-06-09 2000-10-10 Sony Electronics, Inc. Hierarchical motion estimation process and system using block-matching and integral projection
CN101196614B (zh) * 2000-05-12 2010-04-14 柯尼卡美能达精密光学株式会社 球面像差偏差矫正元件和球面像差偏差矫正单元
US6853909B2 (en) * 2001-12-03 2005-02-08 Applanix Corporation, Inc Walking stick navigator for position determination
US20030222977A1 (en) * 2002-06-03 2003-12-04 Kazutora Yoshino Intelligent system and 3D virtual object generator
EP1671216B1 (en) * 2003-10-09 2016-12-07 Honda Motor Co., Ltd. Moving object detection using low illumination depth capable computer vision
US7463753B2 (en) * 2004-09-15 2008-12-09 Raytheon Company FLIR-to-missile boresight correlation and non-uniformity compensation of the missile seeker
US7800628B2 (en) 2006-06-16 2010-09-21 Hewlett-Packard Development Company, L.P. System and method for generating scale maps
US8559514B2 (en) 2006-07-27 2013-10-15 Qualcomm Incorporated Efficient fetching for motion compensation video decoding process
US20080278633A1 (en) * 2007-05-09 2008-11-13 Mikhail Tsoupko-Sitnikov Image processing method and image processing apparatus
US8326077B2 (en) 2008-10-31 2012-12-04 General Instrument Corporation Method and apparatus for transforming a non-linear lens-distorted image
US8548766B2 (en) 2009-09-14 2013-10-01 Honeywell International Inc. Systems and methods for gyroscope calibration
FR2953940B1 (fr) * 2009-12-16 2012-02-03 Thales Sa Procede de geo-referencement d'une zone imagee
US8493454B1 (en) 2010-02-17 2013-07-23 Ambarella, Inc. System for camera motion compensation
US8825435B2 (en) * 2010-02-19 2014-09-02 Itrack, Llc Intertial tracking system with provision for position correction
GB2480422B (en) * 2010-02-25 2014-07-09 Imagination Tech Ltd Object tracking using graphics engine derived vectors in a motion estimation system
US9547910B2 (en) * 2010-03-04 2017-01-17 Honeywell International Inc. Method and apparatus for vision aided navigation using image registration
US8531504B2 (en) 2010-06-11 2013-09-10 Intel Corporation System and method for 3D video stabilization by fusing orientation sensor readings and image alignment estimates
US9626554B2 (en) * 2010-08-26 2017-04-18 Blast Motion Inc. Motion capture system that combines sensors with different measurement ranges
US8676498B2 (en) * 2010-09-24 2014-03-18 Honeywell International Inc. Camera and inertial measurement unit integration with navigation data feedback for feature tracking
US8344303B2 (en) * 2010-11-01 2013-01-01 Honeywell International Inc. Projectile 3D attitude from 3-axis magnetometer and single-axis accelerometer
CN102426703B (zh) * 2011-08-11 2014-04-09 重庆市勘测院 车载全景影像采集平台的航向和俯仰角速度获取方法
FR2980005A1 (fr) * 2011-09-09 2013-03-15 Movea Procede de controle d'un curseur par des mesures d'attitude d'un pointeur et pointeur mettant en oeuvre ledit procede
KR101260378B1 (ko) * 2011-12-08 2013-05-07 서울대학교산학협력단 구면진자 운동을 이용한 무인항공기 유도기법
FR2992735B1 (fr) * 2012-06-29 2015-07-03 Movea Procede de calibration continue d'un capteur
US8928730B2 (en) 2012-07-03 2015-01-06 DigitalOptics Corporation Europe Limited Method and system for correcting a distorted input image
CN102737236B (zh) * 2012-07-06 2015-06-24 北京大学 一种基于多模态传感器数据自动获取车辆训练样本方法
JP5984574B2 (ja) 2012-08-14 2016-09-06 キヤノン株式会社 撮像システム及びその制御方法、撮像装置
GB201303076D0 (en) * 2013-02-21 2013-04-10 Isis Innovation Generation of 3D models of an environment
US8970709B2 (en) 2013-03-13 2015-03-03 Electronic Scripting Products, Inc. Reduced homography for recovery of pose parameters of an optical apparatus producing image data with structural uncertainty
EP2826022B1 (en) 2013-03-18 2015-10-21 FotoNation Limited A method and apparatus for motion estimation
US9232138B1 (en) 2013-06-03 2016-01-05 Amazon Technologies, Inc. Image stabilization techniques
US20150092048A1 (en) 2013-09-27 2015-04-02 Qualcomm Incorporated Off-Target Tracking Using Feature Aiding in the Context of Inertial Navigation
US9390344B2 (en) * 2014-01-09 2016-07-12 Qualcomm Incorporated Sensor-based camera motion detection for unconstrained slam
GB2526508A (en) * 2014-02-27 2015-12-02 Atlantic Inertial Systems Ltd Inertial navigation system
US10197416B2 (en) * 2015-01-21 2019-02-05 Quicklogic Corporation Multiple axis wrist worn pedometer
US10242281B2 (en) 2015-07-05 2019-03-26 RideOn Ltd. Hybrid orientation system
WO2017140438A1 (en) 2016-02-19 2017-08-24 Fotonation Limited A method of stabilizing a sequence of images
CN105806364B (zh) * 2016-03-10 2018-09-11 太原理工大学 一种矿用回转钻机测斜仪探管的校准方法
US10506163B2 (en) * 2016-06-10 2019-12-10 Invensense, Inc. Systems and methods for synchronizing sensor data

Also Published As

Publication number Publication date
EP3379202B1 (en) 2020-10-07
US20200389592A1 (en) 2020-12-10
US20180278847A1 (en) 2018-09-27
CN108827341A (zh) 2018-11-16
EP3379202A1 (en) 2018-09-26
US20190052807A1 (en) 2019-02-14
US10757333B2 (en) 2020-08-25
US10097757B1 (en) 2018-10-09
US11223764B2 (en) 2022-01-11

Similar Documents

Publication Publication Date Title
CN108827341B (zh) 用于确定图像采集装置的惯性测量单元中的偏差的方法
CN109993113B (zh) 一种基于rgb-d和imu信息融合的位姿估计方法
US11057567B2 (en) Anti-shake method and apparatus for panoramic video, and portable terminal
Li et al. Real-time motion tracking on a cellphone using inertial sensing and a rolling-shutter camera
CN110084832B (zh) 相机位姿的纠正方法、装置、系统、设备和存储介质
Hanning et al. Stabilizing cell phone video using inertial measurement sensors
US9967463B2 (en) Method for camera motion estimation and correction
EP2640057B1 (en) Image processing device, image processing method and program
EP2640059B1 (en) Image processing device, image processing method and program
CN106709222B (zh) 基于单目视觉的imu漂移补偿方法
CN110660098A (zh) 基于单目视觉的定位方法和装置
CN103875020A (zh) 基于定向传感器解决单应性分解不明确性
CN103900473A (zh) 一种基于摄像头与重力感应器融合的智能移动设备六自由度位姿估计方法
CN107942090B (zh) 一种基于模糊星图提取光流信息的航天器角速度估计方法
Huttunen et al. A monocular camera gyroscope
CN111955005B (zh) 处理360度图像内容的方法和系统
CN109917644B (zh) 一种提高视觉惯导系统鲁棒性的方法、装置和机器人设备
CN114440877B (zh) 一种异步多相机视觉惯性里程计定位方法
US9210384B2 (en) System and method for real time registration of images
JP7240241B2 (ja) 撮像装置及びその制御方法、姿勢角算出装置、プログラム、記憶媒体
CN113301249A (zh) 全景视频处理方法、装置、计算机设备和存储介质
CN115900639B (zh) 应用于无人机上云台相机的航向角矫正方法和服务器
CN107911615A (zh) 一种灰度投影稳像方法及系统
CN117333551A (zh) 单目vio系统的初始化方法、电子设备和存储介质
CN117007078A (zh) 陀螺仪零偏的估计方法、装置、设备、存储介质和产品

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant