CN108818880A - 全向行驶的熔融沙打印平台及熔融沙粒打印成型方法 - Google Patents

全向行驶的熔融沙打印平台及熔融沙粒打印成型方法 Download PDF

Info

Publication number
CN108818880A
CN108818880A CN201810830349.6A CN201810830349A CN108818880A CN 108818880 A CN108818880 A CN 108818880A CN 201810830349 A CN201810830349 A CN 201810830349A CN 108818880 A CN108818880 A CN 108818880A
Authority
CN
China
Prior art keywords
sand
carrier gas
nozzle
gas channel
melting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810830349.6A
Other languages
English (en)
Other versions
CN108818880B (zh
Inventor
严彪
严鹏飞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Xinlin Technology Development Co Ltd
Original Assignee
Shanghai Xinlin Technology Development Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Xinlin Technology Development Co Ltd filed Critical Shanghai Xinlin Technology Development Co Ltd
Priority to CN201810830349.6A priority Critical patent/CN108818880B/zh
Publication of CN108818880A publication Critical patent/CN108818880A/zh
Application granted granted Critical
Publication of CN108818880B publication Critical patent/CN108818880B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B1/00Producing shaped prefabricated articles from the material
    • B28B1/24Producing shaped prefabricated articles from the material by injection moulding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Fluidized-Bed Combustion And Resonant Combustion (AREA)

Abstract

本发明公开了一种全向行驶的熔融沙打印平台,包括全向行驶的移动平台和超音速氧乙炔爆炸燃烧喷嘴,该喷嘴包括载气管道、沙粒进料管道、一级共振管、二级共振管、出口导管、氧气管道和乙炔管道;载气管道与一级共振管位于同一直线上,二级共振管与出口导管位于同一直线上,载气管道、一级共振管、二级共振管和出口导管共同形成十字交叉的hartmann谐振腔,沙粒进料管道垂直于载气管道设置,并与载气管道连通,氧气管道和乙炔管道与十字交叉的hartmann谐振腔交叉口处连通。喷嘴安装于移动平台上的机械手前端,本发明能够将沙粒熔融并以粘液态或者半固态的状态喷出,并打印成型。

Description

全向行驶的熔融沙打印平台及熔融沙粒打印成型方法
技术领域
本发明公开了一种3D打印装置和打印方法,特别是一种全向行驶的熔融沙打印平台及熔融沙粒打印成型方法。
背景技术
3D打印机又称三维打印机,是一种累积制造技术,即快速成形技术的一种机器,3D打印机的工作原理与普通打印机基本相同,是通过电脑控制把“打印材料”一层一层地叠加起来,最终把计算机上的蓝图变成实物,这项技术常常在模具制造、工业设计等领域,被用于制造模型或者用于一些产品的直接制造,目前存在多种3D打印技术,常用的技术包括粘结材料三维打印、光固化三维打印以及熔融材料三维打印等。对于熔融材料,现有的方式一般为先将材料熔融导出之后使用喷嘴喷出高速气体冲击熔融材料最后以粉末的形式喷出。这样的结构较为复杂,其熔融过程需要有熔融装置,熔融装置下需要接导流装置,喷嘴一般设置在导流装置末端将熔融材料喷射开。这样的喷射方式使得熔融材料无法准确的到达冲击选区,熔融材料被冲散开其各部分速度不一致导致其最终成型的结构各部分强度不尽相同。
Laval(拉瓦尔)超音速喷嘴是现行最常用的气雾化喷嘴形式,它主要能使喷嘴获得超音速气流,这有利于粉末的细化。具有Hartmann十字交叉共振管是一种能在流场中产生高频震荡的结构结构的超音速喷嘴则能够使雾化气流得到稳定的压力振动。
现有的3D打印机一般只能打印体积比较小的零件,对于如建筑物这样体型庞大的物体则无法打印,并且现有的3D打印机需要依赖现有的熔融材料进行打印而不能自行生成熔融材料。
发明内容
发明目的:本发明提供一种全向行驶的熔融沙打印平台及熔融沙粒打印成型方法,该全向行驶的熔融沙打印平台能够直接熔融沙粒并将呈粘液态或者半固态的沙粒准确的喷射成型,可以打印如建筑物这类的体型庞大的构件。
技术方案:一种全向行驶的熔融沙打印平台,包括全向移动平台和燃烧喷嘴,其中全向移动平台包括全向移动底座,安装于全向移动底座上的旋转轴,固定于旋转轴上的升降台以及固定在升降台上的悬臂;燃烧喷嘴安装于悬臂末端;燃烧喷嘴包括十字交叉的Hartmann双级共振管和具有laval管自适应喉部特征的喷嘴以及载气管道,氧气管道与乙炔管道与双级共振管的十字交叉口连通,沙粒由载气管道进入十字交叉的Hartmann双级共振管的十字交叉口处进行熔融并由喷嘴喷出。
其中,燃烧喷嘴包括载气管道、一级共振管、二级共振管和喷嘴,载气管道与封闭的一级共振管在一条直线上,封闭的二级共振管和喷嘴位于同一直线上,载气管道、一级共振管、二级共振管、喷嘴形成十字交叉的Hartmann双级共振管,十字交叉处设有火花塞,载气管道入口处具有laval管自适应喉部特征,沙粒进料管与载气管道连通,氧气管道与乙炔管道与双级共振管的十字交叉口连通。
其中,氧气管道、乙炔管道以及载气管道中心线位于同一平面上,且氧气管道与乙炔管道关于载气管道对称设置。
其中,为了能够控制沙粒进入量以及氧气和乙炔冲入量,载气管道、沙粒进料管、氧气管道或乙炔管道上设置有流量阀。
其中,为了使得喷嘴喷出熔融态沙粒时冲击力度足够大,喷嘴整体呈圆锥形,喷嘴出口处截面直径最小,使得出口熔融沙粒喷出速度达到最大值。喷嘴靠近出口处还可以设置laval管自适应喉部特征,从而进一步增大熔融沙粒的喷出速度。喷嘴设置成锥形的同时,载气管道、一级共振管和二级共振管交汇处管径相同且相切,载气管道和一级共振管与喷嘴的侧边相切,喷嘴与二级共振管交汇处的内部管道截面直径大于二级共振管在交汇处的截面直径。这样的结构使得沙粒进入时沿着锥形喷嘴的侧壁在锥形喷嘴内部环绕形成旋流,从而延长沙粒在喷嘴内部的停留时间,使得沙粒能够充分熔融。
为了使得沙粒能够充分熔融,火花塞沿着喷嘴侧壁设置有多个,氧气管道与乙炔管道设有多个分支管分别与喷嘴设有火花塞的高度处的内管道连通,这样在喷嘴的入口到出口均可以保持高温状态,使得喷出的沙粒得到充分的加热熔融。
本专利发明还公开了一种利用上述的全向行驶的熔融沙打印平台进行沙粒熔融打印成型的方法:包括如下步骤:
步骤1)将沙粒进料管的入口处连接软管,将软管埋入原料沙粒池;
步骤2)在氧气管道与乙炔管道内分别通入氧气和乙炔气体,氧气和乙炔的容量比例为1∶1~1∶1.5;
步骤3)当喷嘴十字交叉处的温度在1700℃~2000℃之间时,在载气管道内通入高压惰性气体,高压惰性气体在载气管道内形成高速气流,使得载气管道内形成负压将沙粒吸入双级共振管内部进行熔融并由喷嘴处喷出,此时控制全向移动底座移动,并控制旋转轴上的升降台带动悬臂移动至合适位置,保证燃烧喷嘴的喷嘴正对砂型成型位置,且距离该位置25~150mm。
有益效果:本发明所提供的全向行驶的熔融沙打印平台能够充分的将沙粒熔融,自行生成粘液态或者半固态的沙粒,并喷出具有足够的冲击力冲击选区的粘流状的沙粒,在外部凝固成型为致密的立体构件。本发明所提供的沙粒熔融打印成型的方法能够合理的使用自然环境中现有的沙粒进行3D打印成型为固定建筑物或致密的大型构件。
附图说明
图1为本发明的结构示意图;
图2为本发明实施例1燃烧喷嘴的主视剖视图;
图3为本发明实施例1燃烧喷嘴的主视图;
图4为本发明实施例1燃烧喷嘴的立体图;
图5为本发明实施例1燃烧喷嘴的主视剖视图;
图6为本发明实施例2燃烧喷嘴的左视图;
图7为本发明实施例2燃烧喷嘴的A-A剖视图。
具体实施方式
实施例1
如图1所示,一种全向行驶的熔融沙打印平台,包括全向移动平台1和燃烧喷嘴2,全向移动平台1包括全向移动底座11,安装于全向移动底座11上的旋转轴12,固定于旋转轴12上的升降台13以及固定在升降台13上的悬臂14;燃烧喷嘴2安装于悬臂14末端,悬臂14可伸缩,悬臂14伸出全向移动底座11。全向平台11采用激光雷达进行导航。全向移动平台1可采用如专利公开号为CN106647741A的专利文献中所公开的基于激光导航的全方位运动机构控制系统进行全方位运动控制,即采用激光雷达进行导航和定位。旋转轴12和升降台13全方位运动机构控制系统发出的指令进行旋转或者升降,从而使得燃烧喷嘴2喷出的1熔融沙粒可实现逐层打印。
如图2所示,燃烧喷嘴具体包括载气管道21、沙粒进料管22、一级共振管23、二级共振管24和喷嘴25,载气管道21与封闭的一级共振管23在一条直线上,封闭的二级共振管24和喷嘴25位于同一直线上,载气管道21、一级共振管23、二级共振管24、喷嘴25形成十字交叉口29的Hartmann双级共振管,载气管道21与一级共振管23的中心线位于同一直线上,同样的喷嘴25与二级共振管24的中心线也位于同一直线上。
十字交叉口29处设有火花塞28,载气管道21入口处具有laval管自适应喉部201,沙粒进料管22与载气管道21垂直连通,并且沙粒进料管22位于载气管道21入口处laval管的自适应喉部201靠近十字交叉Hartmann双级共振管的一侧。氧气管道26与乙炔管道27与双级共振管的十字交叉口连通。氧气管道26、乙炔管道27以及载气管道21中心线位于同一平面上,且均设置于锥形外壳体202内,且氧气管道26与乙炔管道27关于载气管道21对称设置。火花塞28沿着喷嘴25侧壁高度方向设置有多个,氧气管道26与乙炔管道27设有多个分支管分别与喷嘴25设有火花塞28的高度处的内管道连通。
为了能够调节沙子吸入速率以及氧气和乙炔充入速率,载气管道21、沙粒进料管22、氧气管道26或乙炔管道27上设置有流量阀。
为了使得喷出的熔融态沙粒能够有足够的冲击力冲击选区,喷嘴25靠近出口处设置有laval管自适应喉部特征。
如图2所示,载气管道21从入口处一直沿着相同的斜率收缩至喉部201,喉部201距离载气管道21入口处的距离为载气管道总长的1/8~1/6,而沙粒进料管22离入口处距离不超过载气管道21总长的1/5,使得沙粒能够被充分加速雾化,当沙粒到达十字交叉口29处时其粒径变小,更加有利于加热熔融。
如图5所示,载气管道21从入口处一直沿着相同的斜率收缩至喉部201,喉部201再沿着相同的斜率一直扩张至十字交叉口29即载气管道21和一级共振管23、二级共振管24交汇处。同样的,喷嘴25内部管径则从十字交叉口29处收缩至其靠近出口处的laval管自适应喉部,再由该自适应喉部扩张至出口。此种设计可充分利用管道长度,加速气体或熔融态沙粒。
实施例2
如图6所示,实施例1中的全向行驶的熔融沙打印平台的燃烧喷嘴2还可以采用如下结构:
燃烧喷嘴2包括载气管道21、沙粒进料管22、一级共振管23、二级共振管24和喷嘴25,载气管道21与封闭的一级共振管23在一条直线上,封闭的二级共振管24和喷嘴25位于同一直线上,载气管道21、一级共振管23、二级共振管24、喷嘴25形成十字交叉口29的Hartmann双级共振管,十字交叉口29处设有火花塞28,载气管道21入口处具有laval管自适应喉部201,沙粒进料管22与载气管道21垂直连通,并且沙粒进料管22位于载气管道21入口处laval管的自适应喉部201靠近十字交叉Hartmann双级共振管的一侧。氧气管道26与乙炔管道27与双级共振管的十字交叉口连通。氧气管道26、乙炔管道27以及载气管道21中心线位于同一平面上,且氧气管道26与乙炔管道27关于载气管道21对称设置。火花塞28沿着喷嘴25侧壁高度方向设置有多个,氧气管道26与乙炔管道27设有多个分支管分别与喷嘴25设有火花塞28的高度处的内管道连通。
为了能够调节沙子吸入速率以及氧气和乙炔充入速率,载气管道21、沙粒进料管22、氧气管道26或乙炔管道27上设置有流量阀。
为了使得喷出的熔融态沙粒能够有足够的冲击力冲击选区,喷嘴25靠近出口处设置有laval管自适应喉部特征。
本实施例中喷嘴25内部管道整体呈圆锥形,喷嘴25出口处截面直径最小。喷嘴25靠近出口处设有laval管自适应喉部特征。该laval管自适应喉部特征离喷嘴25入口处距离为喷嘴25总高度的1/10~1/12,喷嘴25在十字交叉口29处的截面直径为载气管道21、一级共振管23或二级共振管24的1.5~5倍,载气管道21、一级共振管23或二级共振管24在十字交叉口29处的截面均为圆形且直径相等。载气管道21、一级共振管23与二级共振管24交汇处相切,载气管道21和一级共振管23中心线位于同一直线上且与喷嘴25的侧边相切。
上述喷嘴25的结构形式使得当沙粒进入十字交叉口29处时,形成旋流,使得沙粒能够更长时间的停留在喷嘴内进行充分熔融,当沙粒熔融后由于相互凝结,重量变大往下坠落,但未被充分熔融的沙粒则由于旋流的作用向上运动,待充分熔融后再喷出。
一种利用上述两个实施例中的全向行驶的熔融沙打印平台进行沙粒熔融打印成型的方法:包括如下步骤:
步骤1)将沙粒进料管的入口处连接软管,将软管埋入原料沙粒池;
步骤2)在氧气管道6与乙炔管道7内分别通入氧气和乙炔气体,氧气和乙炔的容量比例为1∶1~1∶1.5;
步骤3)当喷嘴十字交叉处的温度在1700℃~2000℃之间时,在载气管道内通入高压惰性气体,高压惰性气体在载气管道内形成高速气流,使得载气管道内形成负压将沙粒吸入双级共振管内部进行熔融并由喷嘴5处喷出,此时控制全向移动底座移动,并控制旋转轴上的升降台带动悬臂移动至合适位置,保证燃烧喷嘴的喷嘴5正对砂型成型位置,且距离该位置25~150mm。

Claims (10)

1.一种全向行驶的熔融沙打印平台,包括全向移动平台(1)和燃烧喷嘴(2),所述全向移动平台(1)包括全向移动底座(11),安装于全向移动底座(11)上的旋转轴(12),固定于旋转轴(12)上的升降台(13)以及固定在升降台(13)上的悬臂(14);所述燃烧喷嘴(2)安装于悬臂(14)末端;所述燃烧喷嘴(2)包括十字交叉的Hartmann双级共振管和具有laval管自适应喉部特征的喷嘴(25)以及载气管道(21),氧气管道(26)与乙炔管道(27)与双级共振管的十字交叉口(29)连通,沙粒由载气管道(21)进入十字交叉的Hartmann双级共振管的十字交叉口(29)处进行熔融并由喷嘴(25)喷出。
2.根据权利要求1所述的全向行驶的熔融沙打印平台,其特征在于:所述全向平台(11)采用激光雷达进行导航。
3.根据权利要求1所述的全向行驶的熔融沙打印平台,其特征在于:所述燃烧喷嘴(2)包括载气管道(21)、一级共振管(23)、二级共振管(4)和喷嘴(25),载气管道(21)与封闭的一级共振管(3)在一条直线上,封闭的二级共振管(4)和喷嘴(25)位于同一直线上,载气管道(21)、一级共振管(23)、二级共振管(24)、喷嘴(25)形成十字交叉的Hartmann双级共振管,十字交叉口(29)处设有火花塞(28),其特征在于:载气管道(21)入口处具有laval管自适应喉部(201),沙粒进料管(22)与载气管道(21)连通,沙粒进料管(22)位于载气管道(21)入口处喉部(201)靠近十字交叉口(29)的一侧,氧气管道(26)与乙炔管道(27)与双级共振管的十字交叉口连通。
4.根据权利要求3所述的全向行驶的熔融沙打印平台,其特征在于:所述氧气管道(26)、乙炔管道(27)以及载气管道(21)中心线位于同一平面上,且氧气管道(26)与乙炔管道(27)关于载气管道(21)对称设置。
5.根据权利要求3所述的全向行驶的熔融沙打印平台,其特征在于:所述载气管道(21)、沙粒进料管(22)、氧气管道(26)或乙炔管道(27)上设置有流量阀。
6.根据权利要求3所述的全向行驶的熔融沙打印平台,其特征在于:所述喷嘴(25)整体呈圆锥形,喷嘴(25)出口处截面直径最小。
7.根据权利要求3所述的全向行驶的熔融沙打印平台,其特征在于:所述所述喷嘴(25)整体呈向出口处截面减小的圆锥形,喷嘴(25)靠近出口处设有laval管自适应喉部特征。
8.根据权利要求6或7所述的全向行驶的熔融沙打印平台,其特征在于:所述载气管道(21)、一级共振管(3)和二级共振管(4)交汇处管径相同且相切,载气管道(21)和一级共振管(3)与喷嘴(25)的侧边相切,喷嘴(25)与二级共振管(4)交汇处的内部管道截面直径大于二级共振管(4)在交汇处的截面直径。
9.根据权利要求3所述的全向行驶的熔融沙打印平台,其特征在于:所述火花塞(28)沿着喷嘴(25)侧壁设置有多个,所述氧气管道(26)与乙炔管道(27)设有多个分支管分别与喷嘴(25)设有火花塞(28)的高度处的内管道连通。
10.一种利用权利要求3所述的全向行驶的熔融沙打印平台进行熔融沙粒打印成型的方法:包括如下步骤:
步骤1)将沙粒进料管(22)的入口处连接软管,将软管埋入原料沙粒池;
步骤2)在氧气管道(26)与乙炔管道(27)内分别通入氧气和乙炔气体,氧气和乙炔的容量比例为1∶1~1∶1.5;
步骤3)当喷嘴十字交叉处的温度在1700℃~2000℃之间时,在载气管道(21)内通入高压惰性气体,高压惰性气体在载气管道(21)内形成高速气流,使得载气管道(21)内形成负压将沙粒吸入双级共振管内部进行熔融并由喷嘴(25)处喷出,此时控制全向移动底座(11)移动,并控制旋转轴(12)上的升降台(13)带动悬臂(14)移动至合适位置,保证燃烧喷嘴(2)的喷嘴(25)正对砂型成型位置,且距离该位置25~150mm。
CN201810830349.6A 2018-07-25 2018-07-25 全向行驶的熔融沙打印平台及熔融沙粒打印成型方法 Active CN108818880B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810830349.6A CN108818880B (zh) 2018-07-25 2018-07-25 全向行驶的熔融沙打印平台及熔融沙粒打印成型方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810830349.6A CN108818880B (zh) 2018-07-25 2018-07-25 全向行驶的熔融沙打印平台及熔融沙粒打印成型方法

Publications (2)

Publication Number Publication Date
CN108818880A true CN108818880A (zh) 2018-11-16
CN108818880B CN108818880B (zh) 2023-12-12

Family

ID=64139666

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810830349.6A Active CN108818880B (zh) 2018-07-25 2018-07-25 全向行驶的熔融沙打印平台及熔融沙粒打印成型方法

Country Status (1)

Country Link
CN (1) CN108818880B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110513044A (zh) * 2019-09-18 2019-11-29 河南理工大学 一种自激振荡超临界二氧化碳射流的形成方法及装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2297282Y (zh) * 1997-10-06 1998-11-18 李国平 除锈喷涂机
CN101219361A (zh) * 2007-08-29 2008-07-16 中北大学 制备微粒的喷嘴及利用该喷嘴制备微胶囊粒子的方法
CN104353838A (zh) * 2014-10-17 2015-02-18 同济大学 一种二级laval与hartmann结构融合的超音速雾化喷嘴
US20170087632A1 (en) * 2015-09-24 2017-03-30 Markforged, Inc. Molten metal jetting for additive manufacturing
CN107351420A (zh) * 2016-05-05 2017-11-17 哈尔滨师范大学 一种3d打印机的调平装置以及自动调平方法
CN209832001U (zh) * 2018-07-25 2019-12-24 上海莘临科技发展有限公司 全向行驶的熔融沙打印平台

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2297282Y (zh) * 1997-10-06 1998-11-18 李国平 除锈喷涂机
CN101219361A (zh) * 2007-08-29 2008-07-16 中北大学 制备微粒的喷嘴及利用该喷嘴制备微胶囊粒子的方法
CN104353838A (zh) * 2014-10-17 2015-02-18 同济大学 一种二级laval与hartmann结构融合的超音速雾化喷嘴
US20170087632A1 (en) * 2015-09-24 2017-03-30 Markforged, Inc. Molten metal jetting for additive manufacturing
CN107351420A (zh) * 2016-05-05 2017-11-17 哈尔滨师范大学 一种3d打印机的调平装置以及自动调平方法
CN209832001U (zh) * 2018-07-25 2019-12-24 上海莘临科技发展有限公司 全向行驶的熔融沙打印平台

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110513044A (zh) * 2019-09-18 2019-11-29 河南理工大学 一种自激振荡超临界二氧化碳射流的形成方法及装置

Also Published As

Publication number Publication date
CN108818880B (zh) 2023-12-12

Similar Documents

Publication Publication Date Title
CN102319898B (zh) 一种制备合金及金属基复合材料零部件的喷射成形系统
CN101332511B (zh) 喷射装置、喷射成形雾化室及其喷射成形方法
CN104057097B (zh) 一种双环超音速雾化器
CN109570517B (zh) 一种超音速拉瓦尔喷管结构合金熔体雾化器的设计方法
CN201900264U (zh) 一种非限制性高压气体雾化喷嘴
CN102145387A (zh) 双喷嘴扫描斜喷式圆柱坯喷射成形装置
CN208894439U (zh) 超音速氧乙炔爆炸燃烧喷嘴
CN105618772B (zh) 一种结构参数可调的超音速雾化喷嘴
CN102884207A (zh) 用于将气体吹入到冶金容器中的装置
CN106525627A (zh) 一种超音速喷砂枪
CN108818880A (zh) 全向行驶的熔融沙打印平台及熔融沙粒打印成型方法
CN105618773A (zh) 一种用于制备3d打印金属粉末的气雾化装置
CN113857484A (zh) 一种减少卫星粉的气雾化制粉装置
CN202447671U (zh) 制备微细金属粉末的二次加速超音速防返风环缝雾化喷嘴
CN209832001U (zh) 全向行驶的熔融沙打印平台
CN107042310A (zh) 一种气体雾化喷嘴
CN202684095U (zh) 一种制备金属及合金粉末的高能气体雾化喷嘴
CN108745677A (zh) 超音速氧乙炔爆炸燃烧喷嘴及沙粒熔融方法
CN109338022A (zh) 高温液态钢渣雾化拉瓦尔喷管、雾化风箱与雾化方法
CN201693177U (zh) 制备金属超微粉末的雾化喷嘴
CN207840135U (zh) 一种开放式雾化器
CN2382477Y (zh) 高速粒子火焰喷涂装置
CN216378348U (zh) 一种热喷涂设备
CN202052936U (zh) 双喷嘴扫描斜喷式圆柱坯喷射成形装置
CN206122020U (zh) 一种机器人外壳内凹曲面分段式喷涂装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant