CN108816258B - In-situ doped hollow cobalt phosphide nanoparticle hollow carbon material, preparation method and application thereof in catalytic electrolysis of water for hydrogen production - Google Patents

In-situ doped hollow cobalt phosphide nanoparticle hollow carbon material, preparation method and application thereof in catalytic electrolysis of water for hydrogen production Download PDF

Info

Publication number
CN108816258B
CN108816258B CN201810604664.7A CN201810604664A CN108816258B CN 108816258 B CN108816258 B CN 108816258B CN 201810604664 A CN201810604664 A CN 201810604664A CN 108816258 B CN108816258 B CN 108816258B
Authority
CN
China
Prior art keywords
hollow
cobalt
zif
preparation
carbon composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810604664.7A
Other languages
Chinese (zh)
Other versions
CN108816258A (en
Inventor
张恺
陈一新
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jilin University
Original Assignee
Jilin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jilin University filed Critical Jilin University
Priority to CN201810604664.7A priority Critical patent/CN108816258B/en
Publication of CN108816258A publication Critical patent/CN108816258A/en
Application granted granted Critical
Publication of CN108816258B publication Critical patent/CN108816258B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/185Phosphorus; Compounds thereof with iron group metals or platinum group metals
    • B01J27/1853Phosphorus; Compounds thereof with iron group metals or platinum group metals with iron, cobalt or nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/091Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds
    • C25B11/095Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds at least one of the compounds being organic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Electrochemistry (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

一种原位掺杂中空磷化钴纳米微粒的具有十二面体形貌的中空碳材料的制备方法及其在催化电解水产氢中的应用,属于催化电解水产氢技术领域。具体步骤为:(1)含有钴离子的具有十二面体形貌的金属有机框架材料ZIF‑67的制备;(2)含钴的金属有框架材料ZIF‑67与多巴胺单体反应生成含有钴配位掺杂的中空聚合物纳米材料;(3)氧化钴/碳复合中空纳米材料的制备;(4)中空磷化钴/碳复合中空纳米材料的制备。该材料的尺寸大小可以依据ZIF‑67的大小来进行调整;在催化电解水产氢的性能测试中,做为阴极的电极材料表现出了非常好的电催化活性与稳定性。因此,本发明材料在作为催化电解水产氢的电极材料具有非常好的应用前景。

Figure 201810604664

The invention discloses a preparation method of a hollow carbon material with dodecahedral morphology doped with hollow cobalt phosphide nanoparticles in situ and its application in the catalytic electrolysis of water for hydrogen production, belonging to the technical field of catalytic electrolysis of water for hydrogen production. The specific steps are: (1) preparation of metal-organic framework material ZIF-67 containing cobalt ions with dodecahedral morphology; (2) reaction of cobalt-containing metal framework material ZIF-67 with dopamine monomer to generate cobalt-containing complex Site-doped hollow polymer nanomaterials; (3) preparation of cobalt oxide/carbon composite hollow nanomaterials; (4) preparation of hollow cobalt phosphide/carbon composite hollow nanomaterials. The size of the material can be adjusted according to the size of ZIF-67; in the performance test of catalytic electrolysis of water for hydrogen production, the electrode material used as the cathode showed very good electrocatalytic activity and stability. Therefore, the material of the present invention has a very good application prospect as an electrode material for catalyzing the electrolysis of water for hydrogen production.

Figure 201810604664

Description

一种原位掺杂中空磷化钴纳米微粒的中空碳材料、制备方法 及其在催化电解水产氢中的应用In-situ doped hollow cobalt phosphide nanoparticle hollow carbon material and preparation method and its application in catalytic electrolysis of water for hydrogen production

技术领域technical field

本发明属于催化电解水产氢技术领域,具体涉及一种原位掺杂中空磷化钴纳米微粒的具有十二面体形貌的中空碳材料、制备方法及其在催化电解水产氢中的应用。The invention belongs to the technical field of catalytic electrolysis of water for hydrogen production, and in particular relates to a hollow carbon material with dodecahedral morphology doped with hollow cobalt phosphide nanoparticles in situ, a preparation method and its application in catalytic electrolysis of water for hydrogen production.

背景技术Background technique

由于全球能源危机及其相关的环境问题等,促使科研工作者在努力寻找能够代替化石燃料的可再生能源,其中电解水产氢是一条十分具有前景的途径。由于高能量转换效率,几乎无污染,广阔的应用前景等优点,电解水产氢引起了研究人员对于电极材料广泛的关注。目前,铂族金属有着最高的产氢活性,但是高成本,产量低的缺点限制了其广泛应用。因此,对具有高催化活性的非贵金属材料的探究得到了更多的关注。尽管许多新兴材料相比于贵金属类材料已经有了一些明显的优势,但是目前产氢电极材料仍存在一些缺点,例如制作工艺复杂,催化活性低,比表面积小等。影响催化活性的因素主要有两个,一个是金属与氢之间的作用能,一个是材料的结构与比表面积。对此,采用比表面积较大的中空碳材料,并在其中负载具有高吸附氢能力的过渡金属纳米粒子可以有效克服以上的问题。例如Chen研究组以具有核壳结构的金属有机框架材料ZIF-8@ZIF-67作为模板[1],经过碳化,磷化,制备出了具有中空结构并且含有磷化钴纳米粒子的复合材料,该材料表现出了优异的催化电解水产氢与产氧性能(电流密度为10mA/cm-2时,过电势分别为115mV和310mV)。Due to the global energy crisis and related environmental problems, researchers are making efforts to find renewable energy sources that can replace fossil fuels. Hydrogen production from water electrolysis is a very promising approach. Due to the advantages of high energy conversion efficiency, almost no pollution, and broad application prospects, electrolysis of water for hydrogen production has attracted extensive attention of researchers on electrode materials. At present, platinum group metals have the highest hydrogen production activity, but the disadvantages of high cost and low yield limit their wide application. Therefore, the exploration of non-precious metal materials with high catalytic activity has received more attention. Although many emerging materials have some obvious advantages compared to noble metal materials, there are still some shortcomings in current hydrogen-producing electrode materials, such as complex fabrication process, low catalytic activity, and small specific surface area. There are two main factors that affect the catalytic activity, one is the interaction energy between metal and hydrogen, and the other is the structure and specific surface area of the material. In this regard, using a hollow carbon material with a large specific surface area and supporting transition metal nanoparticles with high hydrogen adsorption capacity in it can effectively overcome the above problems. For example, Chen's research group used the metal-organic framework material ZIF-8@ZIF-67 with a core-shell structure as a template [1] , and after carbonization and phosphating, a composite material with a hollow structure and containing cobalt phosphide nanoparticles was prepared. The material exhibits excellent catalytic water electrolysis for hydrogen and oxygen production (overpotentials are 115mV and 310mV, respectively, at a current density of 10mA/cm -2 ).

基于此,本发明提出了一种中空金属磷化物与碳复合的中空纳米材料做为电极材料应用于催化电解水产氢中。通过配位竞争诱导聚合的方法制备出负载有钴的聚合物中空纳米材料,之后经过碳化,磷化,得到含有中空磷化钴粒子的中空碳材料,实现了二者的复合,表现出较高的催化活性与稳定性。Based on this, the present invention proposes a hollow nano-material of hollow metal phosphide and carbon composite as an electrode material to be used in catalytic electrolysis of water for hydrogen production. The cobalt-loaded polymer hollow nanomaterials are prepared by the method of coordination competition induced polymerization, and then carbonized and phosphated to obtain hollow carbon materials containing hollow cobalt phosphide particles. catalytic activity and stability.

发明内容SUMMARY OF THE INVENTION

本发明的目的在于提供一种原位掺杂中空磷化钴纳米微粒的具有十二面体形貌的中空磷化钴/碳复合中空碳材料、制备方法及其在催化电解水产氢中的应用。通过在具有十二面体形貌的中空碳纳米粒子中负载中空的金属磷化物,可以有效提高材料的催化活性。同时,中空材料可以提供更多的活性位点,提升材料整体稳定性,使材料具有更长的使用寿命,更适用于实际生产中。The purpose of the present invention is to provide a hollow cobalt phosphide/carbon composite hollow carbon material with dodecahedral morphology doped with hollow cobalt phosphide nanoparticles in situ, a preparation method and its application in catalytic electrolysis of water to produce hydrogen. By loading hollow metal phosphide in hollow carbon nanoparticles with dodecahedral morphology, the catalytic activity of the material can be effectively improved. At the same time, the hollow material can provide more active sites, improve the overall stability of the material, make the material have a longer service life, and be more suitable for actual production.

本发明首先采用含有钴离子的金属有机框架材料ZIF-67作为模板,利用配位竞争诱导聚合的方法制备了含有钴离子掺杂的中空聚合物纳米材料。之后在惰性气体的气氛保护下进行高温碳化,得到了氧化钴/碳复合中空纳米材料。最后,将该种材料进行磷化,使其中的氧化钴转化为中空磷化钴纳米粒子,就得到了中空磷化钴/碳复合中空纳米材料。该材料在催化电解水产氢上表现出了优异的性能与出色的稳定性。In the present invention, the metal organic framework material ZIF-67 containing cobalt ions is used as a template, and the cobalt ion-doped hollow polymer nanomaterial is prepared by the method of coordinating competition induced polymerization. Then, high temperature carbonization is carried out under the protection of an inert gas atmosphere to obtain a cobalt oxide/carbon composite hollow nanomaterial. Finally, the material is phosphated to convert the cobalt oxide into hollow cobalt phosphide nanoparticles to obtain hollow cobalt phosphide/carbon composite hollow nanomaterials. The material exhibits excellent performance and excellent stability in catalytic electrolysis of water for hydrogen production.

本发明使用的原料都是商业上可以买到的物质,反应过程简单,实验操作简单,条件温和,危险性小,并且具有非常好的可重复性,可以进行批量生产。The raw materials used in the present invention are all commercially available substances, the reaction process is simple, the experimental operation is simple, the conditions are mild, the danger is small, and the invention has very good repeatability and can be mass-produced.

本发明所述的原位掺杂中空磷化钴纳米微粒的具有十二面体形貌的中空磷化钴/碳复合中空碳材料,其可以通过如下步骤制备得到:(1)含有钴离子的具有十二面体形貌的金属有机框架材料ZIF-67的制备;(2)含钴的金属有框架材料ZIF-67与多巴胺单体反应生成含有钴配位掺杂的中空聚合物纳米材料;(3)氧化钴/碳复合中空纳米材料的制备;(4)中空磷化钴/碳复合中空纳米材料的制备。具体地,The hollow cobalt phosphide/carbon composite hollow carbon material with dodecahedral morphology and in-situ doped hollow cobalt phosphide nanoparticles according to the present invention can be prepared by the following steps: (1) a cobalt ion containing Preparation of metal-organic framework material ZIF-67 with dodecahedral morphology; (2) Cobalt-containing metal framed material ZIF-67 reacts with dopamine monomer to generate cobalt-coordinated doped hollow polymer nanomaterials; (3) ) Preparation of cobalt oxide/carbon composite hollow nanomaterials; (4) preparation of hollow cobalt phosphide/carbon composite hollow nanomaterials. specifically,

(1)含有钴离子的具有十二面体形貌的金属有机框架材料ZIF-67的制备:将200~1000mg的Co(NO3)2·6H2O与500~3000mg的2-甲基咪唑分别溶解于25~100mL甲醇中得到澄清溶液,之后将两种溶液混合均匀得到紫色溶液并在室温下静置6~24h;然后将上述反应产物通过离心(3000~5000rpm,10~15min)处理,并用甲醇洗涤3~5次,在40~60℃条件下烘干10~15h,得到含有钴离子的具有十二面体形貌的金属有机框架材料ZIF-67;(1) Preparation of metal-organic framework material ZIF-67 containing cobalt ions with dodecahedral morphology: 200-1000 mg of Co(NO 3 ) 2 ·6H 2 O and 500-3000 mg of 2-methylimidazole were prepared separately Dissolve in 25-100mL methanol to obtain a clear solution, then mix the two solutions evenly to obtain a purple solution and stand at room temperature for 6-24h; then the above reaction product is processed by centrifugation (3000-5000rpm, 10-15min), and used Washing with methanol for 3 to 5 times, drying at 40 to 60 °C for 10 to 15 h, to obtain a metal-organic framework material ZIF-67 containing cobalt ions with dodecahedral morphology;

(2)含有钴配位掺杂的中空聚合物纳米材料的制备:称取40~60mg步骤(1)制备的ZIF-67,将其分散在50~75mL甲醇中,得到ZIF-67分散液;之后取10~15mL、20mM盐酸多巴胺的甲醇溶液,将前面得到的ZIF-67分散液与盐酸多巴胺的甲醇溶液混合,并将反应体系置于40~60℃条件下回流搅拌6~12h,将得到的产物离心(3000~5000rpm,8~15min)处理,并用甲醇洗涤3~5次直到上清液无色澄清;去除上清液,保留固体产物,从而得到含有钴配位掺杂的中空聚合物纳米材料;(2) Preparation of hollow polymer nanomaterials containing cobalt coordination doping: Weigh 40-60 mg of ZIF-67 prepared in step (1), and disperse it in 50-75 mL of methanol to obtain ZIF-67 dispersion; Then, take 10-15 mL of methanol solution of 20 mM dopamine hydrochloride, mix the ZIF-67 dispersion obtained earlier with the methanol solution of dopamine hydrochloride, and place the reaction system at 40-60 ℃ under reflux and stir for 6-12 h, to obtain The product was centrifuged (3000-5000rpm, 8-15min), and washed with methanol for 3-5 times until the supernatant was colorless and clear; the supernatant was removed, and the solid product was retained to obtain a cobalt-coordinated doped hollow polymer nanomaterials;

(3)氧化钴/碳复合中空纳米材料的制备:将步骤(2)制备的含有钴配位掺杂的中空聚合物纳米材料在通氩气保护的条件下,在700~800℃下碳化2~4h(升温速率为3~5℃/min),冷却至室温后得到氧化钴/碳复合中空纳米材料;(3) Preparation of cobalt oxide/carbon composite hollow nanomaterials: The hollow polymer nanomaterials containing cobalt coordination doping prepared in step (2) were carbonized at 700-800 °C under the protection of argon gas for 2 ~4h (the heating rate is 3~5℃/min), and after cooling to room temperature, the cobalt oxide/carbon composite hollow nanomaterial is obtained;

(4)中空磷化钴/碳复合中空纳米材料的制备:在通氩气保护的条件下,将步骤(3)得到的氧化钴/碳复合中空纳米材料进行磷化,磷源为NaH2PO2·H2O,磷化温度为300~400℃,磷化时间为1~3h(升温速率2~5℃/min),冷却至室温后得到本发明所述的原位掺杂中空磷化钴纳米微粒的具有十二面体形貌的中空磷化钴/碳复合中空碳材料。(4) Preparation of hollow cobalt phosphide/carbon composite hollow nanomaterials: under the protection of argon, the cobalt oxide/carbon composite hollow nanomaterials obtained in step (3) are phosphated, and the phosphorus source is NaH 2 PO 2 ·H 2 O, the phosphating temperature is 300-400°C, the phosphating time is 1-3h (the heating rate is 2-5°C/min), and the in-situ doped hollow phosphating according to the present invention is obtained after cooling to room temperature Cobalt nanoparticle hollow cobalt phosphide/carbon composite hollow carbon material with dodecahedral morphology.

附图说明Description of drawings

图1:实施例1制备的中空磷化钴/碳复合中空纳米材料的透射电子显微镜和扫描电子显微镜照片;(A)为透射电镜的照片,(B)为扫描电镜的照片;Figure 1: Transmission electron microscope and scanning electron microscope photos of the hollow cobalt phosphide/carbon composite hollow nanomaterial prepared in Example 1; (A) is a photo of a transmission electron microscope, and (B) is a photo of a scanning electron microscope;

图2:实施例2制备的中空磷化钴/碳复合中空纳米材料的透射电子显微镜和扫描电子显微镜照片。(A)为透射电镜的照片,(B)为扫描电镜的照片;Figure 2: Transmission electron microscope and scanning electron microscope pictures of the hollow cobalt phosphide/carbon composite hollow nanomaterial prepared in Example 2. (A) is the photo of transmission electron microscope, (B) is the photo of scanning electron microscope;

图3:实施例1制备的中空磷化钴/碳复合中空纳米材料的X射线衍射图谱;Figure 3: X-ray diffraction pattern of the hollow cobalt phosphide/carbon composite hollow nanomaterial prepared in Example 1;

图4:实施例1制备的中空磷化钴/碳复合中空纳米材料的催化电解水产氢性能曲线;(A)为线性伏安扫描曲线,(B)为塔菲尔斜率曲线,(C)为产氢稳定性测试曲线,(D)为交流阻抗谱曲线。Figure 4: The performance curve of the catalytic electrolysis of water for hydrogen production of the hollow cobalt phosphide/carbon composite hollow nanomaterial prepared in Example 1; (A) is the linear voltammetry scan curve, (B) is the Tafel slope curve, (C) is the Hydrogen production stability test curve, (D) is the AC impedance spectrum curve.

具体实施方式Detailed ways

下面结合实例对本发明做进一步的阐述,而不是要对本发明进行限制。The present invention will be further described below with reference to examples, rather than limiting the present invention.

实施例1Example 1

(1)含有钴离子的具有十二面体形貌的金属有机框架材料ZIF-67的制备:498mg的Co(NO3)2·6H2O与1400mg的2-甲基咪唑分别溶解于50mL甲醇中,之后将两种溶液混合均匀得到紫色溶液并在室温下静置6h。产物通过离心(5000rpm,10min)处理提纯,并用甲醇洗涤三次,在60℃条件下烘干12h,最终就得到了具有十二面体形貌的金属有机框架材料ZIF-67,产物质量为400mg。(1) Preparation of metal-organic framework material ZIF-67 with dodecahedral morphology containing cobalt ions: 498 mg of Co(NO 3 ) 2 ·6H 2 O and 1400 mg of 2-methylimidazole were dissolved in 50 mL of methanol, respectively , and then the two solutions were mixed uniformly to obtain a purple solution and allowed to stand at room temperature for 6 h. The product was purified by centrifugation (5000rpm, 10min), washed three times with methanol, and dried at 60°C for 12h. Finally, a metal-organic framework material ZIF-67 with a dodecahedron morphology was obtained with a product mass of 400mg.

(2)含有钴配位掺杂的中空聚合物纳米材料的制备:称取步骤(1)中制备的ZIF-6760mg,将其分散在75mL甲醇中。之后称取56.9mg盐酸多巴胺并溶于15mL甲醇中配成多巴胺溶液。将ZIF-67分散液与多巴胺溶液混合,并将反应体系置于60℃条件下回流搅拌6h。得到的产物通过离心(5000rpm,10min)处理并用甲醇洗涤三次直到上清液无色澄清,就得到了含有钴的聚合物中空纳米材料,产物质量为25mg。(2) Preparation of hollow polymer nanomaterials containing cobalt coordination doping: Weigh 60 mg of ZIF-67 prepared in step (1) and disperse it in 75 mL of methanol. Then, 56.9 mg of dopamine hydrochloride was weighed and dissolved in 15 mL of methanol to prepare a dopamine solution. The ZIF-67 dispersion was mixed with the dopamine solution, and the reaction system was placed at 60°C under reflux for stirring for 6h. The obtained product was processed by centrifugation (5000 rpm, 10 min) and washed three times with methanol until the supernatant was colorless and clarified to obtain a cobalt-containing polymer hollow nanomaterial with a product mass of 25 mg.

(3)氧化钴/碳复合中空纳米材料的制备:将所制备的中空聚合物纳米材料在通氩气保护的条件下700℃碳化2h(升温速率为5℃/min),待冷却至室温后,就得到了氧化钴/碳复合中空纳米材料,产物质量为20mg。(3) Preparation of cobalt oxide/carbon composite hollow nanomaterials: The prepared hollow polymer nanomaterials were carbonized at 700 °C for 2 h under the protection of argon (the heating rate was 5 °C/min), and after cooling to room temperature , the cobalt oxide/carbon composite hollow nanomaterial was obtained, and the product mass was 20 mg.

(4)中空磷化钴/碳复合中空纳米材料的制备:在通氩气保护的条件下,将步骤(3)中得到的中空材料20mg放在瓷舟的一端,另一端放入500mg NaH2PO2·H2O进行磷化,温度为300℃,磷化时间为2h(升温速率3℃/min),待冷却至室温后,就得到了本发明所述的原位掺杂中空磷化钴纳米微粒的具有十二面体形貌的中空碳材料,产物质量为22mg。(4) Preparation of hollow cobalt phosphide/carbon composite hollow nanomaterials: under the protection of argon, put 20 mg of the hollow material obtained in step (3) on one end of the porcelain boat, and put 500 mg of NaH on the other end. The PO 2 ·H 2 O was phosphated at a temperature of 300°C and a phosphating time of 2h (heating rate of 3°C/min). After cooling to room temperature, the in-situ doped hollow phosphating of the present invention was obtained. Cobalt nanoparticles are hollow carbon materials with dodecahedral morphology, and the product mass is 22 mg.

所制备的中空磷化钴/碳复合中空纳米材料尺寸约为200~260nm,其形貌维持了模板材料ZIF-67的十二面体形状,同时具有中空结构,中空的磷化钴粒子分布在空腔中,如图1中所示。由图3的XRD表征可以看出,材料中的钴是以磷化钴的形式存在的。The prepared hollow cobalt phosphide/carbon composite hollow nanomaterial has a size of about 200-260 nm, its morphology maintains the dodecahedral shape of the template material ZIF-67, and has a hollow structure at the same time, and the hollow cobalt phosphide particles are distributed in the hollow space. cavity, as shown in Figure 1. It can be seen from the XRD characterization of Fig. 3 that the cobalt in the material exists in the form of cobalt phosphide.

实施例2Example 2

(1)含有钴离子的具有十二面体形貌的金属有机框架材料ZIF-67的制备:498mgCo(NO3)2·6H2O与700mg 2-甲基咪唑分别溶解于50mL甲醇中得到紫色澄清溶液,之后将溶液混合均匀并在室温下静置24h。产物通过离心(5000rpm,10min)处理提纯,并用甲醇洗涤三次,在60℃条件下烘干12h,最终就得到了具有十二面体形貌的金属有机框架材料ZIF-67,产物质量为100mg。(1) Preparation of metal-organic framework material ZIF-67 containing cobalt ions with dodecahedral morphology: 498 mg of Co(NO 3 ) 2 ·6H 2 O and 700 mg of 2-methylimidazole were dissolved in 50 mL of methanol to obtain a clear purple color solution, after which the solution was mixed well and allowed to stand at room temperature for 24 h. The product was purified by centrifugation (5000rpm, 10min), washed with methanol three times, and dried at 60°C for 12h. Finally, a metal-organic framework material ZIF-67 with a dodecahedron morphology was obtained, and the product mass was 100mg.

(2)含有钴配位掺杂的中空聚合物纳米材料的制备:称取步骤(1)中制备的ZIF-6760mg,将其分散在75mL甲醇中。之后称取56.9mg盐酸多巴胺并溶于15mL甲醇中配成多巴胺溶液。将ZIF-67分散液与多巴胺溶液混合,并将反应体系置于60℃条件下回流搅拌12h。得到的产物通过离心(5000rpm,10min)处理并用甲醇洗涤三次直到上清液无色澄清,就得到了含有钴的聚合物中空纳米材料,产物质量为25mg。(2) Preparation of hollow polymer nanomaterials containing cobalt coordination doping: Weigh 60 mg of ZIF-67 prepared in step (1) and disperse it in 75 mL of methanol. Then, 56.9 mg of dopamine hydrochloride was weighed and dissolved in 15 mL of methanol to prepare a dopamine solution. The ZIF-67 dispersion was mixed with the dopamine solution, and the reaction system was placed at 60°C under reflux for stirring for 12h. The obtained product was processed by centrifugation (5000 rpm, 10 min) and washed three times with methanol until the supernatant was colorless and clarified to obtain a cobalt-containing polymer hollow nanomaterial with a product mass of 25 mg.

(3)氧化钴/碳复合中空纳米材料的制备:将所制备的中空聚合物纳米材料在通氩气保护的条件下700℃碳化2h(升温速率为5℃/min),待冷却至室温后,就得到了氧化钴/碳复合中空纳米材料,产物质量为20mg。(3) Preparation of cobalt oxide/carbon composite hollow nanomaterials: The prepared hollow polymer nanomaterials were carbonized at 700 °C for 2 h under the protection of argon (the heating rate was 5 °C/min), and after cooling to room temperature , the cobalt oxide/carbon composite hollow nanomaterial was obtained, and the product mass was 20 mg.

(4)中空磷化钴/碳复合中空纳米材料的制备:在通氩气保护的条件下,将步骤(3)中得到的中空材料20mg放在瓷舟的一端,另一端放入500mgNaH2PO2·H2O进行磷化,温度为300℃,磷化时间为2h(升温速率3℃/min),待冷却至室温后,就得到了本发明所述的原位掺杂中空磷化钴纳米微粒的具有十二面体形貌的中空碳材料,产物质量为22mg。(4) Preparation of hollow cobalt phosphide/carbon composite hollow nanomaterials: under the protection of argon, put 20 mg of the hollow material obtained in step (3) on one end of the porcelain boat, and put 500 mg of NaH 2 PO on the other end 2 · H 2 O is phosphated at a temperature of 300° C. and a phosphating time of 2 h (heating rate of 3° C./min). After cooling to room temperature, the in-situ doped hollow cobalt phosphide according to the present invention is obtained. Nanoparticles of hollow carbon material with dodecahedral morphology, the product mass is 22 mg.

所制备的中空磷化钴/碳复合中空纳米材料尺寸约为450~500nm,其形貌维持了模板材料ZIF-67的十二面体形状,同时具有中空结构,中空的磷化钴粒子分布在空腔中,如图2中所示。The prepared hollow cobalt phosphide/carbon composite hollow nanomaterial has a size of about 450-500 nm, and its morphology maintains the dodecahedral shape of the template material ZIF-67, and has a hollow structure at the same time, and the hollow cobalt phosphide particles are distributed in the hollow space. cavity, as shown in Figure 2.

实施例3Example 3

(1)电催化工作电极的制备:将实施例1中所制备的中空磷化钴/碳复合中空纳米材料10mg溶于900μL甲醇与100μL、2wt%的全氟磺酸树脂的混合溶剂中,超声处理30min使其成为均匀的分散液。之后取10μL分散液滴于玻碳电极上,室温下干燥。(1) Preparation of electrocatalytic working electrode: Dissolve 10 mg of the hollow cobalt phosphide/carbon composite hollow nanomaterial prepared in Example 1 in a mixed solvent of 900 μL methanol and 100 μL, 2wt% perfluorosulfonic acid resin, ultrasonically Treated for 30min to make it into a homogeneous dispersion. Then, 10 μL of dispersion droplets were taken on the glassy carbon electrode and dried at room temperature.

(2)线性伏安测试:线性伏安测试的电压范围是0~-0.6V,扫描速度为10mV每秒,使用的电解液为0.5M的硫酸溶液。(2) Linear voltammetry test: the voltage range of the linear voltammetry test is 0~-0.6V, the scanning speed is 10mV per second, and the electrolyte used is 0.5M sulfuric acid solution.

(3)催化稳定性测试:首先通过循环伏安扫描,测试电压范围是0~-0.6V,扫描速度为100mV每秒,扫描圈数为1000。之后再进行步骤(2)中的线性伏安扫描测试,将结果与步骤(2)中的结果对比。(3) Catalytic stability test: First, the cyclic voltammetry scan was performed, the test voltage range was 0-0.6V, the scan speed was 100mV per second, and the number of scan cycles was 1000. Then perform the linear voltammetry scan test in step (2), and compare the results with the results in step (2).

(4)电化学交流阻抗测试:线性伏安测试所得到的结果中,电流密度为10mA/cm-2时所对应的电压为初始电压,高频为105Hz,低频为0.1Hz。(4) Electrochemical AC impedance test: In the results obtained by the linear voltammetry test, the voltage corresponding to the current density of 10 mA/cm -2 is the initial voltage, the high frequency is 10 5 Hz, and the low frequency is 0.1 Hz.

催化电解水产氢性能结果如图4所示,中空磷化钴/碳复合中空材料在电流密度为10mA/cm-2时的过电势仅为119mV,并且循环1000圈后仍能保持较好的催化活性。在持续施加电压12h后电流密度仅衰减为原来的90%。以上结果说明该材料具备优异的催化活性,高稳定性以及长循环寿命。The performance results of catalytic water electrolysis for hydrogen production are shown in Figure 4. The hollow cobalt phosphide/carbon composite hollow material has an overpotential of only 119mV at a current density of 10mA/cm -2 , and can still maintain a good catalytic performance after 1000 cycles active. The current density only decayed to 90% of the original value after the voltage was continuously applied for 12 h. The above results indicate that the material has excellent catalytic activity, high stability and long cycle life.

参考文献references

[1]Pan,Y.;Sun,K.;Liu,S.;Cao,X.;Wu,K.;Cheong,W-C.;Chen,Z.;Wang,Y.;Li,Y.;Liu,Y.;Wang,D.;Peng,Q.;Chen,C.;Li,Y.J.Am.Chem.Soc.2018,140,2610-2618.[1] Pan, Y.; Sun, K.; Liu, S.; Cao, X.; Wu, K.; Cheong, W-C.; Chen, Z.; Wang, Y.; Li, Y.; Liu, Y.; Wang, D.; Peng, Q.; Chen, C.; Li, Y.J.Am.Chem.Soc.2018,140,2610-2618.

Claims (3)

1. A method for preparing a hollow carbon material with a dodecahedron shape by in-situ doping hollow cobalt phosphide nanoparticles comprises the following steps:
(1) preparing a cobalt ion-containing metal organic framework material ZIF-67 with a dodecahedron morphology: mixing 200-1000 mg Co (NO)3)2·6H2Dissolving O and 500-3000 mg of 2-methylimidazole in 25-100 mL of methanol respectively to obtain a clear solution, then uniformly mixing the two solutions to obtain a purple solution, and standing at room temperature for 6-24 hours; then centrifuging the reaction product, washing the reaction product for 3-5 times by using methanol, and drying the reaction product for 10-15 hours at the temperature of 40-60 ℃ to obtain a metal organic framework material ZIF-67 containing cobalt ions and having a dodecahedron shape;
(2) preparing a hollow polymer nano material containing cobalt coordination doping: weighing 40-60 mg of ZIF-67 prepared in the step (1), and dispersing the ZIF-67 in 50-75 mL of methanol to obtain a ZIF-67 dispersion liquid; then taking 10-15 mL of 20mM dopamine hydrochloride methanol solution, mixing the obtained ZIF-67 dispersion liquid with the dopamine hydrochloride methanol solution, placing the reaction system at 40-60 ℃, refluxing and stirring for 6-12 hours, centrifuging the obtained product, and washing for 3-5 times by using methanol until the supernatant is colorless and clear; removing the supernatant, and retaining the solid product, thereby obtaining the hollow polymer nano material containing the coordination doping of cobalt;
(3) preparing a cobalt oxide/carbon composite hollow nano material: carbonizing the hollow polymer nano material containing the cobalt coordination doping prepared in the step (2) at 700-800 ℃ for 2-4 h under the protection of argon, and cooling to room temperature to obtain a cobalt oxide/carbon composite hollow nano material;
(4) preparing a hollow cobalt phosphide/carbon composite hollow nano material: under the protection of argon, the cobalt oxide/carbon composite hollow obtained in the step (3)The nano material is phosphorized, and the phosphorus source is NaH2PO2·H2And O, the phosphorization temperature is 300-400 ℃, the phosphorization time is 1-3 h, and the hollow cobalt phosphide/carbon composite hollow carbon material with the dodecahedron morphology, which is doped with hollow cobalt phosphide nanoparticles in situ, is obtained after cooling to room temperature.
2. A hollow carbon material with dodecahedron morphology and in-situ doped hollow cobalt phosphide nanoparticles is characterized in that: is prepared by the method of claim 1.
3. The use of the hollow carbon material with dodecahedron morphology of in-situ doped hollow cobalt phosphide nanoparticles as claimed in claim 2 in the production of hydrogen by catalytic electrolysis of water.
CN201810604664.7A 2018-06-13 2018-06-13 In-situ doped hollow cobalt phosphide nanoparticle hollow carbon material, preparation method and application thereof in catalytic electrolysis of water for hydrogen production Active CN108816258B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810604664.7A CN108816258B (en) 2018-06-13 2018-06-13 In-situ doped hollow cobalt phosphide nanoparticle hollow carbon material, preparation method and application thereof in catalytic electrolysis of water for hydrogen production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810604664.7A CN108816258B (en) 2018-06-13 2018-06-13 In-situ doped hollow cobalt phosphide nanoparticle hollow carbon material, preparation method and application thereof in catalytic electrolysis of water for hydrogen production

Publications (2)

Publication Number Publication Date
CN108816258A CN108816258A (en) 2018-11-16
CN108816258B true CN108816258B (en) 2020-12-29

Family

ID=64144864

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810604664.7A Active CN108816258B (en) 2018-06-13 2018-06-13 In-situ doped hollow cobalt phosphide nanoparticle hollow carbon material, preparation method and application thereof in catalytic electrolysis of water for hydrogen production

Country Status (1)

Country Link
CN (1) CN108816258B (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109663608B (en) * 2018-12-27 2022-01-25 北京印刷学院 Carbon-cobalt-molybdenum bimetal phosphide composite material and preparation method thereof
CN109970988B (en) * 2019-04-22 2021-06-18 三峡大学 Cobalt-based coordination polymers and their use as catalysts for electrocatalytic hydrogen production
CN110102348B (en) * 2019-05-23 2022-03-08 中国科学院上海硅酸盐研究所 Electrocatalyst with hollow structure and preparation method thereof
CN110652992A (en) * 2019-09-12 2020-01-07 天津大学 Synthesis method and application of hollow oxide/phosphide carbon-coated composite material for electrocatalytic hydrogen production
CN111250119B (en) * 2020-01-22 2021-04-30 北京大学 CoPxOy nanoarray composite grown on the surface of a conductive substrate and its preparation and application
CN111408372B (en) * 2020-04-13 2022-09-13 南京师范大学常州创新发展研究院 Copper-based CO with hollow nanosphere morphology 2 Preparation process of electro-reduction catalyst
CN114073955B (en) * 2020-08-17 2023-09-05 中国科学院理化技术研究所 Floating magnetic microsphere catalyst with heterogeneous composite spherical shell structure and its preparation method and application
CN112934247B (en) * 2021-01-14 2022-12-09 西安交通大学 Preparation method and application of a nitrogen-doped highly dispersed metal nanoparticle@porous carbon material
CN113235104B (en) * 2021-04-29 2022-08-16 华南理工大学 ZIF-67-based lanthanum-doped cobalt oxide catalyst and preparation method and application thereof
CN113403638A (en) * 2021-05-21 2021-09-17 南京师范大学 Electrocatalytic oxygen evolution catalyst and preparation method thereof
CN113832477B (en) * 2021-09-30 2023-03-21 浙江大学杭州国际科创中心 Efficient water decomposition catalyst hollow cobalt phosphide and preparation method thereof
CN114744191B (en) * 2022-03-24 2023-11-24 河北科技大学 Cobalt phosphide anode material and preparation method and application thereof
CN116474799B (en) * 2023-04-04 2024-10-15 复旦大学 Br-CoP@C nano catalyst for ammonia borane hydrolysis hydrogen production and preparation method thereof
CN116779831B (en) * 2023-08-25 2023-11-21 山东华源特新材料科技有限公司 Sea urchin structure electrode material, preparation method and application thereof in battery

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105107536A (en) * 2015-10-09 2015-12-02 清华大学 Preparation method of polyhedral cobalt phosphide catalyst for hydrogen production through water electrolysis
CN105655550A (en) * 2015-12-28 2016-06-08 中国科学院长春应用化学研究所 Carbon coating method for in situ growth of metal organic complex on surface of electrode
CN105688958A (en) * 2016-01-15 2016-06-22 复旦大学 Polyhedron cobalt phosphide/graphite carbon hybrid material and preparing method and application thereof
CN106111171A (en) * 2016-06-29 2016-11-16 武汉大学苏州研究院 A kind of preparation method of the phosphatization cobalt of carbon-coating parcel

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105107536A (en) * 2015-10-09 2015-12-02 清华大学 Preparation method of polyhedral cobalt phosphide catalyst for hydrogen production through water electrolysis
CN105655550A (en) * 2015-12-28 2016-06-08 中国科学院长春应用化学研究所 Carbon coating method for in situ growth of metal organic complex on surface of electrode
CN105688958A (en) * 2016-01-15 2016-06-22 复旦大学 Polyhedron cobalt phosphide/graphite carbon hybrid material and preparing method and application thereof
CN106111171A (en) * 2016-06-29 2016-11-16 武汉大学苏州研究院 A kind of preparation method of the phosphatization cobalt of carbon-coating parcel

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Metal–polydopamine frameworks and their transformation to hollow metal/N-doped carbon particles;Y. Liang等;《Nanoscale》;20170329;第9卷;全文 *
纳米材料的合成及其在葡萄糖传感器上的应用研究;孙强强;《中国优秀硕士学位论文全文数据库》;20170215(第2期);第29页 *

Also Published As

Publication number Publication date
CN108816258A (en) 2018-11-16

Similar Documents

Publication Publication Date Title
CN108816258B (en) In-situ doped hollow cobalt phosphide nanoparticle hollow carbon material, preparation method and application thereof in catalytic electrolysis of water for hydrogen production
Song et al. Halogen‐doped carbon dots on amorphous cobalt phosphide as robust electrocatalysts for overall water splitting
Jiang et al. High-activity and stability graphite felt supported by Fe, N, S co-doped carbon nanofibers derived from bimetal-organic framework for vanadium redox flow battery
CN109847778B (en) Cobalt disulfide/carbon nitrogen composite material for oxygen evolution by electrolyzing water and synthetic method thereof
Jiang et al. Multiple‐dimensioned defect engineering for graphite felt electrode of vanadium redox flow battery
CN111575729A (en) Nickel phosphide compound with multi-level hole structure and preparation method and application thereof
CN109718822B (en) Method for preparing metal-carbon composite catalytic material and application thereof
CN107267124A (en) A kind of nitrogenous graphitized carbon material containing the bimetallic MOFs of Ni/Fe
CN110484934B (en) Preparation method of nickel-phosphorus/nickel phosphide-carbon cloth three-dimensional self-supporting hydrogen evolution electrode material
CN108247060A (en) A kind of preparation method of nickel-base alloy electrolysis cathode for hydrogen evolution porous material
CN108358181A (en) Hydrogen evolution reaction electrocatalyst of phosphide, preparation method and application
Liu et al. Self-supported cobalt oxide electrocatalysts with hierarchical chestnut burr-like nanostructure for efficient overall water splitting
Qin et al. Self-supporting Co 0.85 Se nanosheets anchored on Co plate as highly efficient electrocatalyst for hydrogen evolution reaction in both acidic and alkaline media
CN113881965B (en) Metal nanoparticle supported catalyst with biomass carbon source as template and preparation method and application thereof
CN110586116A (en) MoO of hydrogen evolution electrocatalyst2-Ni/CC composite material and preparation method thereof
CN108914154A (en) A kind of load has efficient hydrogen-precipitating electrode of the Ni-S of Co-OH and preparation method thereof
CN113512738A (en) Ternary iron-nickel-molybdenum-based composite catalyst for water electrolysis, preparation method and application thereof
Zhang et al. Oxygen vacancies confined in nickel oxide nanoprism arrays for promoted electrocatalytic water splitting
CN110699701A (en) A kind of nickel foam loaded with metal nickel and vanadium trioxide composite and its preparation method and application
He et al. Carbon paper decorated with tin dioxide particle via in situ electrodeposition as bifunctional electrode for vanadium redox flow battery
CN103259023A (en) Preparation method of hydrogen cell electrode material
Zhao et al. The synthesis of W–Ni 3 S 2/NiS nanosheets with heterostructure as a high-efficiency catalyst for urea oxidation
Deng et al. Cu embedded in Co–P nanosheets with super wetting structure for accelerated overall water splitting under simulated industrial conditions
CN110449157A (en) The preparation method and its electrolysis water Hydrogen Evolution Performance of the spherical carbon-coating nickel of different carbon-coatings
CN110629248A (en) A kind of preparation method of Fe-doped Ni(OH)2/Ni-BDC electrocatalyst

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant