CN108816048A - 一种新型超滤膜的制备方法 - Google Patents

一种新型超滤膜的制备方法 Download PDF

Info

Publication number
CN108816048A
CN108816048A CN201810703065.0A CN201810703065A CN108816048A CN 108816048 A CN108816048 A CN 108816048A CN 201810703065 A CN201810703065 A CN 201810703065A CN 108816048 A CN108816048 A CN 108816048A
Authority
CN
China
Prior art keywords
weight
parts
ultrafiltration membrane
preparation
added
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810703065.0A
Other languages
English (en)
Inventor
梅丹丹
杨桂莲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuzhou Hua Bolli New Mstar Technology Ltd
Original Assignee
Fuzhou Hua Bolli New Mstar Technology Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuzhou Hua Bolli New Mstar Technology Ltd filed Critical Fuzhou Hua Bolli New Mstar Technology Ltd
Priority to CN201810703065.0A priority Critical patent/CN108816048A/zh
Publication of CN108816048A publication Critical patent/CN108816048A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/14Ultrafiltration; Microfiltration
    • B01D61/145Ultrafiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0079Manufacture of membranes comprising organic and inorganic components
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/444Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by ultrafiltration or microfiltration

Abstract

本发明公开了一种新型超滤膜的制备方法,以微晶纤维素为原料,制备出纳米纤维素晶,然后加入聚醚砜、三乙胺以及蒙脱石改性的聚乳酸膜材料,在酸性条件下,通过相转换法制备共混膜。本发明制备的超滤膜,与市场上的滤膜相比较,在用于水相体系的过滤时不容易造成膜的污染,也就保证了过滤后水的质量和过滤的效率。

Description

一种新型超滤膜的制备方法
技术领域
本发明涉及一种超滤膜的制备方法,具体涉及一种用于生活污水处理的超滤膜材料的制备方法。
背景技术
近年来,膜分离技术作为一种新型、高效的分离与提纯技术,在化工、食品、医药、电子、冶金、海水淡化等领域有着广泛的应用。纤维素是一种天然的高分子材料,资源储量丰富且可生物降解。利用化学方法、物理方法或生物法去除纤维素无定形区,可以得到纳米级纤维素。其中,纳米纤维素晶体具有拉伸强度高、刚度大、长径比高、比表面积大以及突出的电学和光学特性。但是由于纤维素表面存在大量的极性羟基基团,易形成分子间和分子内氢键作用而团聚,很难用物理方法再分散开来。同时,纳米纤维素用作复合材料时,受到一定的空间阻碍会贴附于复合材料表面,加上具有较高的水亲合力,缩小了其应用范围。因此对纳米纤维素表面进行改性拓展其在高性能复合材料中的应用范围是行之有效的方法。这些聚合物的制备原料是不可再生的石油资源,并且聚合物一旦废弃之后成为垃圾面临着降解困难、造成环境污染等问题。
目前,常用的分离膜材料主要集中于聚偏氟乙烯、聚醚砜等高分子聚合物。聚乳酸又名聚丙交酯,是由玉米、甘蔗等农作物经过发酵产生乳酸,再进一步聚合制备而来的一种可生物降解的绿色高分子材料。聚乳酸凭借其来源广泛、成本低廉、较好的成膜性、可控降解性以及良好的生物相容性,在国民生产、医疗卫生等多个领域都具有非常重要的应用,被人们认为是有希望替代石油基聚合物的生物基材料。目前,国内外关于聚乳酸膜作为组织工程支架、药物缓释材料的研究较多。但聚乳酸膜的缺点是亲水性较差,用于水相体系时易造成严重的膜污染,污染后的膜通量衰减,过滤性能下降。寻找适当的改性方法,提高聚乳酸膜的亲水性能、抗污染性能是解决膜污染问题,是延长膜使用寿命的根本途径。本发明利用共混改性将微晶纤维素改性然后与聚乳酸膜混合形成一种新型的超滤膜,操作简便、改性效果好、可行性高。
发明内容
本发明公开了一种新型超滤膜的制备方法,适用于生活污水处理,过滤时不易造成膜的污染,且保证了过滤后水的质量和过滤的效率,具有很好的推广使用价值。
一种新型超滤膜的制备方法,该方法包括以下步骤:
1)称取20重量份的微晶纤维素放置于盛有100重量份质量浓度为64%的硫酸溶液中酸解120min,用100重量份去离子水终止反应,反复离心水洗,透析至pH值为5,冷冻干燥48h;取2重量份置于四口烧瓶中,加入1.48重量份三乙胺和150重量份四氢呋喃,然后将其置于-5℃的冰水浴中,逐滴滴加30重量份体积分数为7%的ɑ-溴代异丁酰溴四氢呋喃溶液,滴加完成后在室温下继续磁力搅拌2h,随后向烧瓶中不断充入超纯氮气,持续时间30min,反应结束后,过滤,分别用100重量份甲醇、100重量份乙醇清洗,最后用250重量份二氯甲烷萃取提纯,在60℃真空下干燥恒重,制得纳米纤维晶体;
2)在干燥的圆底烧瓶加入纳米纤维晶体3.2~10.2重量份,3.7重量份丙烯酸,然后用NaOH和NaCl溶液调节pH至9~10,搅拌15min,加入2.9~3.9重量份蒙脱石改性的聚乳酸膜材料,12重量份质量浓度为15%的聚醚砜,室温下搅拌至其完全溶解成均一的铸膜液,真空脱泡后,用200um刮刀刮膜,30s后浸入蒸馏水中凝胶成膜,即得新型超滤膜。
有益效果:本发明提供一种新型超滤膜的制备方法,其中纳米纤维素晶体具有拉伸强度高、刚度大、长径比高、比表面积大以及突出的电学和光学特性,对其表面进行改性可以大大提高其性能;聚乳酸是由玉米、甘蔗等农作物经过发酵产生乳酸,再经聚合制备而来的一种可生物降解的绿色高分子材料,利用两种原料进行共混改性得到的超滤膜不仅制备工艺绿色环保,纳米纤维晶体与蒙脱石改性聚乳酸膜材料在一定条件下协同性最好,同时比表面积大,吸附过滤效果较好,经测试其浊度去除率可达94%。
具体实施方式
实施例1
1)称取20重量份的微晶纤维素放置于盛有100重量份质量浓度为64%的硫酸溶液中酸解120min,用100重量份去离子水终止反应,反复离心水洗,透析至pH值为5,冷冻干燥48h;取2重量份置于四口烧瓶中,加入1.48重量份三乙胺和150重量份四氢呋喃,然后将其置于-5℃的冰水浴中,逐滴滴加30重量份体积分数为7%的ɑ-溴代异丁酰溴四氢呋喃溶液,滴加完成后在室温下继续磁力搅拌2h,随后向烧瓶中不断充入超纯氮气,持续时间30min,反应结束后,过滤,分别用100重量份甲醇、100重量份乙醇清洗,最后用250重量份二氯甲烷萃取提纯,在60℃真空下干燥恒重,制得纳米纤维晶体;
2)在干燥的圆底烧瓶加入纳米纤维晶体3.2重量份,3.7重量份丙烯酸,然后用NaOH和NaCl溶液调节pH至9~10,搅拌15min,加入2.9重量份蒙脱石改性的聚乳酸膜材料,12重量份质量浓度为15%的聚醚砜,室温下搅拌至其完全溶解成均一的铸膜液,真空脱泡后,用200um刮刀刮膜,30s后浸入蒸馏水中凝胶成膜,即得新型超滤膜。
上述蒙脱石改性聚乳酸膜材料的制备方法如下:
称取3.6重量份的纳米蒙脱石置于50重量份N , N-二甲基乙酰胺中,经超声波分散30min后,加入5.4重量份的聚乳酸颗粒和8重量份聚乙二醇,边通入30%氮气+70%氩气边置于95℃油浴中磁力搅拌9h,停止搅拌,70℃密封静置1h后将制得的膜材料在蒸馏水中浸泡24h以脱除溶剂和致孔剂,真空60℃下干燥2h,得到蒙脱石改性聚乳酸膜材料。
实施例2
与实施例1完全相同,不同在于:加入3.6重量份纳米纤维晶体,3.0重量份蒙脱石改性的聚乳酸膜材料。
实施例3
与实施例1完全相同,不同在于:加入3.8重量份纳米纤维晶体,2.1重量份蒙脱石改性的聚乳酸膜材料。
实施例4
与实施例1完全相同,不同在于:加入4.0重量份纳米纤维晶体,5.2重量份蒙脱石改性的聚乳酸膜材料。
实施例5
与实施例1完全相同,不同在于:加入4.2重量份纳米纤维晶体,1.3重量份蒙脱石改性的聚乳酸膜材料。
实施例6
与实施例1完全相同,不同在于:加入3.4重量份纳米纤维晶体,1.4重量份蒙脱石改性的聚乳酸膜材料。
实施例7
与实施例1完全相同,不同在于:加入3.6重量份纳米纤维晶体,1.5重量份蒙脱石改性的聚乳酸膜材料。
实施例8
与实施例1完全相同,不同在于:加入4.8重量份纳米纤维晶体,0.6重量份蒙脱石改性的聚乳酸膜材料。
实施例9
与实施例1完全相同,不同在于:加入5.0重量份纳米纤维晶体,2.7重量份蒙脱石改性的聚乳酸膜材料。
对比例1
与实施例1完全相同,不同在于:不加入蒙脱石改性聚乳酸膜材料。
对比例2
与实施例1完全相同,不同在于:制备蒙脱石改性聚乳酸膜材料不加入聚乙二醇。
对比例3
与实施例1完全相同,不同在于:制备蒙脱石改性聚乳酸膜材料不通入30%氮气+70%氩气。
对比例4
与实施例1完全相同,不同在于:制备蒙脱石改性聚乳酸膜材料不进行超声波分散。
对比例5
与实施例1完全相同,不同在于:将步骤1)中的冷冻干燥换成普通干燥。
对比例6
与实施例1完全相同,不同在于:制备新型超滤膜时不加入四氢呋喃。
对比例7
与实施例1完全相同,不同在于:制备新型超滤膜时不加入聚醚砜。
对比例8
与实施例1完全相同,不同在于:制备新型超滤膜时不调节pH。
对比例9
与实施例1完全相同,不同在于:制备新型超滤膜时不通入超纯氮气。
按下述方法对实施例1~9与对比例1~9制备的超滤膜进行性能检测:
取荆州市居民生活污水100mL样品放入烧杯中,然后将超滤膜紧贴漏斗壁放置,漏斗下方放置另一个烧杯,将污水缓慢倒进漏斗中,过滤结束后测定滤液的浊度,通过以下公式计算得出浊度去除率R,测试结果见下表。已知实验前测得生活污水的浊度为69ppm。
R=(C0-C1)/C0×100%
式中,R—浊度去除率,%;
C0—为处理前的浊度,ppm;
C1—为加入絮凝剂后污水的浊度,ppm;
超滤膜性能测试
实施例1~9可以发现,当在实施例1所处于配比环境中,制得的超滤膜过滤效果最好,浊度去除率达到了94%,而是实施例2~9制备的超滤膜过滤效果不是特别理想,仅仅处于60~80%之间,可见其原料的配比对于超滤膜过滤性能有着巨大的影响,实施例1的配比制备的超滤膜有着出乎意料的过滤效果,可见在实施例1所述的原料配比下纳米纤维晶体与蒙脱石改性聚乳酸膜材料协同性最好,同时比表面积大,吸附过滤效果较好,因而制备的超滤膜过滤性能最为优异。另外对比例1~4说明制备超滤膜时添加蒙脱石改性聚乳酸膜材料可显著提高超滤膜过滤性能,说明蒙脱石改性聚乳酸膜材料对超滤膜性能影响较大,对比例5~9说明制备超滤膜时条件及原料的选择对其过滤性能有突出影响。

Claims (6)

1.一种新型超滤膜的制备方法,其特征在于该方法包括以下步骤:
1)称取20重量份的微晶纤维素放置于盛有100重量份质量浓度为64%的硫酸溶液中酸解120min,用100重量份去离子水终止反应,反复离心水洗,透析至pH值为5,冷冻干燥48h;取2重量份置于四口烧瓶中,加入1.48重量份三乙胺和150重量份四氢呋喃,然后将其置于-5℃的冰水浴中,逐滴滴加30重量份体积分数为7%的ɑ-溴代异丁酰溴四氢呋喃溶液,滴加完成后在室温下继续磁力搅拌2h,随后向烧瓶中不断充入超纯氮气,持续时间30min,反应结束后,过滤,分别用100重量份甲醇、100重量份乙醇清洗,最后用250重量份二氯甲烷萃取提纯,在60℃真空下干燥恒重,制得纳米纤维晶体;
2)在干燥的圆底烧瓶加入纳米纤维晶体3.2~10.2重量份,3.7重量份丙烯酸,然后用NaOH和NaCl溶液调节pH至9~10,搅拌15min,加入2.9~3.9重量份蒙脱石改性的聚乳酸膜材料,12重量份质量浓度为15%的聚醚砜,室温下搅拌至其完全溶解成均一的铸膜液,真空脱泡后,用200um刮刀刮膜,30s后浸入蒸馏水中凝胶成膜,即得新型超滤膜。
2.根据权利要求1中所述一种新型超滤膜的制备方法,其特征在于步骤1)中离心水洗离心速度为100rmp,离心时间30min。
3.根据权利要求1中所述一种新型超滤膜的制备方法,其特征在于步骤1)中逐滴滴加ɑ-溴代异丁酰溴四氢呋喃溶液的速率为30滴/min。
4.根据权利要求1中所述一种新型超滤膜的制备方法,其特征在于步骤1)中萃取提纯3~5次。
5.根据权利要求1中所述一种新型超滤膜的制备方法,其特征在于步骤2)中所述蒙脱石改性聚乳酸膜材料的制备方法如下:
称取3.6重量份的纳米蒙脱石置于50重量份N , N-二甲基乙酰胺中,经超声波分散30min后,加入5.4重量份的聚乳酸颗粒和8重量份聚乙二醇,边通入30%氮气+70%氩气边置于95℃油浴中磁力搅拌9h,停止搅拌,70℃密封静置1h后将制得的膜材料在蒸馏水中浸泡24h以脱除溶剂和致孔剂,真空60℃下干燥2h,得到蒙脱石改性聚乳酸膜材料。
6.根据权利要求1中所述一种新型超滤膜的制备方法,其特征在于步骤2)中聚醚砜的粒径为18~20um。
CN201810703065.0A 2018-06-30 2018-06-30 一种新型超滤膜的制备方法 Pending CN108816048A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810703065.0A CN108816048A (zh) 2018-06-30 2018-06-30 一种新型超滤膜的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810703065.0A CN108816048A (zh) 2018-06-30 2018-06-30 一种新型超滤膜的制备方法

Publications (1)

Publication Number Publication Date
CN108816048A true CN108816048A (zh) 2018-11-16

Family

ID=64133576

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810703065.0A Pending CN108816048A (zh) 2018-06-30 2018-06-30 一种新型超滤膜的制备方法

Country Status (1)

Country Link
CN (1) CN108816048A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114618304A (zh) * 2022-03-30 2022-06-14 浙江美保龙生物技术有限公司 一种猪繁殖与呼吸综合征病毒超滤纯化系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120065284A1 (en) * 2009-06-23 2012-03-15 Canon Kabushiki Kaisha Method of producing porous polymer film and porous polymer film produced by the method
CN102580553A (zh) * 2012-03-30 2012-07-18 厦门绿邦膜技术有限公司 一种环境友好型中空纤维膜的制造方法
KR101556466B1 (ko) * 2014-02-18 2015-10-01 전북대학교산학협력단 수처리용 나노복합재 분리막 및 그 제조 방법

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120065284A1 (en) * 2009-06-23 2012-03-15 Canon Kabushiki Kaisha Method of producing porous polymer film and porous polymer film produced by the method
CN102580553A (zh) * 2012-03-30 2012-07-18 厦门绿邦膜技术有限公司 一种环境友好型中空纤维膜的制造方法
KR101556466B1 (ko) * 2014-02-18 2015-10-01 전북대학교산학협력단 수처리용 나노복합재 분리막 및 그 제조 방법

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
DELNE DOMINGOS DA SILVA PARIZE等: "Solution blow spun nanocomposites of poly(lactic acid)/cellulose nanocrystals from Eucalyptus kraft pulp", 《CARBOHYDRATE POLYMERS》 *
陈进等: "纳米纤维素晶接枝丙烯酸钠共混改性聚醚砜超滤膜的研究", 《功能材料》 *
高大笙等: "纳米蒙脱土改性聚乳酸超滤膜的制备与性能研究", 《功能材料》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114618304A (zh) * 2022-03-30 2022-06-14 浙江美保龙生物技术有限公司 一种猪繁殖与呼吸综合征病毒超滤纯化系统

Similar Documents

Publication Publication Date Title
Cheng et al. Facile fabrication of superhydrophilic membranes consisted of fibrous tunicate cellulose nanocrystals for highly efficient oil/water separation
Elizalde et al. Fabrication of blend polyvinylidene fluoride/chitosan membranes for enhanced flux and fouling resistance
Bai et al. Preparation and characterization of poly (vinylidene fluoride) composite membranes blended with nano-crystalline cellulose
Kumar et al. Permeation, antifouling and desalination performance of TiO2 nanotube incorporated PSf/CS blend membranes
Liu et al. Preparation of hydrophilic and antifouling polysulfone ultrafiltration membrane derived from phenolphthalin by copolymerization method
Wang et al. Novel GO-blended PVDF ultrafiltration membranes
Dong et al. Antifouling enhancement of poly (vinylidene fluoride) microfiltration membrane by adding Mg (OH) 2 nanoparticles
Kiani et al. Hydrophilicity improvement in polyphenylsulfone nanofibrous filtration membranes through addition of polyethylene glycol
Rahimpour et al. Novel functionalized carbon nanotubes for improving the surface properties and performance of polyethersulfone (PES) membrane
Yang et al. Structure and microporous formation of cellulose/silk fibroin blend membranes: I. Effect of coagulants
Zhao et al. PSf/PANI nanocomposite membrane prepared by in situ blending of PSf and PANI/NMP
Liu et al. Microfiltration performance of regenerated cellulose membrane prepared at low temperature for wastewater treatment
Dmitrenko et al. The development and study of novel membrane materials based on polyphenylene isophthalamide-Pluronic F127 composite
Islam et al. Preparation of superhydrophobic membranes by electrospinning of fluorinated silane functionalized pullulan
Zhang et al. Understanding the multiple functions of styrene-co-maleic anhydride in fabricating polyvinylidene fluoride hollow fiber membrane via coupled phase inversion process and its effect on surface infiltration behavior and membrane permeability
Chen et al. Physical properties of microporous membranes prepared by hydrolyzing cellulose/soy protein blends
CN106914154A (zh) PEG‑TiO2/PES/PVA亲水超滤膜的制备方法与应用
Yang et al. Role of polyethylene glycol in formation and structure of regenerated cellulose microporous membrane
Zhang et al. Surface modification of cellulose nanofibers and their effects on the morphology and properties of polysulfone membranes
CN106334543A (zh) 一种三维多孔吸油材料的制备方法
Lessan et al. Tailoring the hierarchical porous structure within polyethersulfone/cellulose nanosheets mixed matrix membrane to achieve efficient dye/salt mixture fractionation
CN110917894B (zh) 一种聚偏氟乙烯中空纤维多孔膜的制备方法
Wang et al. Ultra-low pressure PES ultrafiltration membrane with high-flux and enhanced anti-oil-fouling properties prepared via in-situ polycondensation of polyamic acid
Pouresmaeel-Selakjani et al. Synthesis of cellulose/silica nanocomposite through electrostatic interaction to reinforce polysulfone membranes
He et al. Fabrication of firm, superhydrophobic and antimicrobial PVDF@ ZnO@ TA@ DT electrospun nanofibrous membranes for emulsion separation

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20181116

WD01 Invention patent application deemed withdrawn after publication