CN108803194B - 太赫兹波内调制装置 - Google Patents

太赫兹波内调制装置 Download PDF

Info

Publication number
CN108803194B
CN108803194B CN201810722074.4A CN201810722074A CN108803194B CN 108803194 B CN108803194 B CN 108803194B CN 201810722074 A CN201810722074 A CN 201810722074A CN 108803194 B CN108803194 B CN 108803194B
Authority
CN
China
Prior art keywords
light
modulation
terahertz wave
laser
terahertz
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810722074.4A
Other languages
English (en)
Other versions
CN108803194A (zh
Inventor
徐德刚
闫超
王与烨
唐隆煌
贺奕焮
李长昭
孙忠诚
钟凯
姚建铨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin University
Original Assignee
Tianjin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin University filed Critical Tianjin University
Priority to CN201810722074.4A priority Critical patent/CN108803194B/zh
Publication of CN108803194A publication Critical patent/CN108803194A/zh
Application granted granted Critical
Publication of CN108803194B publication Critical patent/CN108803194B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/353Frequency conversion, i.e. wherein a light beam is generated with frequency components different from those of the incident light beams
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/0121Operation of devices; Circuit arrangements, not otherwise provided for in this subclass
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/3501Constructional details or arrangements of non-linear optical devices, e.g. shape of non-linear crystals
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/13Function characteristic involving THZ radiation

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

一种太赫兹波内调制装置,包括:激光源,用于产生激光;光调制单元,用于将激光源输入的激光转化为时域调制光和基频光的组合光;光学非线性增益单元,用于将光调制单元所输入的组合光中的基频光转换为太赫兹波,同时此非线性频率变换过程受到组合光中的时域调制光的调制;以及太赫兹探测器,对光学非线性增益单元所输出的太赫兹波进行测量,能够在太赫兹波辐射源的内部实现对太赫兹波信号在时间域的调制,以缓解现有技术中太赫兹波信号调制损耗较大,调制速率较低,调制效率较差等问题。

Description

太赫兹波内调制装置
技术领域
本发明涉及非线性光学频率变换领域,特别是涉及一种基于光泵浦的太赫兹波内调制装置。
背景技术
太赫兹(Terahertz,简称THz,1THz=1012Hz)波段是指频率从100GHz到10THz,相应的波长从3毫米到30微米,介于毫米波与红外光之间频谱范围相当宽的电磁波谱区域。由于该频段是宏观电子学向微观光子学过渡的频段,具有很多独特的性质。太赫兹波技术在生命科学、材料科学、固体物理、分子分析、大气探索、化学气体追踪、材料测试、食品检测等国民和国防安全等领域具有广泛的应用前景和价值。
作为太赫兹波应用的重要组成部分,太赫兹波调制装置也逐渐成为了研究热点,研究一般集中于几大类:一类是基于光子晶体的太赫兹波调制装置(例如中国专利CN103885267A、CN104965319A、CN104932119A、CN102062986A、CN102062987A、CN101881918A、CN101881919A、CN100424550C以及CN101546047A等),一般利用光子晶体的光子禁带边缘实现太赫兹波的调制,但通常其调制指标并不理想,调制损耗过大,调制速率也不够快;另一类是基于人工复合超材料的太赫兹波调制装置(例如H.T.Chen,etal.Active terahertz metamaterial device.Nature,2006,44:597-600、中国专利CN107479215A、CN105301804A、CN104570406A、CN107065058A、CN104166249A等),一般利用超材料结构的奇异特性结合电控或者光控实现太赫兹波的调制,但超材料的光电性能限制了这类调制器件的的调制效率以及调制速率;另一类是基于电光折射率调制的太赫兹波调制装置(例如中国专利CN105607297A、CN105607298A等),一般利用材料电光特性对太赫兹波进行调制,存在调制损耗较大和调制速率较慢的缺点;还有一类是基于光控谐振腔与太赫兹波导相耦合实现太赫兹波调制的装置(例如中国专利CN105449494A、CN101546048等),一般基于激光控制谐振腔损耗,进而影响谐振腔与太赫兹波导的耦合效率,实现太赫兹波的调制,但通常其在实际应用中太赫兹波导损耗过大,谐振腔耦合能力不足,可调制的带宽也不够宽泛;最后一类是基于二氧化钒这种相变材料的太赫兹波调制装置(例如中国专利CN102081274A等),一般利用此类晶体相变时发生的光、电等物理性质的急剧变化实现太赫兹波的调制,但同样存在调制效率不高以及调制损耗过大的问题。
综合来说,以上几类调制装置都属于在太赫兹波辐射源之外运转的外部调制系统,其普遍存在的调制损耗较大,调制效率较低、调制速率较慢以及调制带宽不足的问题都成为了在太赫兹波实际应用中的限制条件,不利于太赫兹波技术的广泛应用及发展。因此寻找一种可以实现太赫兹波辐射源高效、高速内调制的新技术,将成为太赫兹波技术在生命科学、材料科学、分子分析等领域的广泛应用的重要推动力。
公开内容
(一)要解决的技术问题
本公开提供了一种太赫兹波内调制装置,能够在太赫兹波辐射源的内部实现对太赫兹波信号在时间域的调制,以缓解现有技术中太赫兹波信号调制损耗较大,调制速率较低,调制效率较差等问题。
(二)技术方案
在本公开中,提供一种太赫兹波内调制装置,包括:激光源,用于产生激光;光调制单元,用于将激光源输入的激光转化为时域调制光和基频光的组合光;光学非线性增益单元,用于将光调制单元所输入的组合光中的基频光转换为太赫兹波,同时此非线性频率变换过程受到组合光中的时域调制光的调制;以及太赫兹探测器,对光学非线性增益单元所输出的太赫兹波进行测量。
在本公开实施例中,所述激光源包括调制激光器和泵浦激光器,所述光调制单元包括:光调制组件,将调制激光器所输入的激光进行调制生成时域调制光并输出;以及合束镜,用于将光调制组件所输出的时域调制光和泵浦激光器所发出的基频光合束并输出。
在本公开实施例中,所述激光源为单个激光器,所述光调制单元还包括:分束镜,将激光源输入的激光分为两束基频光;倍频晶体,将输入的基频光转换为倍频光;第一反射镜,将分束镜所分出的其中一束基频光反射到倍频晶体;滤波单元,用于过滤和收集所述倍频晶体输出的、没有被转换为倍频的基频光;第二反射镜,用于反射所述倍频晶体所输出的经滤波单元后的倍频光至所述光调制组件;以及第三反射镜,用于反射分束镜所分出的另一束基频光至合束镜。
在本公开实施例中,所述光调制组件,包括电控振镜、数据采集卡以及计算机,所述电控振镜经由计算机控制,对输入的光进行调制。
在本公开实施例中,所述光学非线性增益单元,包括:非线性晶体,受激产生太赫兹波和斯托克斯光;前腔镜和后腔镜,使所述非线性晶体受激发产生的斯托克斯光在所述前腔镜和后腔镜组成的谐振腔内发生振荡;以及第二光束收集器,用于收集未耗尽的泵浦光。
在本公开实施例中,所述滤波单元,包括:滤波镜,用于过滤没有被倍频晶体所倍频的基频光;以及第一光束收集器,用于收集所述滤波镜所过滤后的基频光。
在本公开实施例中,所述非线性晶体的制备材料包括:掺氧化镁铌酸锂,掺杂浓度为5mol%。
在本公开实施例中,所述非线性晶体为等腰梯形切割,所述等腰梯形的底角为60°~70°。
在本公开实施例中,光学非线性增益单元中的前腔镜和后腔镜组成的谐振腔为驻波谐振腔,所述前腔镜和后腔镜分别与所述非线性晶体的两侧边平行。
在本公开实施例中,所述太赫兹探测器包括高莱探测器、热释电探测器、液氦冷却低温超导辐射热计、肖特基二极管、光电导开关或电光晶体。
(三)有益效果
从上述技术方案可以看出,本公开太赫兹波内调制装置至少具有以下有益效果其中之一或其中一部分:
(1)能够在产生太赫兹波辐射的同时进行对太赫兹信号的内调制,效率高。
(2)可以实现低损耗以及高速率的太赫兹波内调制。
(3)可以有效提升太赫兹波信号调制的性能。
(4)操作简便。
附图说明
图1为本公开实施例太赫兹波内调制装置组成示意图。
图2为本公开实施例激光源为两个激光器的太赫兹波内调制装置的组成示意图。
图3为本公开实施例激光源为单个激光器的太赫兹波内调制装置的组成示意图。
图4为本公开实施例太赫兹波信号在时间域的调制效果示意图。
【附图中本公开实施例主要元件符号说明】
100-激光源;
110-调制激光器;120-泵浦激光器;
200-光调制单元;
210-分束镜;220-倍频晶体;230-第一反射镜;
250-第二反射镜;270-第三反射镜;280-合束镜;
240-滤波单元;
241-滤波镜;242-第一光束收集器;
260-倍频光调制单元;
261-电控振镜;
300-光学非线性增益单元;
310-非线性晶体;320前腔镜;330-后腔镜;340-第二光束收集器;
400-太赫兹探测器。
具体实施方式
本公开提供了一种太赫兹波内调制装置,能够在太赫兹波辐射源的内部实现对太赫兹波信号在时间域的低损耗、高效率、高速率调制,以缓解现有技术中太赫兹波信号在时间域调制损耗较大,调制速率较低,调制效率较差等问题。
下面我们以光学参量振荡太赫兹波辐射源为例,说明此类光泵浦太赫兹波内调制装置的技术方案与原理。太赫兹参量振荡(Terahertz Parametric Generation/TerahertzParametric Oscillator,简称TPG/TPO)技术是获得相干可调谐THz辐射源的主要方法之一。该过程的原理是铁电晶体的受激电磁耦子散射机理,在强泵浦光入射晶体后,与晶体中同时具有红外和拉曼活性的A1对称模形成的电磁耦子发生受激作用时,根据能量守恒定律,每消耗一个泵浦光子将同时产生一个与泵浦光子频率相近的斯托克斯(Stokes)光子,和一个与电磁耦子谐振频率相近的太赫兹光子,从而实现太赫兹辐射。同时,在满足非线性相位匹配(动量守恒)条件下,通过改变泵浦光与斯托克斯光的角度,即可实现不同频率的太赫兹波调谐输出。
为使本公开的目的、技术方案和优点更加清楚明白,以下结合具体实施例,并参照附图,对本公开进一步详细说明。
在本公开实施例中,提供一种太赫兹波内调制装置,图1为所述的调制装置的组成示意图,如图1所示,所述的调制装置,包括:
激光源100,用于产生激光;
光调制单元200,用于将激光源100输入的激光转化为时域调制光和基频光的组合光;
光学非线性增益单元300,用于将光调制单元200所输入的组合光中的基频光转换为太赫兹波,同时此非线性频率变换过程受到组合光中的时域调制光的调制;以及
太赫兹探测器400,对光学非线性增益单元300所输出的太赫兹波进行测量。
通过所述光调制单元200的调制作用,实现不同频率的太赫兹波调制输出。
在本公开实施例中,提供一种太赫兹波内调制装置,所述调制装置的激光源有2个激光器,分别为调制激光器和泵浦激光器,调制激光器110产生时域调制光,泵浦激光器120产生泵浦光,时域调制光配合数据采集卡,经由计算机进行控制的电控振镜261反射,与泵浦光在合束镜280处进行合束,一同输入光学非线性增益单元300,最终利用太赫兹探测器400对太赫兹波进行测量,实现太赫兹波调谐输出。图2为激光源为两个激光器的太赫兹波内调制装置的组成示意图,如图2所示,所述调制装置包括:
激光源100,包括:调制激光器110和泵浦激光器120;
光调制单元200,包括:
光调制组件260,将调制激光器110所输入的激光进行调制生成时域调制光并输出;以及
合束镜280,用于将光调制组件260所输出的时域调制光和泵浦激光器120所发出的基频光合束并输出。
光学非线性增益单元300,用于将光调制单元200所输入的组合光中的基频光转换为太赫兹波,同时此非线性频率变换过程受到组合光中的时域调制光的调制;包括:
非线性晶体310,受激产生太赫兹波和斯托克斯光;
前腔镜320和后腔镜330,使所述非线性晶体310受激发产生的斯托克斯光在所述前腔镜320和后腔镜330组成的谐振腔内发生振荡;以及
第二光束收集器(340),用于收集未耗尽的基频泵浦光。
太赫兹探测器400,对光学非线性增益单元300所发出的太赫兹波进行测量,进而通过改变泵浦光与斯托克斯光的角度,即可实现不同频率的太赫兹波调谐输出。
在本公开实施例中,所述滤波单元240包括:
滤波镜241,用于过滤没有被倍频晶体220所倍频的基频光;以及
第一光束收集器242,用于收集所述滤波镜241所过滤后的基频光。
在本公开实施例中,所述光调制组件260,包括:
包括电控振镜261、数据采集卡以及计算机,所述电控振镜261经由计算机控制,对输入的光进行时域调制。
所述非线性晶体310,其制备材料包括:掺氧化镁铌酸锂,掺杂浓度为5mol%。
在本公开实施例中,所述非线性晶体为等腰梯形切割,所述等腰梯形的底角为60°~70°。
在本公开实施例中,提供一种太赫兹波内调制装置,图3为激光源为单个激光器的太赫兹波内调制装置的组成示意图,如图3所示,所述调制装置的激光源有1个激光器,相较于激光源含有两个激光器的调制装置,所述光调制单元200还包括:
分束镜210,将输入的激光分为两束基频光;
倍频晶体220,将输入的基频光转换为倍频光;
第一反射镜230,将分束镜210所分出的其中一束基频光反射到倍频晶体220;
滤波单元240,用于过滤和收集所述倍频晶体220输出的、没有被转换为倍频的基频光;
第二反射镜250,用于反射所述倍频晶体220所输出的经滤波单元240后的倍频光至所述光调制组件260。
在本公开实施例中,泵浦采用Nd:YAG调Q激光器,其输出10Hz、10ns、偏振方向沿z轴的1064nm线偏振光;泵浦光经分束镜分束,其中一路泵浦光激发532nm倍频光,之后532nm倍频光与另一路泵浦光合束射入谐振腔;斯托克斯光谐振腔为平行平面腔(斯托克斯光腔镜镀532nm和1064nm高透、1067-1076nm高反膜),且与非线性晶体侧面平行;非线性晶体为掺氧化镁铌酸锂(MgO:LiNbO3)晶体,其掺杂浓度为5mol%,等腰梯形切割,底角为65°,对侧面进行光学抛光,晶轴方向与泵浦光偏振方向平行,产生的太赫兹波垂直晶体表面输出;太赫兹波由太赫兹探测器探测,所述探测器包括高莱探测器、热释电探测器、液氦冷却低温超导辐射热计(bolometer)、肖特基二极管、光电导开关、电光晶体等。当输出太赫兹波为1.5THz时,利用电控振镜对倍频光进行调制,进而实现对太赫兹波输出信号的时间域快速调制。
在本公开实施例中,对于太赫兹波辐射的时域调控研究,图4为一太赫兹波信号在时间域的调制效果示意图,如图4所示,我们利用532nm激光的太赫兹波辐射关断能力,结合8-bits二进制ASCII编码方式,将信息编码进太赫兹波辐射的脉冲序列(二进制1为存在太赫兹波辐射,二进制0为不存在太赫兹波辐射),具体结果如下图所示,最顶端的黑色脉冲波列代表的是全“1”状态编码,在此之下不同的脉冲序列分别代表了“TJU THz”几个英文字母的8-bits二进制ASCII编码。可以看出,太赫兹波信号的在时间域得到了很好的调制效果,这对推动太赫兹波技术实用化发展具有重要的作用。
在双光子吸收过程中,非线性光学介质会同时吸收两个光子来满足自身的能级带隙要求,进而激发出自由载流子。在非线性光学介质发生双光子吸收过程进而引发自由载流子激发之后,自由载流子也会对太赫兹波产生一定的吸收调制效果,在一般情况下,这一相互作用可以采用经典的德鲁德(Drude)模型进行处理。在这一模型中,载流子的运动是相对独立的,除了相互碰撞以及它们对整体的库伦场的贡献之外,载流子之间的相互作用可以忽略。载流子的碰撞是瞬时发生的,两次碰撞之间的时间间隔可以由统计平均碰撞时间τ来描述。τ不随载流子的位置或运动速度而变化。这时,由电磁波驱动的载流子的运动方程可以表示为:
其中m*代表载流子的有效质量,q是载流子携带的电荷,E电场强度。利用平衡态的性质,可以将τ表示为:
τ=m*μ/q,
其中μ是载流子的迁移率。电场E与载流子位移x形成的电偶极矩存在如下的关系:
P=(ε-ε0E=Nqx,
其中ε是高频(相对)介电常数,N是自由载流子密度,ε0代表真空介电常数,而ε是物质的相对介电常数。将上述的载流子运动方程改写为电极化率的方程,则有如下形式:
其中γ0=1/τ是物质中载流子相位相干性的衰减系数。如果不考虑非线性过程,物质与电磁波的相互作用可以表示为其与各个频率的单色电磁波相互作用的叠加。对于每一频率的电磁波,电场和物质的电极化率都可以写作简谐振荡的形式E=E0eiωt和P=χE0ei ωt,则上式可以写作:
在这种情况下,通过解上述方程就可以得到物质在该频率的复介电常数:
其中称为物质的等离子体振荡频率,它正比于其中自由载流子密度的平方根/>
综上可以看出,在非线性光学介质发生双光子吸收过程进而引发自由载流子激发之后,自由载流子会对非线性光学介质在太赫兹波段的介电响应产生强烈的影响,其中吸收系数的变化就会引发太赫兹波在时间域的调制效应。
由此可见,太赫兹波内调制装置,将会对太赫兹波技术在生命科学、材料科学、分子分析等领域的广泛应用提供重要帮助。
至此,已经结合附图对本公开实施例进行了详细描述。需要说明的是,在附图或说明书正文中,未绘示或描述的实现方式,均为所属技术领域中普通技术人员所知的形式,并未进行详细说明。此外,上述对各元件和方法的定义并不仅限于实施例中提到的各种具体结构、形状或方式,本领域普通技术人员可对其进行简单地更改或替换。
依据以上描述,本领域技术人员应当对本公开太赫兹波内调制装置有了清楚的认识。
综上所述,本公开提供了一种太赫兹波内调制装置,能够在太赫兹波辐射源的内部实现对太赫兹波信号在时间域的调制,以缓解现有技术中太赫兹波信号调制损耗较大,调制速率较低,调制效率较差等问题。
还需要说明的是,实施例中提到的方向用语,例如“上”、“下”、“前”、“后”、“左”、“右”等,仅是参考附图的方向,并非用来限制本公开的保护范围。贯穿附图,相同的元素由相同或相近的附图标记来表示。在可能导致对本公开的理解造成混淆时,将省略常规结构或构造。
并且图中各部件的形状和尺寸不反映真实大小和比例,而仅示意本公开实施例的内容。另外,在权利要求中,不应将位于括号之间的任何参考符号构造成对权利要求的限制。
除非有所知名为相反之意,本说明书及所附权利要求中的数值参数是近似值,能够根据通过本公开的内容所得的所需特性改变。具体而言,所有使用于说明书及权利要求中表示组成的含量、反应条件等等的数字,应理解为在所有情况中是受到「约」的用语所修饰。一般情况下,其表达的含义是指包含由特定数量在一些实施例中±10%的变化、在一些实施例中±5%的变化、在一些实施例中±1%的变化、在一些实施例中±0.5%的变化。
再者,单词“包含”不排除存在未列在权利要求中的元件或步骤。位于元件之前的单词“一”或“一个”不排除存在多个这样的元件。
说明书与权利要求中所使用的序数例如“第一”、“第二”、“第三”等的用词,以修饰相应的元件,其本身并不意味着该元件有任何的序数,也不代表某一元件与另一元件的顺序、或是制造方法上的顺序,该些序数的使用仅用来使具有某命名的一元件得以和另一具有相同命名的元件能做出清楚区分。
此外,除非特别描述或必须依序发生的步骤,上述步骤的顺序并无限制于以上所列,且可根据所需设计而变化或重新安排。并且上述实施例可基于设计及可靠度的考虑,彼此混合搭配使用或与其他实施例混合搭配使用,即不同实施例中的技术特征可以自由组合形成更多的实施例。
本领域那些技术人员可以理解,可以对实施例中的设备中的模块进行自适应性地改变并且把它们设置在与该实施例不同的一个或多个设备中。可以把实施例中的模块或单元或组件组合成一个模块或单元或组件,以及此外可以把它们分成多个子模块或子单元或子组件。除了这样的特征和/或过程或者单元中的至少一些是相互排斥之外,可以采用任何组合对本说明书(包括伴随的权利要求、摘要和附图)中公开的所有特征以及如此公开的任何方法或者设备的所有过程或单元进行组合。除非另外明确陈述,本说明书(包括伴随的权利要求、摘要和附图)中公开的每个特征可以由提供相同、等同或相似目的的替代特征来代替。并且,在列举了若干装置的单元权利要求中,这些装置中的若干个可以是通过同一个硬件项来具体体现。
类似地,应当理解,为了精简本公开并帮助理解各个公开方面中的一个或多个,在上面对本公开的示例性实施例的描述中,本公开的各个特征有时被一起分组到单个实施例、图、或者对其的描述中。然而,并不应将该公开的方法解释成反映如下意图:即所要求保护的本公开要求比在每个权利要求中所明确记载的特征更多的特征。更确切地说,如下面的权利要求书所反映的那样,公开方面在于少于前面公开的单个实施例的所有特征。因此,遵循具体实施方式的权利要求书由此明确地并入该具体实施方式,其中每个权利要求本身都作为本公开的单独实施例。
以上所述的具体实施例,对本公开的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本公开的具体实施例而已,并不用于限制本公开,凡在本公开的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本公开的保护范围之内。

Claims (8)

1.一种太赫兹波内调制装置,包括:
激光源(100),用于产生激光;
光调制单元(200),用于将激光源(100)输入的激光转化为时域调制光和基频光的组合光;
光学非线性增益单元(300),用于将光调制单元(200)所输入的组合光中的基频光转换为太赫兹波,同时此非线性频率变换过程受到组合光中的时域调制光的调制;以及
太赫兹探测器(400),对光学非线性增益单元(300)所输出的太赫兹波进行测量;
所述光学非线性增益单元(300),包括:
非线性晶体(310),受激产生太赫兹波和斯托克斯光;
前腔镜(320)和后腔镜(330),使所述非线性晶体(310)受激发产生的斯托克斯光在所述前腔镜(320)和后腔镜(330)组成的谐振腔内发生振荡;以及
第二光束收集器(340),用于收集未耗尽的泵浦光;
所述光学非线性增益单元(300)中的前腔镜(320)和后腔镜(330)组成的谐振腔为驻波谐振腔,所述前腔镜(320)和后腔镜(330)分别与所述非线性晶体(310)的两侧边平行。
2.根据权利要求1所述的太赫兹波内调制装置,所述激光源(100)包括调制激光器(110)和泵浦激光器(120),所述光调制单元(200)包括:
光调制组件(260),将调制激光器(110)所输入的激光进行调制生成时域调制光并输出;以及
合束镜(280),用于将光调制组件(260)所输出的时域调制光和泵浦激光器(120)所发出的基频光合束并输出。
3.根据权利要求1所述的太赫兹波内调制装置,所述激光源(100)为单个激光器,所述光调制单元(200)还包括:
分束镜(210),将激光源(100)输入的激光分为两束基频光;
倍频晶体(220),将输入的基频光转换为倍频光;
第一反射镜(230),将分束镜(210)所分出的其中一束基频光反射到倍频晶体(220);
滤波单元(240),用于过滤和收集所述倍频晶体(220)输出的、没有被转换为倍频的基频光;
第二反射镜(250),用于反射所述倍频晶体(220)所输出的经滤波单元(240)后的倍频光至所述光调制组件(260);以及
第三反射镜(270),用于反射分束镜(210)所分出的另一束基频光至合束镜(280)。
4.根据权利要求2所述的太赫兹波内调制装置,所述光调制组件(260),包括电控振镜(261)、数据采集卡以及计算机,所述电控振镜(261)经由计算机控制,对输入的光进行调制。
5.根据权利要求3所述的太赫兹波内调制装置,所述滤波单元(240),包括:
滤波镜(241),用于过滤没有被倍频晶体(220)所倍频的基频光;以及
第一光束收集器(242),用于收集所述滤波镜(241)所过滤后的基频光。
6.根据权利要求1所述的太赫兹波内调制装置,所述非线性晶体(310)的制备材料包括:掺氧化镁铌酸锂,掺杂浓度为5mol%。
7.根据权利要求1所述的太赫兹波内调制装置,所述非线性晶体(310)为等腰梯形切割,所述等腰梯形的底角为60°~70°。
8.根据权利要求1所述的太赫兹波内调制装置,所述太赫兹探测器(400)包括高莱探测器、热释电探测器、液氦冷却低温超导辐射热计、肖特基二极管、光电导开关或电光晶体。
CN201810722074.4A 2018-07-02 2018-07-02 太赫兹波内调制装置 Active CN108803194B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810722074.4A CN108803194B (zh) 2018-07-02 2018-07-02 太赫兹波内调制装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810722074.4A CN108803194B (zh) 2018-07-02 2018-07-02 太赫兹波内调制装置

Publications (2)

Publication Number Publication Date
CN108803194A CN108803194A (zh) 2018-11-13
CN108803194B true CN108803194B (zh) 2024-03-22

Family

ID=64074439

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810722074.4A Active CN108803194B (zh) 2018-07-02 2018-07-02 太赫兹波内调制装置

Country Status (1)

Country Link
CN (1) CN108803194B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110021869B (zh) * 2019-05-09 2021-01-29 华北水利水电大学 一种三维光学参量振荡太赫兹波辐射源
CN110160573B (zh) * 2019-07-08 2022-03-25 山东省科学院激光研究所 艾赫兹超快调制脉冲扫描激光器及分布式光纤传感系统
CN112054076A (zh) * 2020-09-23 2020-12-08 成都能太科技有限公司 一种可高效光控的太赫兹法诺谐振超构器件
CN114001821A (zh) * 2021-11-08 2022-02-01 南开大学 基于光热声机制的室温太赫兹波功率测量装置及测量方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6144679A (en) * 1999-01-15 2000-11-07 Science Applications International Corporation Method and apparatus for providing a coherent terahertz source
JP2010062619A (ja) * 2008-09-01 2010-03-18 Nippon Telegr & Teleph Corp <Ntt> 周波数変調信号発生方法及び発生装置
CN101794957A (zh) * 2010-02-06 2010-08-04 山东科技大学 差频太赫兹脉冲整形方法及其整形系统
CN104158077A (zh) * 2014-07-31 2014-11-19 天津大学 基于罗兰圆的快速调谐太赫兹参量振荡辐射源装置及方法
CN105048270A (zh) * 2015-07-13 2015-11-11 山东大学 一种基于铌酸锂晶体的激光放大器及其应用
CN208705630U (zh) * 2018-07-02 2019-04-05 天津大学 太赫兹波内调制装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6144679A (en) * 1999-01-15 2000-11-07 Science Applications International Corporation Method and apparatus for providing a coherent terahertz source
JP2010062619A (ja) * 2008-09-01 2010-03-18 Nippon Telegr & Teleph Corp <Ntt> 周波数変調信号発生方法及び発生装置
CN101794957A (zh) * 2010-02-06 2010-08-04 山东科技大学 差频太赫兹脉冲整形方法及其整形系统
CN104158077A (zh) * 2014-07-31 2014-11-19 天津大学 基于罗兰圆的快速调谐太赫兹参量振荡辐射源装置及方法
CN105048270A (zh) * 2015-07-13 2015-11-11 山东大学 一种基于铌酸锂晶体的激光放大器及其应用
CN208705630U (zh) * 2018-07-02 2019-04-05 天津大学 太赫兹波内调制装置

Also Published As

Publication number Publication date
CN108803194A (zh) 2018-11-13

Similar Documents

Publication Publication Date Title
CN108803194B (zh) 太赫兹波内调制装置
Minck et al. Nonlinear optics
Jeys et al. Sum frequency generation of sodium resonance radiation
Auston Subpicosecond electro‐optic shock waves
JP5240858B2 (ja) 単色波長可変型テラヘルツ波発生/検出システム及び方法
CN102412496B (zh) 一种基于非线性光学差频技术的太赫兹波辐射源
CN100438237C (zh) 宽带太赫兹光产生器
US3530301A (en) Nonlinear optical devices employing optimized focusing
Jiang et al. Efficient terahertz generation from two collinearly propagating CO2 laser pulses
JP4883350B2 (ja) テラヘルツ波発生・検出装置
CN208569203U (zh) 用于超分辨率成像的太赫兹结构光调制装置
CN108964781A (zh) 多通道相干拉曼散射光学装置和成像系统
CN104158077A (zh) 基于罗兰圆的快速调谐太赫兹参量振荡辐射源装置及方法
CN108011286B (zh) 一种基于铯原子系综产生亚kHz低频强度差压缩的装置
CN106654837B (zh) 一种种子光注入高功率太赫兹差频源系统
CN101614930A (zh) 一种太赫兹波参量振荡器频率调谐方法
CN208705630U (zh) 太赫兹波内调制装置
CN111458950A (zh) 基于石墨烯与xpm作用的空间双相全光开关装置及调制方法
Lai et al. Two-frequency Er-Yb: glass microchip laser passively Q switched by a Co: ASL saturable absorber
RU2386933C1 (ru) Измеритель мощности излучения импульсных оптических квантовых генераторов
CN110673352A (zh) 用于超分辨率成像的太赫兹结构光调制装置
CN111641097A (zh) 基于铌酸锂晶体的波导型电光调制太赫兹波发生器
Shimano et al. Efficient two-photon light amplification by a coherent biexciton wave
Tashiro et al. Tunable infrared difference-frequency generation with a high-repetition pulsed dye laser
CN216624866U (zh) 高功率太赫兹差频谐振辐射源系统

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant