CN108786872A - 一种花状WS2/Bi2O2CO3异质结光催化材料的合成方法及其应用 - Google Patents

一种花状WS2/Bi2O2CO3异质结光催化材料的合成方法及其应用 Download PDF

Info

Publication number
CN108786872A
CN108786872A CN201810730000.5A CN201810730000A CN108786872A CN 108786872 A CN108786872 A CN 108786872A CN 201810730000 A CN201810730000 A CN 201810730000A CN 108786872 A CN108786872 A CN 108786872A
Authority
CN
China
Prior art keywords
flower
shaped
photocatalysis material
heterojunction photocatalysis
mixed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810730000.5A
Other languages
English (en)
Other versions
CN108786872B (zh
Inventor
周建国
李莉
符帅
史小昆
柳海萍
王展
王一展
杜锦阁
周兆先
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henan Normal University
Original Assignee
Henan Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henan Normal University filed Critical Henan Normal University
Priority to CN201810730000.5A priority Critical patent/CN108786872B/zh
Publication of CN108786872A publication Critical patent/CN108786872A/zh
Application granted granted Critical
Publication of CN108786872B publication Critical patent/CN108786872B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/20Carbon compounds
    • B01J27/232Carbonates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/10Heat treatment in the presence of water, e.g. steam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/341Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation
    • B01J37/343Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation of ultrasonic wave energy
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/38Organic compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/34Nature of the water, waste water, sewage or sludge to be treated from industrial activities not provided for in groups C02F2103/12 - C02F2103/32
    • C02F2103/343Nature of the water, waste water, sewage or sludge to be treated from industrial activities not provided for in groups C02F2103/12 - C02F2103/32 from the pharmaceutical industry, e.g. containing antibiotics
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Thermal Sciences (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种花状WS2/Bi2O2CO3异质结光催化材料的合成方法及其应用,将0.105mmol WS2分散于摩尔浓度为1mol/L的稀HNO3溶液中并超声剥离形成混合液A;将4mmol Bi(NO3)3•5H2O加入到溶液A中并搅拌混合均匀形成混合液B;将尿素加入到混合液B中并搅拌混合均匀形成混合液C,再将混合液C的pH调至9后转移至水热反应釜中于180℃水热反应1h,然后自然冷却至室温,离心分离,用水和乙醇分别反复洗涤后置于真空干燥箱中于60℃真空干燥12h得到花状WS2/Bi2O2CO3异质结光催化材料。本发明合成的花状WS2/Bi2O2CO3异质结光催化材料表现出较高的光催化活性和稳定性,能够用于光催化降解环丙沙星等有机污染物。

Description

一种花状WS2/Bi2O2CO3异质结光催化材料的合成方法及其应用
技术领域
本发明属于复合光催化材料的合成技术领域,具体涉及一种花状WS2/Bi2O2CO3异质结光催化材料的合成方法及其应用。
背景技术
随着我国经济的快速发展,相应的环境和能源问题也随之出现。光催化作为一个清洁有效的技术,在污染物降解和太阳能转换方面效果显著。近些年,铋基半导体光催化材料被证明在环境净化方面很有前景。Bi2O2CO3光催化剂由于其在抗菌、超级电容器及光催化方面的潜在应用引起了广大科技工作者的广泛关注。然而,Bi2O2CO3禁带宽度在3.1-3.5eV,限制了其在可见光区的应用,且单组份Bi2O2CO3光生电子-空穴对容易复合。为提升Bi2O2CO3光催化性能,目前进行了大量的研究,包括形貌控制、掺杂、构建异质结等。其中和具有可见光吸收的半导体进行复合构建异质结可以有效地抑制光生电子-空穴对的复合,提高材料的光催化性能,从而提高材料的光催化效果。因此本发明通过构建异质结材料来提高光催化材料的光催化性能。
二维纳米材料是一类新兴的纳米材料类别,由于其独特的物理、电子和化学特性,表现出了很多独特的优势。由于电子被限制在二维平面内,增进了其电子特性;强烈的面内共价键和原子层厚度使得它们表现出了出色的机械强度、柔性以及光学透明度;拥有极大平面尺寸赋予了二维材料极大的比表面积。这极大地吸引了催化和超级电容器这些表面积关联应用领域的研究,成为催化领域研究热点。
作为一种二维层状过渡金属硫化物,二硫化钨(WS2)带隙较小(约1.8eV),具有强的吸收可见光的能力,以及较高的载流子迁移率和较大的比表面积,在光电转化以及催化领域都有非常优异的性能。
本发明针对Bi2O2CO3缺点,选取二硫化钨二维材料与其复合构建花状WS2/Bi2O2CO3异质结,一方面促进电子-空穴高效分离,另一方面拓展了该材料在可见光区域的响应,从而达到提高光催化性能的效果,并以环丙沙星(CIP)为目标污染物测试光催化性质。目前尚没有关于花状WS2/Bi2O2CO3异质结光催化材料的合成及其用于光催化降解抗生素环丙沙星的报道。
发明内容
本发明解决的技术问题是提供了一种花状WS2/Bi2O2CO3异质结光催化材料的合成方法,该方法合成的花状WS2/Bi2O2CO3异质结光催化材料表现出较高的光催化活性和稳定性,能够用于光催化降解环丙沙星等有机污染物。
本发明为解决上述技术问题采用如下技术方案,一种花状WS2/Bi2O2CO3异质结光催化材料的合成方法,其特征在于具体步骤为:
步骤S1:将0.105mmol WS2分散于浓度为1mol/L的稀HNO3溶液中并超声剥离形成混合液A;
步骤S2:将4mmol Bi(NO3)3•5H2O加入到溶液A中并搅拌混合均匀形成混合液B;
步骤S3:将尿素加入到混合液B中并搅拌混合均匀形成混合液C,再将混合液C的pH调至9后转移至水热反应釜中于180℃水热反应1h,然后自然冷却至室温,离心分离,用水和乙醇分别反复洗涤后置于真空干燥箱中于60℃真空干燥12h得到花状WS2/Bi2O2CO3异质结光催化材料。
本发明制得的花状WS2/Bi2O2CO3异质结光催化材料在光催化降解环丙沙星中的应用。
本发明采用自组装法合成花状WS2/Bi2O2CO3异质结光催化材料,该光催化材料具有较大的比表面积,表现出较高的光催化活性,本发明合成过程无需加入任何模板剂和其它添加剂,合成工艺简易,绿色环保,适宜规模化生产,有望产生良好的社会和经济效益。
附图说明
图1为实施例1制得的WS2/Bi2O2CO3异质结光催化材料的FESEM图;
图2为纯Bi2O2CO3、纯WS2和实施例1制得的WS2/Bi2O2CO3异质结光催化材料的XRD图谱;
图3为纯Bi2O2CO3、纯WS2和实施例1制得的WS2/Bi2O2CO3异质结光催化材料的UV-VisDRS图谱;
图4为纯Bi2O2CO3和实施例1制得的WS2/Bi2O2CO3异质结光催化材料的PL图谱;
图5为实施例1制得的WS2/Bi2O2CO3异质结光催化材料的HRTEM图;
图6为实施例1制得的WS2/Bi2O2CO3异质结光催化材料降解环丙沙星的紫外可见吸收光谱变化曲线;
图7为不同光催化材料在模拟太阳光照射下对环丙沙星的降解效率对比图。
具体实施方式
以下通过实施例对本发明的上述内容做进一步详细说明,但不应该将此理解为本发明上述主题的范围仅限于以下的实施例,凡基于本发明上述内容实现的技术均属于本发明的范围。
实施例1
步骤S1:将0.105mmol WS2分散于摩尔浓度为1mol/L的稀HNO3溶液中并超声剥离形成混合液A;
步骤S2:将4mmol Bi(NO3)3•5H2O加入到溶液A中并搅拌混合均匀形成混合液B;
步骤S3:将尿素加入到混合液B中并搅拌混合均匀形成混合液C,再将混合液C的pH调至9后转移至水热反应釜中于180℃水热反应1h,然后自然冷却至室温,离心分离,用水和乙醇分别反复洗涤后置于真空干燥箱中于60℃真空干燥12h得到花状WS2/Bi2O2CO3异质结光催化材料,标记为WS2-BOC。
图1为实施例1制得的WS2/Bi2O2CO3异质结光催化材料的FESEM图。由图可以看出样品是由厚度为50 nm的纳米片层组装而成的微米花状结构,直径约为1-5μm。
图2为纯Bi2O2CO3、纯WS2和实施例1制得的WS2/Bi2O2CO3异质结光催化材料的XRD图谱。图中纯Bi2O2CO3和纯WS2各衍射的位置分别与四方相Bi2O2CO3标准卡片(JCPDS NO.41-1488)和六方相WS2标准卡片(JCPDS no.35-0651)一致。WS2/Bi2O2CO3异质结光催化材料除了Bi2O2CO3的衍射峰外还在14.3°、28.8°和43.9°存在WS2的衍射峰,说明样品中存在Bi2O2CO3和WS2
图3为纯Bi2O2CO3、纯WS2和实施例1制得的WS2/Bi2O2CO3异质结光催化材料的UV-VisDRS图谱。由图可知纯Bi2O2CO3主要吸收紫外光,吸收带边约为402nm,而WS2/Bi2O2CO3异质结光催化材料除在紫外区有较强的吸收外,在可见光区也有明显吸收,表明将WS2和Bi2O2CO3复合构建的花状WS2/Bi2O2CO3异质结光催化材料显著拓宽了催化剂的光吸收范围。
图4为纯Bi2O2CO3和实施例1制得的WS2/Bi2O2CO3异质结光催化材料的PL图谱。由图可知WS2/Bi2O2CO3异质结光催化材料的荧光强度明显比纯的Bi2O2CO3的荧光强度要弱,表明花状WS2/Bi2O2CO3异质结光催化材料中光生电子与空穴的复合几率比Bi2O2CO3低,光生载流子的分离效率比较高,这对提高催化剂的光催化性能是十分有利的。
图5为实施例1制得的花状WS2/Bi2O2CO3异质结光催化材料的HRTEM图。从HRTEM图能观察到两种不同的晶格条纹,间距分别为0.62nm和0.27nm,分别对应(002)晶面的WS2和(110)晶面的Bi2O2CO3,并且能清晰观察到两种物质的边界,表明WS2与Bi2O2CO3两种物质之间形成异质结构。
实施例2
以环丙沙星(CIP)为降解目标物来评价样品的光催化效果。本实验使用500W氙灯作为模拟太阳光光源,采用10mg/L的CIP为降解浓度;称取40mg实施例1制得的花状WS2/Bi2O2CO3异质结光催化材料,将其加入到装有40mL的CIP石英管中在超声器上超声3min,使光催化材料与CIP溶液充分混合,然后将混合液放入HXSEI光反应仪器中暗处理30min,以达到吸附—脱附平衡。取此混合溶液4mL,同时将此刻作为开灯的0时刻。打开氙灯之后每隔一段时间(15min)取石英管中的溶液4mL。将取得的溶液在高速离心机内离心6min后,取上层清液,采用紫外-可见分光光度计进行光谱扫描测定其在272nm处的吸光度。通过在272nm处吸光度的变化来确定花状WS2/Bi2O2CO3异质结光催化材料对CIP的降解效果。
图6为实施例1制得的WS2/Bi2O2CO3异质结光催化材料降解CIP的紫外可见吸收光谱变化曲线。由图可知样品在光照90min后CIP的特征峰基本消失,表明CIP基本降解完全。
图7为不同光催化材料在模拟太阳光照射下对CIP的降解效率对比图。由图可以看出,在没有光催化剂存在下,光照90min后CIP的降解率只有5%左右,表明CIP具有很好的稳定性。花状WS2/Bi2O2CO3异质结光催化材料在模拟太阳光的照射下90min能将CIP降解95.1%,进一步说明构建的WS2/Bi2O2CO3异质结光催化材料能提高样品的光催化性能,对光催化降解CIP是非常有效的。
以上实施例描述了本发明的基本原理、主要特征及优点,本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是说明本发明的原理,在不脱离本发明原理的范围下,本发明还会有各种变化和改进,这些变化和改进均落入本发明保护的范围内。

Claims (2)

1.一种花状WS2/Bi2O2CO3异质结光催化材料的合成方法,其特征在于具体步骤为:
步骤S1:将0.105mmol WS2分散于摩尔浓度为1mol/L的稀HNO3溶液中并超声剥离形成混合液A;
步骤S2:将4mmol Bi(NO3)3•5H2O加入到溶液A中并搅拌混合均匀形成混合液B;
步骤S3:将尿素加入到混合液B中并搅拌混合均匀形成混合液C,再将混合液C的pH调至9后转移至水热反应釜中于180℃水热反应1h,然后自然冷却至室温,离心分离,用水和乙醇分别反复洗涤后置于真空干燥箱中于60℃真空干燥12h得到花状WS2/Bi2O2CO3异质结光催化材料。
2.根据权利要求1所述的方法制得的花状WS2/Bi2O2CO3异质结光催化材料在光催化降解环丙沙星中的应用。
CN201810730000.5A 2018-07-05 2018-07-05 一种花状WS2/Bi2O2CO3异质结光催化材料的合成方法及其应用 Expired - Fee Related CN108786872B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810730000.5A CN108786872B (zh) 2018-07-05 2018-07-05 一种花状WS2/Bi2O2CO3异质结光催化材料的合成方法及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810730000.5A CN108786872B (zh) 2018-07-05 2018-07-05 一种花状WS2/Bi2O2CO3异质结光催化材料的合成方法及其应用

Publications (2)

Publication Number Publication Date
CN108786872A true CN108786872A (zh) 2018-11-13
CN108786872B CN108786872B (zh) 2021-05-11

Family

ID=64075301

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810730000.5A Expired - Fee Related CN108786872B (zh) 2018-07-05 2018-07-05 一种花状WS2/Bi2O2CO3异质结光催化材料的合成方法及其应用

Country Status (1)

Country Link
CN (1) CN108786872B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110756206A (zh) * 2019-10-14 2020-02-07 东北大学秦皇岛分校 WO3改性Bi2O2CO3光催化剂制备方法及其应用
CN113501504A (zh) * 2021-07-21 2021-10-15 苏州普轮电子科技有限公司 一种新型微纳结构的半导体材料及其制备方法
CN113559902A (zh) * 2021-07-09 2021-10-29 清华大学 花状氧化银/碳酸氧铋异质结及其制备方法和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06115939A (ja) * 1992-10-07 1994-04-26 Nippon Muki Kagaku Kogyo Kk 熱安定性を改良した次炭酸ビスマス組成物とその製造方法
CN103962158A (zh) * 2014-04-30 2014-08-06 南昌航空大学 一种三元异质结光降解有机物催化剂WS2-Bi2WO6/Bi3.84W0.16O6.24及其制备方法
CN104437554A (zh) * 2014-12-05 2015-03-25 武汉理工大学 片状WS2负载BiVO4可见光催化材料及其制备方法
CN105797760A (zh) * 2016-04-18 2016-07-27 河南师范大学 一种Bi2O2CO3-WO3复合光催化剂及其制备方法
CN106799200A (zh) * 2017-02-26 2017-06-06 河南师范大学 一种WS2@MoS2复合可见光催化剂及其制备方法和应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06115939A (ja) * 1992-10-07 1994-04-26 Nippon Muki Kagaku Kogyo Kk 熱安定性を改良した次炭酸ビスマス組成物とその製造方法
CN103962158A (zh) * 2014-04-30 2014-08-06 南昌航空大学 一种三元异质结光降解有机物催化剂WS2-Bi2WO6/Bi3.84W0.16O6.24及其制备方法
CN104437554A (zh) * 2014-12-05 2015-03-25 武汉理工大学 片状WS2负载BiVO4可见光催化材料及其制备方法
CN105797760A (zh) * 2016-04-18 2016-07-27 河南师范大学 一种Bi2O2CO3-WO3复合光催化剂及其制备方法
CN106799200A (zh) * 2017-02-26 2017-06-06 河南师范大学 一种WS2@MoS2复合可见光催化剂及其制备方法和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
XIANG LI ET AL.: ""Fabrication of a novel few-layer WS2/Bi2MoO6 plate-on-plate heterojunction structure with enhanced visible-light photocatalytic activity"", 《DALTON TRANSACTIONS》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110756206A (zh) * 2019-10-14 2020-02-07 东北大学秦皇岛分校 WO3改性Bi2O2CO3光催化剂制备方法及其应用
CN110756206B (zh) * 2019-10-14 2022-03-11 东北大学秦皇岛分校 WO3改性Bi2O2CO3光催化剂制备方法及其应用
CN113559902A (zh) * 2021-07-09 2021-10-29 清华大学 花状氧化银/碳酸氧铋异质结及其制备方法和应用
CN113501504A (zh) * 2021-07-21 2021-10-15 苏州普轮电子科技有限公司 一种新型微纳结构的半导体材料及其制备方法

Also Published As

Publication number Publication date
CN108786872B (zh) 2021-05-11

Similar Documents

Publication Publication Date Title
Yang et al. Enhanced photocatalytic activity of g-C3N4 2D nanosheets through thermal exfoliation using dicyandiamide as precursor
Du et al. Enhanced photocatalytic activity of Bi2WO6/TiO2 composite coated polyester fabric under visible light irradiation
Jiang et al. Facile in-situ Solvothermal Method to synthesize double shell ZnIn2S4 nanosheets/TiO2 hollow nanosphere with enhanced photocatalytic activities
Jo et al. Enhanced visible light-driven photocatalytic performance of ZnO–g-C3N4 coupled with graphene oxide as a novel ternary nanocomposite
Huang et al. Honeycomb-like carbon nitride through supramolecular preorganization of monomers for high photocatalytic performance under visible light irradiation
Zhang et al. Pt nanoparticles embedded spine-like g-C3N4 nanostructures with superior photocatalytic activity for H2 generation and CO2 reduction
Ma et al. Ligand-metal charge transfer mechanism enhances TiO2/Bi2WO6/rGO nanomaterials photocatalytic efficient degradation of norfloxacin under visible light
Pakdel et al. Visible and UV functionality of TiO2 ternary nanocomposites on cotton
Hassan et al. Recent advancement in Bi5O7I-based nanocomposites for high performance photocatalysts
CN110639555A (zh) 一种可见光响应的CdS/CdIn2S4复合纳米结构光催化剂的制备方法及应用
CN108786872A (zh) 一种花状WS2/Bi2O2CO3异质结光催化材料的合成方法及其应用
CN109317183A (zh) 一种氮化硼量子点/超薄多孔氮化碳复合光催化材料及其制备方法和应用
Ma et al. Oxygen defects-induced charge transfer in Bi7O9I3 for enhancing oxygen activation and visible-light degradation of BPA
Wang et al. Enhanced piezo-photocatalytic activity of Bi2MoO6 nanosheets: Theory and experimental studies
CN106693996B (zh) 硫化铋-铁酸铋复合可见光催化剂的制备方法及其应用
Chen et al. Bi4Ti3O12/TiO2 heterostructure: Synthesis, characterization and enhanced photocatalytic activity
Li et al. Preparation and photocatalytic performance of dumbbell Ag2CO3–ZnO heterojunctions
Li et al. TiO2 nanobelts photocatalysts decorated with Bi2WO6 nanocrystals: Preparation and enhanced photocatalytic activity
Khalid et al. Fabrication of p–n heterojunction Ag 2 O@ Ce 2 O nanocomposites make enables to improve photocatalytic activity under visible light
Liang et al. Controllable fabrication of a novel heterojunction composite: AgBr and Ag@ Ag 2 O co-modified Ag 2 CO 3 with excellent photocatalytic performance towards refractory pollutant degradation
CN107442139A (zh) 用于高效降解龙胆紫的片状Z型SnS2/Bi2MoO6异质结光催化材料的制备方法
Min et al. In-situ fabrication of Ag/g-C3N4 composite materials with improved photocatalytic activity by coordination-driven assembly of precursors
Sridevi et al. Visible-light driven γ-Al2O3, CuO and γ-Al2O3/CuO nanocatalysts: Synthesis and enhanced photocatalytic activity
Pascariu et al. Surface morphology effects on photocatalytic activity of metal oxides nanostructured materials immobilized onto substrates
Alamdari et al. Immobilization of ZnO: Ga nanocrystals in a polystyrene/cellulose matrix: A novel hybrid nanocomposite photocatalyst for future photo energy application

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20210511