CN108786872A - 一种花状WS2/Bi2O2CO3异质结光催化材料的合成方法及其应用 - Google Patents
一种花状WS2/Bi2O2CO3异质结光催化材料的合成方法及其应用 Download PDFInfo
- Publication number
- CN108786872A CN108786872A CN201810730000.5A CN201810730000A CN108786872A CN 108786872 A CN108786872 A CN 108786872A CN 201810730000 A CN201810730000 A CN 201810730000A CN 108786872 A CN108786872 A CN 108786872A
- Authority
- CN
- China
- Prior art keywords
- flower
- shaped
- photocatalysis material
- heterojunction photocatalysis
- mixed
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000463 material Substances 0.000 title claims abstract description 51
- 230000001699 photocatalysis Effects 0.000 title claims abstract description 48
- 238000007146 photocatalysis Methods 0.000 title claims abstract description 45
- 238000010189 synthetic method Methods 0.000 title claims abstract description 6
- MYSWGUAQZAJSOK-UHFFFAOYSA-N ciprofloxacin Chemical compound C12=CC(N3CCNCC3)=C(F)C=C2C(=O)C(C(=O)O)=CN1C1CC1 MYSWGUAQZAJSOK-UHFFFAOYSA-N 0.000 claims abstract description 18
- 239000007788 liquid Substances 0.000 claims abstract description 10
- 229960003405 ciprofloxacin Drugs 0.000 claims abstract description 9
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims abstract description 8
- 238000001027 hydrothermal synthesis Methods 0.000 claims abstract description 8
- 238000001291 vacuum drying Methods 0.000 claims abstract description 7
- 238000013033 photocatalytic degradation reaction Methods 0.000 claims abstract description 5
- 238000002604 ultrasonography Methods 0.000 claims abstract description 5
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 claims abstract description 4
- 239000004202 carbamide Substances 0.000 claims abstract description 4
- 235000019441 ethanol Nutrition 0.000 claims abstract description 4
- 238000005406 washing Methods 0.000 claims abstract description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 4
- 230000008859 change Effects 0.000 claims description 6
- 238000000034 method Methods 0.000 claims description 5
- ITRNXVSDJBHYNJ-UHFFFAOYSA-N tungsten disulfide Chemical compound S=[W]=S ITRNXVSDJBHYNJ-UHFFFAOYSA-N 0.000 description 14
- 238000006555 catalytic reaction Methods 0.000 description 8
- 238000006731 degradation reaction Methods 0.000 description 7
- 239000000243 solution Substances 0.000 description 7
- 230000015556 catabolic process Effects 0.000 description 6
- 238000010521 absorption reaction Methods 0.000 description 5
- 150000001875 compounds Chemical class 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 238000003786 synthesis reaction Methods 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 4
- 239000003054 catalyst Substances 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 230000008901 benefit Effects 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 238000002173 high-resolution transmission electron microscopy Methods 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 238000002835 absorbance Methods 0.000 description 2
- 230000003197 catalytic effect Effects 0.000 description 2
- 239000000356 contaminant Substances 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 238000000445 field-emission scanning electron microscopy Methods 0.000 description 2
- 238000005286 illumination Methods 0.000 description 2
- 238000005297 material degradation process Methods 0.000 description 2
- 239000002086 nanomaterial Substances 0.000 description 2
- 239000010453 quartz Substances 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 229910052724 xenon Inorganic materials 0.000 description 2
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 description 2
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 239000003708 ampul Substances 0.000 description 1
- 230000000844 anti-bacterial effect Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000003115 biocidal effect Effects 0.000 description 1
- -1 bismuthino Chemical group 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- RKTYLMNFRDHKIL-UHFFFAOYSA-N copper;5,10,15,20-tetraphenylporphyrin-22,24-diide Chemical compound [Cu+2].C1=CC(C(=C2C=CC([N-]2)=C(C=2C=CC=CC=2)C=2C=CC(N=2)=C(C=2C=CC=CC=2)C2=CC=C3[N-]2)C=2C=CC=CC=2)=NC1=C3C1=CC=CC=C1 RKTYLMNFRDHKIL-UHFFFAOYSA-N 0.000 description 1
- 230000000593 degrading effect Effects 0.000 description 1
- 238000003795 desorption Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000031700 light absorption Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 229910052976 metal sulfide Inorganic materials 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000011941 photocatalyst Substances 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000001338 self-assembly Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
- 238000000870 ultraviolet spectroscopy Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J27/00—Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
- B01J27/20—Carbon compounds
- B01J27/232—Carbonates
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/30—Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
- B01J35/39—Photocatalytic properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/08—Heat treatment
- B01J37/10—Heat treatment in the presence of water, e.g. steam
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/34—Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
- B01J37/341—Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation
- B01J37/343—Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation of ultrasonic wave energy
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/30—Treatment of water, waste water, or sewage by irradiation
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2101/00—Nature of the contaminant
- C02F2101/30—Organic compounds
- C02F2101/38—Organic compounds containing nitrogen
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2103/00—Nature of the water, waste water, sewage or sludge to be treated
- C02F2103/34—Nature of the water, waste water, sewage or sludge to be treated from industrial activities not provided for in groups C02F2103/12 - C02F2103/32
- C02F2103/343—Nature of the water, waste water, sewage or sludge to be treated from industrial activities not provided for in groups C02F2103/12 - C02F2103/32 from the pharmaceutical industry, e.g. containing antibiotics
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2305/00—Use of specific compounds during water treatment
- C02F2305/10—Photocatalysts
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Plasma & Fusion (AREA)
- Optics & Photonics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Hydrology & Water Resources (AREA)
- Environmental & Geological Engineering (AREA)
- Water Supply & Treatment (AREA)
- Thermal Sciences (AREA)
- Catalysts (AREA)
Abstract
本发明公开了一种花状WS2/Bi2O2CO3异质结光催化材料的合成方法及其应用,将0.105mmol WS2分散于摩尔浓度为1mol/L的稀HNO3溶液中并超声剥离形成混合液A;将4mmol Bi(NO3)3•5H2O加入到溶液A中并搅拌混合均匀形成混合液B;将尿素加入到混合液B中并搅拌混合均匀形成混合液C,再将混合液C的pH调至9后转移至水热反应釜中于180℃水热反应1h,然后自然冷却至室温,离心分离,用水和乙醇分别反复洗涤后置于真空干燥箱中于60℃真空干燥12h得到花状WS2/Bi2O2CO3异质结光催化材料。本发明合成的花状WS2/Bi2O2CO3异质结光催化材料表现出较高的光催化活性和稳定性,能够用于光催化降解环丙沙星等有机污染物。
Description
技术领域
本发明属于复合光催化材料的合成技术领域,具体涉及一种花状WS2/Bi2O2CO3异质结光催化材料的合成方法及其应用。
背景技术
随着我国经济的快速发展,相应的环境和能源问题也随之出现。光催化作为一个清洁有效的技术,在污染物降解和太阳能转换方面效果显著。近些年,铋基半导体光催化材料被证明在环境净化方面很有前景。Bi2O2CO3光催化剂由于其在抗菌、超级电容器及光催化方面的潜在应用引起了广大科技工作者的广泛关注。然而,Bi2O2CO3禁带宽度在3.1-3.5eV,限制了其在可见光区的应用,且单组份Bi2O2CO3光生电子-空穴对容易复合。为提升Bi2O2CO3光催化性能,目前进行了大量的研究,包括形貌控制、掺杂、构建异质结等。其中和具有可见光吸收的半导体进行复合构建异质结可以有效地抑制光生电子-空穴对的复合,提高材料的光催化性能,从而提高材料的光催化效果。因此本发明通过构建异质结材料来提高光催化材料的光催化性能。
二维纳米材料是一类新兴的纳米材料类别,由于其独特的物理、电子和化学特性,表现出了很多独特的优势。由于电子被限制在二维平面内,增进了其电子特性;强烈的面内共价键和原子层厚度使得它们表现出了出色的机械强度、柔性以及光学透明度;拥有极大平面尺寸赋予了二维材料极大的比表面积。这极大地吸引了催化和超级电容器这些表面积关联应用领域的研究,成为催化领域研究热点。
作为一种二维层状过渡金属硫化物,二硫化钨(WS2)带隙较小(约1.8eV),具有强的吸收可见光的能力,以及较高的载流子迁移率和较大的比表面积,在光电转化以及催化领域都有非常优异的性能。
本发明针对Bi2O2CO3缺点,选取二硫化钨二维材料与其复合构建花状WS2/Bi2O2CO3异质结,一方面促进电子-空穴高效分离,另一方面拓展了该材料在可见光区域的响应,从而达到提高光催化性能的效果,并以环丙沙星(CIP)为目标污染物测试光催化性质。目前尚没有关于花状WS2/Bi2O2CO3异质结光催化材料的合成及其用于光催化降解抗生素环丙沙星的报道。
发明内容
本发明解决的技术问题是提供了一种花状WS2/Bi2O2CO3异质结光催化材料的合成方法,该方法合成的花状WS2/Bi2O2CO3异质结光催化材料表现出较高的光催化活性和稳定性,能够用于光催化降解环丙沙星等有机污染物。
本发明为解决上述技术问题采用如下技术方案,一种花状WS2/Bi2O2CO3异质结光催化材料的合成方法,其特征在于具体步骤为:
步骤S1:将0.105mmol WS2分散于浓度为1mol/L的稀HNO3溶液中并超声剥离形成混合液A;
步骤S2:将4mmol Bi(NO3)3•5H2O加入到溶液A中并搅拌混合均匀形成混合液B;
步骤S3:将尿素加入到混合液B中并搅拌混合均匀形成混合液C,再将混合液C的pH调至9后转移至水热反应釜中于180℃水热反应1h,然后自然冷却至室温,离心分离,用水和乙醇分别反复洗涤后置于真空干燥箱中于60℃真空干燥12h得到花状WS2/Bi2O2CO3异质结光催化材料。
本发明制得的花状WS2/Bi2O2CO3异质结光催化材料在光催化降解环丙沙星中的应用。
本发明采用自组装法合成花状WS2/Bi2O2CO3异质结光催化材料,该光催化材料具有较大的比表面积,表现出较高的光催化活性,本发明合成过程无需加入任何模板剂和其它添加剂,合成工艺简易,绿色环保,适宜规模化生产,有望产生良好的社会和经济效益。
附图说明
图1为实施例1制得的WS2/Bi2O2CO3异质结光催化材料的FESEM图;
图2为纯Bi2O2CO3、纯WS2和实施例1制得的WS2/Bi2O2CO3异质结光催化材料的XRD图谱;
图3为纯Bi2O2CO3、纯WS2和实施例1制得的WS2/Bi2O2CO3异质结光催化材料的UV-VisDRS图谱;
图4为纯Bi2O2CO3和实施例1制得的WS2/Bi2O2CO3异质结光催化材料的PL图谱;
图5为实施例1制得的WS2/Bi2O2CO3异质结光催化材料的HRTEM图;
图6为实施例1制得的WS2/Bi2O2CO3异质结光催化材料降解环丙沙星的紫外可见吸收光谱变化曲线;
图7为不同光催化材料在模拟太阳光照射下对环丙沙星的降解效率对比图。
具体实施方式
以下通过实施例对本发明的上述内容做进一步详细说明,但不应该将此理解为本发明上述主题的范围仅限于以下的实施例,凡基于本发明上述内容实现的技术均属于本发明的范围。
实施例1
步骤S1:将0.105mmol WS2分散于摩尔浓度为1mol/L的稀HNO3溶液中并超声剥离形成混合液A;
步骤S2:将4mmol Bi(NO3)3•5H2O加入到溶液A中并搅拌混合均匀形成混合液B;
步骤S3:将尿素加入到混合液B中并搅拌混合均匀形成混合液C,再将混合液C的pH调至9后转移至水热反应釜中于180℃水热反应1h,然后自然冷却至室温,离心分离,用水和乙醇分别反复洗涤后置于真空干燥箱中于60℃真空干燥12h得到花状WS2/Bi2O2CO3异质结光催化材料,标记为WS2-BOC。
图1为实施例1制得的WS2/Bi2O2CO3异质结光催化材料的FESEM图。由图可以看出样品是由厚度为50 nm的纳米片层组装而成的微米花状结构,直径约为1-5μm。
图2为纯Bi2O2CO3、纯WS2和实施例1制得的WS2/Bi2O2CO3异质结光催化材料的XRD图谱。图中纯Bi2O2CO3和纯WS2各衍射的位置分别与四方相Bi2O2CO3标准卡片(JCPDS NO.41-1488)和六方相WS2标准卡片(JCPDS no.35-0651)一致。WS2/Bi2O2CO3异质结光催化材料除了Bi2O2CO3的衍射峰外还在14.3°、28.8°和43.9°存在WS2的衍射峰,说明样品中存在Bi2O2CO3和WS2。
图3为纯Bi2O2CO3、纯WS2和实施例1制得的WS2/Bi2O2CO3异质结光催化材料的UV-VisDRS图谱。由图可知纯Bi2O2CO3主要吸收紫外光,吸收带边约为402nm,而WS2/Bi2O2CO3异质结光催化材料除在紫外区有较强的吸收外,在可见光区也有明显吸收,表明将WS2和Bi2O2CO3复合构建的花状WS2/Bi2O2CO3异质结光催化材料显著拓宽了催化剂的光吸收范围。
图4为纯Bi2O2CO3和实施例1制得的WS2/Bi2O2CO3异质结光催化材料的PL图谱。由图可知WS2/Bi2O2CO3异质结光催化材料的荧光强度明显比纯的Bi2O2CO3的荧光强度要弱,表明花状WS2/Bi2O2CO3异质结光催化材料中光生电子与空穴的复合几率比Bi2O2CO3低,光生载流子的分离效率比较高,这对提高催化剂的光催化性能是十分有利的。
图5为实施例1制得的花状WS2/Bi2O2CO3异质结光催化材料的HRTEM图。从HRTEM图能观察到两种不同的晶格条纹,间距分别为0.62nm和0.27nm,分别对应(002)晶面的WS2和(110)晶面的Bi2O2CO3,并且能清晰观察到两种物质的边界,表明WS2与Bi2O2CO3两种物质之间形成异质结构。
实施例2
以环丙沙星(CIP)为降解目标物来评价样品的光催化效果。本实验使用500W氙灯作为模拟太阳光光源,采用10mg/L的CIP为降解浓度;称取40mg实施例1制得的花状WS2/Bi2O2CO3异质结光催化材料,将其加入到装有40mL的CIP石英管中在超声器上超声3min,使光催化材料与CIP溶液充分混合,然后将混合液放入HXSEI光反应仪器中暗处理30min,以达到吸附—脱附平衡。取此混合溶液4mL,同时将此刻作为开灯的0时刻。打开氙灯之后每隔一段时间(15min)取石英管中的溶液4mL。将取得的溶液在高速离心机内离心6min后,取上层清液,采用紫外-可见分光光度计进行光谱扫描测定其在272nm处的吸光度。通过在272nm处吸光度的变化来确定花状WS2/Bi2O2CO3异质结光催化材料对CIP的降解效果。
图6为实施例1制得的WS2/Bi2O2CO3异质结光催化材料降解CIP的紫外可见吸收光谱变化曲线。由图可知样品在光照90min后CIP的特征峰基本消失,表明CIP基本降解完全。
图7为不同光催化材料在模拟太阳光照射下对CIP的降解效率对比图。由图可以看出,在没有光催化剂存在下,光照90min后CIP的降解率只有5%左右,表明CIP具有很好的稳定性。花状WS2/Bi2O2CO3异质结光催化材料在模拟太阳光的照射下90min能将CIP降解95.1%,进一步说明构建的WS2/Bi2O2CO3异质结光催化材料能提高样品的光催化性能,对光催化降解CIP是非常有效的。
以上实施例描述了本发明的基本原理、主要特征及优点,本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是说明本发明的原理,在不脱离本发明原理的范围下,本发明还会有各种变化和改进,这些变化和改进均落入本发明保护的范围内。
Claims (2)
1.一种花状WS2/Bi2O2CO3异质结光催化材料的合成方法,其特征在于具体步骤为:
步骤S1:将0.105mmol WS2分散于摩尔浓度为1mol/L的稀HNO3溶液中并超声剥离形成混合液A;
步骤S2:将4mmol Bi(NO3)3•5H2O加入到溶液A中并搅拌混合均匀形成混合液B;
步骤S3:将尿素加入到混合液B中并搅拌混合均匀形成混合液C,再将混合液C的pH调至9后转移至水热反应釜中于180℃水热反应1h,然后自然冷却至室温,离心分离,用水和乙醇分别反复洗涤后置于真空干燥箱中于60℃真空干燥12h得到花状WS2/Bi2O2CO3异质结光催化材料。
2.根据权利要求1所述的方法制得的花状WS2/Bi2O2CO3异质结光催化材料在光催化降解环丙沙星中的应用。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810730000.5A CN108786872B (zh) | 2018-07-05 | 2018-07-05 | 一种花状WS2/Bi2O2CO3异质结光催化材料的合成方法及其应用 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810730000.5A CN108786872B (zh) | 2018-07-05 | 2018-07-05 | 一种花状WS2/Bi2O2CO3异质结光催化材料的合成方法及其应用 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN108786872A true CN108786872A (zh) | 2018-11-13 |
CN108786872B CN108786872B (zh) | 2021-05-11 |
Family
ID=64075301
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810730000.5A Expired - Fee Related CN108786872B (zh) | 2018-07-05 | 2018-07-05 | 一种花状WS2/Bi2O2CO3异质结光催化材料的合成方法及其应用 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108786872B (zh) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110756206A (zh) * | 2019-10-14 | 2020-02-07 | 东北大学秦皇岛分校 | WO3改性Bi2O2CO3光催化剂制备方法及其应用 |
CN113501504A (zh) * | 2021-07-21 | 2021-10-15 | 苏州普轮电子科技有限公司 | 一种新型微纳结构的半导体材料及其制备方法 |
CN113559902A (zh) * | 2021-07-09 | 2021-10-29 | 清华大学 | 花状氧化银/碳酸氧铋异质结及其制备方法和应用 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06115939A (ja) * | 1992-10-07 | 1994-04-26 | Nippon Muki Kagaku Kogyo Kk | 熱安定性を改良した次炭酸ビスマス組成物とその製造方法 |
CN103962158A (zh) * | 2014-04-30 | 2014-08-06 | 南昌航空大学 | 一种三元异质结光降解有机物催化剂WS2-Bi2WO6/Bi3.84W0.16O6.24及其制备方法 |
CN104437554A (zh) * | 2014-12-05 | 2015-03-25 | 武汉理工大学 | 片状WS2负载BiVO4可见光催化材料及其制备方法 |
CN105797760A (zh) * | 2016-04-18 | 2016-07-27 | 河南师范大学 | 一种Bi2O2CO3-WO3复合光催化剂及其制备方法 |
CN106799200A (zh) * | 2017-02-26 | 2017-06-06 | 河南师范大学 | 一种WS2@MoS2复合可见光催化剂及其制备方法和应用 |
-
2018
- 2018-07-05 CN CN201810730000.5A patent/CN108786872B/zh not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06115939A (ja) * | 1992-10-07 | 1994-04-26 | Nippon Muki Kagaku Kogyo Kk | 熱安定性を改良した次炭酸ビスマス組成物とその製造方法 |
CN103962158A (zh) * | 2014-04-30 | 2014-08-06 | 南昌航空大学 | 一种三元异质结光降解有机物催化剂WS2-Bi2WO6/Bi3.84W0.16O6.24及其制备方法 |
CN104437554A (zh) * | 2014-12-05 | 2015-03-25 | 武汉理工大学 | 片状WS2负载BiVO4可见光催化材料及其制备方法 |
CN105797760A (zh) * | 2016-04-18 | 2016-07-27 | 河南师范大学 | 一种Bi2O2CO3-WO3复合光催化剂及其制备方法 |
CN106799200A (zh) * | 2017-02-26 | 2017-06-06 | 河南师范大学 | 一种WS2@MoS2复合可见光催化剂及其制备方法和应用 |
Non-Patent Citations (1)
Title |
---|
XIANG LI ET AL.: ""Fabrication of a novel few-layer WS2/Bi2MoO6 plate-on-plate heterojunction structure with enhanced visible-light photocatalytic activity"", 《DALTON TRANSACTIONS》 * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110756206A (zh) * | 2019-10-14 | 2020-02-07 | 东北大学秦皇岛分校 | WO3改性Bi2O2CO3光催化剂制备方法及其应用 |
CN110756206B (zh) * | 2019-10-14 | 2022-03-11 | 东北大学秦皇岛分校 | WO3改性Bi2O2CO3光催化剂制备方法及其应用 |
CN113559902A (zh) * | 2021-07-09 | 2021-10-29 | 清华大学 | 花状氧化银/碳酸氧铋异质结及其制备方法和应用 |
CN113501504A (zh) * | 2021-07-21 | 2021-10-15 | 苏州普轮电子科技有限公司 | 一种新型微纳结构的半导体材料及其制备方法 |
Also Published As
Publication number | Publication date |
---|---|
CN108786872B (zh) | 2021-05-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Yang et al. | Enhanced photocatalytic activity of g-C3N4 2D nanosheets through thermal exfoliation using dicyandiamide as precursor | |
Du et al. | Enhanced photocatalytic activity of Bi2WO6/TiO2 composite coated polyester fabric under visible light irradiation | |
Jiang et al. | Facile in-situ Solvothermal Method to synthesize double shell ZnIn2S4 nanosheets/TiO2 hollow nanosphere with enhanced photocatalytic activities | |
Jo et al. | Enhanced visible light-driven photocatalytic performance of ZnO–g-C3N4 coupled with graphene oxide as a novel ternary nanocomposite | |
Huang et al. | Honeycomb-like carbon nitride through supramolecular preorganization of monomers for high photocatalytic performance under visible light irradiation | |
Zhang et al. | Pt nanoparticles embedded spine-like g-C3N4 nanostructures with superior photocatalytic activity for H2 generation and CO2 reduction | |
Ma et al. | Ligand-metal charge transfer mechanism enhances TiO2/Bi2WO6/rGO nanomaterials photocatalytic efficient degradation of norfloxacin under visible light | |
Pakdel et al. | Visible and UV functionality of TiO2 ternary nanocomposites on cotton | |
Hassan et al. | Recent advancement in Bi5O7I-based nanocomposites for high performance photocatalysts | |
CN110639555A (zh) | 一种可见光响应的CdS/CdIn2S4复合纳米结构光催化剂的制备方法及应用 | |
CN108786872A (zh) | 一种花状WS2/Bi2O2CO3异质结光催化材料的合成方法及其应用 | |
CN109317183A (zh) | 一种氮化硼量子点/超薄多孔氮化碳复合光催化材料及其制备方法和应用 | |
Ma et al. | Oxygen defects-induced charge transfer in Bi7O9I3 for enhancing oxygen activation and visible-light degradation of BPA | |
Wang et al. | Enhanced piezo-photocatalytic activity of Bi2MoO6 nanosheets: Theory and experimental studies | |
CN106693996B (zh) | 硫化铋-铁酸铋复合可见光催化剂的制备方法及其应用 | |
Chen et al. | Bi4Ti3O12/TiO2 heterostructure: Synthesis, characterization and enhanced photocatalytic activity | |
Li et al. | Preparation and photocatalytic performance of dumbbell Ag2CO3–ZnO heterojunctions | |
Li et al. | TiO2 nanobelts photocatalysts decorated with Bi2WO6 nanocrystals: Preparation and enhanced photocatalytic activity | |
Khalid et al. | Fabrication of p–n heterojunction Ag 2 O@ Ce 2 O nanocomposites make enables to improve photocatalytic activity under visible light | |
Liang et al. | Controllable fabrication of a novel heterojunction composite: AgBr and Ag@ Ag 2 O co-modified Ag 2 CO 3 with excellent photocatalytic performance towards refractory pollutant degradation | |
CN107442139A (zh) | 用于高效降解龙胆紫的片状Z型SnS2/Bi2MoO6异质结光催化材料的制备方法 | |
Min et al. | In-situ fabrication of Ag/g-C3N4 composite materials with improved photocatalytic activity by coordination-driven assembly of precursors | |
Sridevi et al. | Visible-light driven γ-Al2O3, CuO and γ-Al2O3/CuO nanocatalysts: Synthesis and enhanced photocatalytic activity | |
Pascariu et al. | Surface morphology effects on photocatalytic activity of metal oxides nanostructured materials immobilized onto substrates | |
Alamdari et al. | Immobilization of ZnO: Ga nanocrystals in a polystyrene/cellulose matrix: A novel hybrid nanocomposite photocatalyst for future photo energy application |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20210511 |