CN108785997B - 一种基于变导纳的下肢康复机器人柔顺控制方法 - Google Patents

一种基于变导纳的下肢康复机器人柔顺控制方法 Download PDF

Info

Publication number
CN108785997B
CN108785997B CN201810537377.9A CN201810537377A CN108785997B CN 108785997 B CN108785997 B CN 108785997B CN 201810537377 A CN201810537377 A CN 201810537377A CN 108785997 B CN108785997 B CN 108785997B
Authority
CN
China
Prior art keywords
lower limb
patient
muscle
track
rehabilitation robot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810537377.9A
Other languages
English (en)
Other versions
CN108785997A (zh
Inventor
杜义浩
王浩
姚文轩
杨文娟
谢平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yanshan University
Original Assignee
Yanshan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yanshan University filed Critical Yanshan University
Priority to CN201810537377.9A priority Critical patent/CN108785997B/zh
Publication of CN108785997A publication Critical patent/CN108785997A/zh
Application granted granted Critical
Publication of CN108785997B publication Critical patent/CN108785997B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B23/00Exercising apparatus specially adapted for particular parts of the body
    • A63B23/035Exercising apparatus specially adapted for particular parts of the body for limbs, i.e. upper or lower limbs, e.g. simultaneously
    • A63B23/04Exercising apparatus specially adapted for particular parts of the body for limbs, i.e. upper or lower limbs, e.g. simultaneously for lower limbs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H1/00Apparatus for passive exercising; Vibrating apparatus ; Chiropractic devices, e.g. body impacting devices, external devices for briefly extending or aligning unbroken bones
    • A61H1/02Stretching or bending or torsioning apparatus for exercising
    • A61H1/0237Stretching or bending or torsioning apparatus for exercising for the lower limbs
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B21/00Exercising apparatus for developing or strengthening the muscles or joints of the body by working against a counterforce, with or without measuring devices
    • A63B21/00178Exercising apparatus for developing or strengthening the muscles or joints of the body by working against a counterforce, with or without measuring devices for active exercising, the apparatus being also usable for passive exercising
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B24/00Electric or electronic controls for exercising apparatus of preceding groups; Controlling or monitoring of exercises, sportive games, training or athletic performances
    • A63B24/0075Means for generating exercise programs or schemes, e.g. computerized virtual trainer, e.g. using expert databases
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B24/00Electric or electronic controls for exercising apparatus of preceding groups; Controlling or monitoring of exercises, sportive games, training or athletic performances
    • A63B24/0087Electric or electronic controls for exercising apparatus of groups A63B21/00 - A63B23/00, e.g. controlling load
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2201/00Characteristics of apparatus not provided for in the preceding codes
    • A61H2201/12Driving means
    • A61H2201/1207Driving means with electric or magnetic drive
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2201/00Characteristics of apparatus not provided for in the preceding codes
    • A61H2201/16Physical interface with patient
    • A61H2201/1602Physical interface with patient kind of interface, e.g. head rest, knee support or lumbar support
    • A61H2201/164Feet or leg, e.g. pedal
    • A61H2201/1642Holding means therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2201/00Characteristics of apparatus not provided for in the preceding codes
    • A61H2201/50Control means thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2201/00Characteristics of apparatus not provided for in the preceding codes
    • A61H2201/50Control means thereof
    • A61H2201/5007Control means thereof computer controlled
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2201/00Characteristics of apparatus not provided for in the preceding codes
    • A61H2201/50Control means thereof
    • A61H2201/5058Sensors or detectors
    • A61H2201/5071Pressure sensors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2205/00Devices for specific parts of the body
    • A61H2205/10Leg
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2230/00Measuring physical parameters of the user
    • A61H2230/08Other bio-electrical signals
    • A61H2230/085Other bio-electrical signals used as a control parameter for the apparatus
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B2220/00Measuring of physical parameters relating to sporting activity
    • A63B2220/50Force related parameters
    • A63B2220/56Pressure
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B2230/00Measuring physiological parameters of the user
    • A63B2230/08Measuring physiological parameters of the user other bio-electrical signals
    • A63B2230/085Measuring physiological parameters of the user other bio-electrical signals used as a control parameter for the apparatus

Abstract

一种基于变导纳的下肢康复机器人柔顺控制方法,其内容包括:利用Delsys肌电采集系统和运动捕获设备同步采集患者健侧下肢与患侧下肢的表面肌电信号和运动信息,结合足底压力传感器采集下肢康复机器人与患者之间的人机交互力,并通过信息融合获取患者的下肢运动意图;利用OpenSim软件建立人体下肢肌肉骨骼模型,计算出下肢屈伸运动相关肌肉的肌力值,结合患侧镜像健侧方法和GS‑LSELM算法建立人体下肢的肌电‑肌力辨识模型,辨识出患侧下肢肌力值;建立基于肌力力矩和下肢康复机器人偏离期望关节轨迹偏差的变导纳模型,修正期望轨迹并结合实际轨迹求得偏差输入位置控制器,最终实现对患者期望轨迹的跟踪和下肢康复机器人的主动柔顺控制。

Description

一种基于变导纳的下肢康复机器人柔顺控制方法
技术领域
本发明涉及下肢康复机器人控制领域,尤其涉及一种基于变导纳的下肢康复机器人柔顺控制方法。
背景技术
近年来,因脑卒中和外伤等导致运动功能受损的患者数量逐年增加,严重影响了患者的日常生活。临床研究表明,通过合理的康复训练,患者患侧的运动功能可以得到不同程度恢复,甚至痊愈。传统康复治疗手段需要医师完成,效率低下且工作强度大,无法满足日益增加的患者康复需求。随着机器人技术的发展,智能康复机器人可以有效提高患者的康复效率,同时大大降低康复医师的工作强度。对现有文献检索发现,康复机器人的控制方式主要分为被动控制和主动控制两种。同时,为了提高康复机器人控制的个体适应性,引入表面肌电信号、脑电信号、力/位混合信号等实现人机交互控制。但上述信号多用于人体运动意图识别,即实现康复机器人控制方式切换;也有研究康复机器人自适应控制方法,但控制过程的柔顺性仍无法有效保证。例如,基于交互力反馈的阻抗控制方法,由于其模型中的阻抗参数固定不变,缺乏针对患者不同康复训练阶段而进行自适应调整,同时康复机器人控制的柔顺性也较差。综上所述,目前仍然缺乏一种高效的下肢康复机器人柔顺控制方法。
发明内容
本发明目的在于提供一种基于变导纳的下肢康复机器人柔顺控制方法,这种方法提高了下肢偏瘫患者康复训练过程中的柔顺性和个体适应性,同时有效提升了康复机器人系统的人机交互水平。
为了解决上述存在的技术问题实现上述目的,本发明是通过以下技术方案实现的:
一种基于变导纳的下肢康复机器人柔顺控制方法,本发明所述方法内容包括以下步骤:
步骤1,利用Delsys肌电采集系统和运动捕获设备同步采集患者健侧下肢与患侧下肢的表面肌电信号和运动信息;利用足底压力传感器采集下肢康复机器人与患者之间的人机交互力;对比分析健侧与患侧肌电信号,实现主被动控制切换;对患侧下肢的肌电信号和人机交互力进行信息融合并分析,识别患者的下肢运动意图,得到患者运动的期望轨迹;
步骤2,利用OpenSim软件建立人体下肢肌肉骨骼模型,将采集到的患者健侧下肢运动信息导入该人体下肢肌肉骨骼模型中,经逆运动学、逆动力学分析和肌肉力优化后计算出下肢屈伸运动相关肌肉的肌力值;
步骤3,利用基于黄金分割的最小二乘极限学习机(GS-LSELM)算法建立人体下肢的肌电-肌力辨识模型,并利用采集到的患者健侧下肢肌电信号特征值和步骤2中得到的肌力值进行模型训练;然后将采集到的患者患侧下肢肌电信号作为输入,运用患侧镜像健侧方法和所建立的肌电-肌力辨识模型辨识出患侧下肢肌力值,并结合人体大腿和小腿长度计算出肌力力矩;
步骤4,建立基于肌力力矩和下肢康复机器人偏离期望关节轨迹偏差的变导纳模型;利用患侧肌电信号计算患侧的肌肉活动度并引入所述的变导纳模型中,对所述变导纳模型的参数进行调整,进而根据肌肉活动度水平和肌力力矩的变化调整下肢康复机器人期望轨迹偏差,实现对期望轨迹的修正;
步骤5,将采集到的患侧下肢运动信息进行逆运动学分析,得出下肢康复机器人的实际运动轨迹,并结合步骤4中修正后的期望轨迹得到轨迹偏差,输入到位置控制器中实现对患者的期望轨迹跟踪。
进一步的,对在步骤1中所述采集到的患者健侧下肢与患侧下肢表面肌电信号和运动信息进行预处理,并提取表面肌电信号特征值:积分肌电值iEMG和均方根值RMS;以健侧肌电信号特征向量为参考,通过对比分析健侧与患侧下肢肌电信号特征值,进行患者主、被动训练模式自适应切换;利用模糊神经网络将患侧下肢表面肌电信号和运动信息进行融合,辨识出患者下肢运动意图,得到患侧下肢运动期望轨迹。
进一步的,在步骤2中,所述利用OpenSim软件创建人体下肢肌肉骨骼模型,将采集到的患者健侧下肢运动信息导入该人体下肢肌肉骨骼模型中,经逆运动学、逆动力学分析和肌肉力优化后计算出下肢屈伸运动相关肌肉的肌力值;就是根据实际测量人体下肢得到人体下肢肌肉骨骼参数,包括肌肉肌腱长度、肌纤维长度等;将采集到的患者健侧下肢运动信息和人体肌肉骨骼参数经逆运动学、逆动力学和肌肉力优化后导入人体下肢肌肉骨骼模型中,通过仿真计算得出下肢屈伸运动肌肉肌力值。
进一步的,在步骤3中,所述利用基于黄金分割的最小二乘极限学习机(GS-LSELM)算法建立人体下肢的肌电-肌力辨识模型,并利用采集到的患者健侧下肢肌电信号特征值和步骤2中得到的肌力值进行模型训练;就是利用极限学习机(ELM)算法建立人体下肢屈伸运动中肌电-肌力辨识模型,并运用最小二乘法优化极限学习机的输入权重和偏置,进一步采用黄金分割算法优化隐含层节点数,精简网络结构的同时获取最优预测精度;利用采集得到的健侧下肢肌电信号和步骤2中计算得到的下肢屈伸运动肌力值进行模型训练和修正,得到优化后的肌电-肌力辨识模型。步骤4,建立基于肌力力矩和下肢康复机器人偏离期望关节轨迹偏差的变导纳模型;利用患侧肌电信号计算患侧的肌肉活动度并引入所述的变导纳模型中,对所述变导纳模型的参数进行调整,进而根据肌肉活动度水平和肌力力矩的变化调整下肢康复机器人期望轨迹偏差,实现对期望轨迹的修正;
进一步的,在步骤4中,所述基于肌力力矩和下肢康复机器人偏离期望关节轨迹偏差的变导纳模型为:
Figure BDA0001678125410000041
式中,τ为患侧下肢肌力力矩;Δq为下肢康复机器人运动轨迹偏差,即关节角度偏差;g(q)为重力补偿;K=Ke+Kd为刚度系数,D=De+Dd为阻尼系数,M=Me+Md为惯性系数;Ke、De、Me分别为下肢康复机器人的刚度系数、阻尼系数和惯性系数,Kd、Dd、Md分别为人体下肢的刚度系数、阻尼系数和惯性系数,并随人体下肢肌肉活动度水平时变。最后,结合实际运动轨迹与轨迹偏差得到期望轨迹,并输入到位置控制器中,实现下肢康复机器人系统的主动、柔顺运动。
由于采用上述技术方案,本发明与现有技术相比,具有这样的有益效果:
本发明方法利用Delsys肌电采集设备和运动捕获设备同步采集患者健侧与患侧下肢的表面肌电信号和运动信息,并采用足底压力传感器获取人机交互力;通过Opensim软件和GS-LSELM算法建立人体下肢的肌电-肌力辨识模型,实现人体下肢运动意图和主动肌力的获取;引入变导纳模型并运用肌肉活动度水平和肌力力矩的变化调整导纳参数,实现患者下肢期望轨迹的实时跟踪和柔顺控制。这既提高了下肢偏瘫患者康复训练过程中的柔顺性和个体适应性,同时又有效提升了康复机器人系统的人机交互水平。
附图说明
图1是本发明的原理框图;
图2是本发明的人体下肢表面肌电电极分布示意图;
图3是本发明的下肢康复机器人结构示意图;
图4是本发明的卧式下肢康复训练模式。
附图注释:1-1为股二头肌、1-2为股直肌;2-1为大腿支撑杆、2-2为大腿支撑套、2-3为旋转副、2-4为小腿支撑杆、2-5为小腿支撑套、2-6为踏板、2-7为基座、2-8为滑轨、2-9为滚珠丝杠。
具体实施方式
下面结合附图与具体实施方式对本发明作进一步说明:
参见图1和图4,本发明所述的一种基于变导纳的下肢康复机器人柔顺控制方法为:利用Delsys肌电采集系统和运动捕获设备同步采集患者下肢表面肌电信号和运动信息,并对患侧与健侧下肢的肌电信号进行对比分析,据此对患者进行康复训练的主、被动模式切换;其次,利用模糊神经网络进行患者下肢肌电信号和人机交互力信息融合,辨识出患者下肢运动意图,得到患者下肢期望轨迹,同时对患者下肢运动信息进行逆运动学分析得到实际的运动轨迹;然后,将运动信息导入OpenSim软件的人体下肢肌肉骨骼模型中得到健侧肌力,并结合患侧镜像健侧方法及GS-LSELM算法建立患侧肌电-肌力辨识模型,实现对下肢患侧肌力值的预测,并将由肌力值计算得到的肌力力矩引入变导纳模型中,结合肌肉活动度运用变导纳控制方法对患者实际期望轨迹进行实时修正,得到体现患者患侧运动意图和运动状态的期望轨迹,最终实现对患者期望轨迹的跟踪和对下肢康复机器人的主动柔顺控制。其具体实施方法包括以下步骤:
步骤1,识别患者下肢运动意图,实现主、被动康复训练模式切换:
1)利用Delsys肌电采集系统和运动捕获设备同步采集患者健侧下肢与患侧下肢的表面肌电信号和运动信息,并对采集到的肌电信号进行预处理;所述表面肌电信号具体包括采集患者下肢股二头肌的表面肌电信号和股直肌的表面肌电信号,并进行10~200Hz带通滤波和去除50Hz工频及谐波,提取表面肌电信号特征值,构成肌电特征向量S。通过同步采集到的运动信息获取下肢髋关节和膝关节角度特征向量V;利用足底压力传感器采集患者与下肢康复机器人之间的人机交互力特征向量F。上述三种特征的含义具体如下:
肌电特征:
积分肌电值(iEMG)反映了肌肉动作时运动单元的数量及每个运动单元的放电大小:
Figure BDA0001678125410000061
(2)式中,EMG(t)为采集的肌电信号,t为时间变量,T为分析肌电信号的周期;
均方根值(RMS)为肌肉放电的有效值,其大小由肌电的幅值变化决定,能在一定程度上反映出此时肌力的大小及运动速度趋势:
Figure BDA0001678125410000062
(3)式中,EMG(t)为采集的肌电信号,t为时间变量,T为分析肌电信号的周期。
为方便运算和分析,将积分肌电值(iEMG)和均方根值(RMS)进行归一化处理:
Figure BDA0001678125410000071
Figure BDA0001678125410000072
(4)式和(5)式中,iEMGmax和iEMGmin分别为iEMG最大值和最小值,RMSmax和RMSmin分别为RMS最大值和最小值。
利用NiEMG和NRMS构建肌电特征向量S=[NiEMG;NRMS]。
关节角度信号:
利用运动捕获设备采集下肢膝关节和髋关节的加速度信号,通过积分得到角速度信号
Figure BDA0001678125410000073
和角度信号θ,构成关节角度向量
Figure BDA0001678125410000074
人机交互力信息:
利用足底压力传感器采集患者足底与下肢康复机器人之间的交互力F。设第i个周期内的平均交互力为
Figure BDA0001678125410000075
则人机交互力变化值为
Figure BDA0001678125410000076
并构成交互力特征向量F=[ΔFi]。
2)利用模糊神经网络建立肌电信号和人机交互力与患者下肢运动期望轨迹之间的映射模型Q=f(S,F),通过信息融合辨识出患者下肢屈伸运动意图,得到期望轨迹。本实施例中,模糊神经网络采用二输入单输出的五层拓扑结构:输入层、模糊化层、模糊规则层、模糊决策层和输出层;将肌电特征向量S和人机交互力特征向量F输入至模糊神经网络中,获得患者下肢屈伸运动期望轨迹Q。
3)以患者健侧下肢正常静息状态下的肌电信号特征值作为参照,将患者患侧与健侧肌电信号特征值之比κ表征患者下肢训练过程中的肌肉疲劳程度,并通过多次训练实验设定主、被动训练模式的切换阈值[κminκmax],反馈给位置控制器进行主、被动切换。本实施例设定κmin=0.3,κmax=0.6,当κ<κmin时,患者停止训练进行休息;当κmin<κ<κmax时,患者在下肢康复机器人带动下按照预设轨迹进行被动康复训练;而当κ>κmax时,患者按照期望轨迹进行主动康复训练。
步骤2,利用OpenSim软件建立下肢肌肉骨骼模型并计算肌肉肌力值:
1)根据人体的实际生理信息设置患者的下肢肌肉生理学参数,包括肌肉肌腱长度、肌纤维长度、肌腱松弛程度等;
2)通过OpenSim软件建立患者下肢肌肉骨骼模型,并利用软件中的Scale模块及患者的下肢生理学参数匹配该下肢肌肉骨骼模型;
3)将运动捕获设备同步采集到的患者健侧下肢运动信息经逆动力学和肌肉力优化后导入下肢肌肉骨骼模型中,经过OpenSim软件计算得出下肢健侧屈伸运动的肌力值。
步骤3,利用GS-LSELM算法建立肌电-肌力辨识模型,并结合患侧镜像健侧方法预测患侧下肢肌力值:
1)选取下肢健侧肱二头肌和胫骨前肌的表面肌电信号特征向量并归一化作为肌电-肌力辨识模型输入信号,选取下肢健侧的肌力值作为输出值;
2)利用极限学习机建立肌电-肌力辨识模型,将健侧下肢屈伸肌电信号特征向量和步骤2中得到的健侧肌力值进行肌电-肌力辨识模型训练。本实施例的输入为下肢健侧肌电特征向量S=[s1,s2,…,sn]T,输出为下肢健侧肌力值F=[F1,F2,…,Fn]T,样本数为n,激励函数选择为sigmode函数:
Figure BDA0001678125410000081
构建下肢的肌电-肌力辨识模型:
Figure BDA0001678125410000091
(7)式中,si为患侧下肢肌电特征向量,F为患侧肌力预测值,L为隐含层节点数,Gi为隐含层激励函数,αi=[αi1i2,…,αin]T为第i个隐含层节点与输入节点之间的权值,bi为第i个隐含层节点阈值,βi=[βi1i2,…,βiL]T为输出层节点与第i个隐含层节点的连接权值。
3)利用最小二乘法优化极限学习机的输入权重和偏置,并结合黄金分割算法优化隐含层节点数,精简网络结构的同时获取最优预测精度。将下肢的肌电-肌力辨识模型简化为:F=H·β。其中,H为隐层输出矩阵,变形后得:
Figure BDA0001678125410000092
其中,
Figure BDA0001678125410000093
Figure BDA0001678125410000094
由最小二乘法优化输入权重α和偏置b,降低随机数规模,从而精简网络结构。当输入权重和偏置确定后,选择均方根误差RMSE为成本函数,
Figure BDA0001678125410000096
为肌力预测值,F(i)为肌力计算值,搜索区间为[a,b],采用黄金分割法搜索到最优隐含层节点数L。
Figure BDA0001678125410000095
4)将患侧下肢肌电信号特征向量输入肌电-肌力辨识模型中,预测出患侧下肢肌力值。
步骤4,建立人机耦合系统变导纳模型:
1)建立下肢肌力力矩和下肢康复机器人偏离期望关节轨迹偏差的变导纳模型,变导纳控制器模型如下:
Figure BDA0001678125410000101
(12)式中,τ为患侧下肢肌力力矩;Δq为下肢康复机器人运动轨迹偏差,即关节角度偏差;g(q)为重力补偿;K=Ke+Kd为刚度系数,D=De+Dd为阻尼系数,M=Me+Md为惯性系数;Ke、De、Me分别为下肢康复机器人的刚度系数、阻尼系数和惯性系数,Kd、Dd、Md分别为人体下肢的刚度系数、阻尼系数和惯性系数,并随人体下肢肌肉活动度水平时变。
2)计算肌肉活动度,并对变导纳参数进行调整。对患侧肌电信号特征值进行归一化处理后,定义表征下肢伸屈过程中的肌肉贡献率MCR为:
Figure BDA0001678125410000102
式中,NiEMGi(θ)为关节角度θ下归一化后的积分肌电值,i为肌肉块。定义
Figure BDA0001678125410000103
为伸展状态下的肌肉贡献率,
Figure BDA0001678125410000104
为屈曲状态下的肌肉贡献率,肌肉贡献率在0-1之间,数值越大表示肌肉贡献率越高。
进一步量化伸屈过程中肌肉整体活动水平MAL:
Figure BDA0001678125410000105
本实施例中,所述人体下肢变导纳系数分别为:Kd=MAL(θ)·Kd0、Dd=MAL(θ)·Dd0、Md=MAL(θ)·Md0。其中,Kd0、Dd0、Md0分别为人体初始导纳参数。
3)依据实际情况测量患者下肢生理参数(力臂),并与步骤3中计算得到的患侧肌力结合计算出肌力力矩,导入变导纳模型中,进而计算轨迹偏差;
步骤5,将运动捕获设备采集到的患侧下肢运动信息进行逆运动学分析,得到下肢康复机器人的实际运动轨迹,并与步骤4中修正后的期望轨迹作差得到轨迹偏差,并输入位置控制器驱动下肢康复机器人各关节运动,实现对患者的期望轨迹跟踪和下肢康复机器人的柔顺控制。
参照图2,肌电电极1-1、1-2分别采集股二头肌和股直肌的表面肌电信号。
参照图3,本实施例所采用的下肢康复训练装置为一种卧式下肢康复机器人,实现下肢髋关节弯曲/伸展和膝关节弯曲/伸展两个自由度的屈伸训练。康复训练装置主要由踏板2-6、基座2-7、滑轨2-8、滚珠丝杠2-9、下肢机械腿、驱动电机组成;所述下肢康复机器人包括大腿支撑杆2-1、大腿支撑套2-2、小腿支撑杆2-4、小腿支撑套2-5和旋转副2-3,其中大腿支撑套和小腿支撑套用于固定患者下肢,大腿支撑杆上端与基座通过旋转副连接,小腿支撑杆的下端与滚珠丝杠以转动副相连,驱动电机安置在基座中并通过滚珠丝杠与机械腿的末端相连,带动机械腿末端在滑轨内滑动。踏板2-6为人体与康复机器人的力交互点,三个足底压力传感器被安置在踏板2-6表面用于测量人机交互力。
参照图4,结合图1中的一种基于变导纳的下肢康复机器人柔顺控制方法,本实施例采用了一种卧式下肢康复训练模式。令患者平躺于工作平台上,腿部与下肢康复机器人固定进行康复训练。
以上所述的实施例仅是对本发明的优选实施方式进行描述,并非对本发明的范围进行限定,在不脱离本发明设计精神的前提下,本领域普通技术人员对本发明的技术方案做出的各种变形和改进,均应落入本发明权利要求书确定的保护范围内。

Claims (2)

1.一种基于变导纳的下肢康复机器人柔顺控制方法,其特征在于:所述方法内容包括以下步骤:
步骤1,利用Delsys肌电采集系统和运动捕获设备同步采集患者健侧下肢与患侧下肢的表面肌电信号和运动信息;利用足底压力传感器采集下肢康复机器人与患者之间的人机交互力;对比分析健侧与患侧肌电信号,实现主被动控制切换;对患侧下肢的肌电信号和人机交互力进行信息融合并分析,识别患者的下肢运动意图,得到患者运动的期望轨迹;
将积分肌电值iEMG及其均方根值RMS进行归一化处理得到肌电特征向量S=[NiEMG;NRMS];iEMGmax和iEMGmin分别为iEMG最大值和最小值,RMSmax和RMSmin分别为RMS最大值和最小值
Figure FDA0002400498960000011
Figure FDA0002400498960000012
所述运动信息包括关节角度向量
Figure FDA0002400498960000013
Figure FDA0002400498960000014
为角速度信号,θ为角度信号;
人机交互力信息包括交互力特征向量F=[ΔFi];第i个周期内的平均交互力为
Figure FDA0002400498960000015
则人机交互力变化值为
Figure FDA0002400498960000016
利用模糊神经网络建立肌电信号和人机交互力与患者下肢运动期望轨迹之间的映射模型Q=f(S,F),模糊神经网络采用二输入单输出的五层拓扑结构:输入层、模糊化层、模糊规则层、模糊决策层和输出层;将肌电特征向量S和人机交互力特征向量F输入至模糊神经网络中,获得患者下肢屈伸运动期望轨迹Q;以患者健侧下肢正常静息状态下的肌电信号特征值作为参照,将患者患侧与健侧肌电信号特征值之比κ表征患者下肢训练过程中的肌肉疲劳程度,设定主、被动训练模式的切换阈值[κminκmax],反馈给位置控制器进行主、被动切换;当κ<κmin时,患者停止训练进行休息;当κmin<κ<κmax时,患者在下肢康复机器人带动下按照预设轨迹进行被动康复训练;而当κ>κmax时,患者按照期望轨迹进行主动康复训练;
步骤2,利用OpenSim软件建立人体下肢肌肉骨骼模型,将采集到的患者健侧下肢运动信息导入该人体下肢肌肉骨骼模型中,经逆运动学、逆动力学分析和肌肉力优化后计算出下肢屈伸运动相关肌肉的肌力值;
步骤3,利用基于黄金分割的最小二乘极限学习机算法建立人体下肢的肌电-肌力辨识模型,输入为下肢健侧肌电特征向量S=[s1,s2,…,sn]T,输出为下肢健侧肌力值F=[F1,F2,…,Fn]T,样本数为n,激励函数:
Figure FDA0002400498960000021
式中e为自然对数的底;
构建下肢的肌电-肌力辨识模型:
Figure FDA0002400498960000022
式中,si为患侧下肢肌电特征向量,F为患侧肌力预测值,L为隐含层节点数,Gi为隐含层激励函数,αi=[αi1i2,…,αin]T为第i个隐含层节点与输入节点之间的权值,bi为第i个隐含层节点阈值,βi=[βi1i2,…,βiL]T为输出层节点与第i个隐含层节点的连接权值;由最小二乘法优化输入权重α和偏置b,选择均方根误差RMSE为成本函数,采用黄金分割法搜索到最优隐含层节点数L;将采集到的患者患侧下肢肌电信号作为输入,运用患侧镜像健侧方法和所建立的肌电-肌力辨识模型辨识出患侧下肢肌力值,并结合人体大腿和小腿长度计算出肌力力矩;
步骤4,建立基于肌力力矩和下肢康复机器人偏离期望关节轨迹偏差的变导纳模型:
Figure FDA0002400498960000031
(12)式中,τ为患侧下肢肌力力矩;Δq为下肢康复机器人运动轨迹偏差,即关节角度偏差;g(q)为重力补偿;K=Ke+Kd为刚度系数,D=De+Dd为阻尼系数,M=Me+Md为惯性系数;Ke、De、Me分别为下肢康复机器人的刚度系数、阻尼系数和惯性系数,Kd、Dd、Md分别为人体下肢的刚度系数、阻尼系数和惯性系数,并随人体下肢肌肉活动度水平时变;
利用患侧肌电信号计算患侧的肌肉活动度并引入所述的变导纳模型中,对所述变导纳模型的参数进行调整,进而根据肌肉活动度水平和肌力力矩的变化调整下肢康复机器人期望轨迹偏差,实现对期望轨迹的修正;
步骤5,将采集到的患侧下肢运动信息进行逆运动学分析,得出下肢康复机器人的实际运动轨迹,并结合步骤4中修正后的期望轨迹得到轨迹偏差,输入到位置控制器中实现对患者的期望轨迹跟踪。
2.根据权利要求1所述的一种基于变导纳的下肢康复机器人柔顺控制方法,其特征在于:κmin=0.3,κmax=0.6。
CN201810537377.9A 2018-05-30 2018-05-30 一种基于变导纳的下肢康复机器人柔顺控制方法 Active CN108785997B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810537377.9A CN108785997B (zh) 2018-05-30 2018-05-30 一种基于变导纳的下肢康复机器人柔顺控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810537377.9A CN108785997B (zh) 2018-05-30 2018-05-30 一种基于变导纳的下肢康复机器人柔顺控制方法

Publications (2)

Publication Number Publication Date
CN108785997A CN108785997A (zh) 2018-11-13
CN108785997B true CN108785997B (zh) 2021-01-08

Family

ID=64089286

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810537377.9A Active CN108785997B (zh) 2018-05-30 2018-05-30 一种基于变导纳的下肢康复机器人柔顺控制方法

Country Status (1)

Country Link
CN (1) CN108785997B (zh)

Families Citing this family (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109568083B (zh) * 2018-12-15 2024-01-05 华南理工大学 一种多模态交互的上肢康复机器人训练系统
CN109512518A (zh) * 2018-12-19 2019-03-26 苏州大学 一种手术机器人人机协同运动模糊模型参考学习控制方法
CN109700627A (zh) * 2018-12-29 2019-05-03 湖南健行智能机器人有限公司 一种膝关节康复机器人系统及其人机柔顺交互控制方法
CN109758734A (zh) * 2019-01-03 2019-05-17 华中科技大学 一种具有肌力反馈功能的多模式肌力训练装置及方法
CN109662866B (zh) * 2019-02-01 2021-10-22 中山大学 一种基于表现的自适应康复机器人控制方法
CN110279986A (zh) * 2019-03-29 2019-09-27 中山大学 一种基于肌电信号的康复机器人控制方法
CN110270057B (zh) * 2019-05-15 2021-01-12 深圳大学 一种用于偏瘫患者双侧肢体协同运动的主动康复训练方法
CN110141239B (zh) * 2019-05-30 2020-08-04 东北大学 一种用于下肢外骨骼的运动意图识别及装置方法
CN110103226B (zh) * 2019-06-06 2021-02-12 燕山大学 一种辅助机器人控制方法及系统
CN110523060B (zh) * 2019-08-29 2021-09-24 深圳市问库信息技术有限公司 肌力恢复与姿势纠正辅助装置
CN110675933B (zh) * 2019-09-06 2022-05-17 南京邮电大学 一种手指镜像康复训练系统
CN110710984B (zh) * 2019-10-18 2021-11-02 福州大学 基于表面肌电信号的递归小脑模型的足踝力矩预测方法
CN110974631B (zh) * 2019-10-23 2022-05-17 布法罗机器人科技(成都)有限公司 一种非对称下肢外骨骼机器人及控制方法
CN110917577B (zh) * 2019-11-27 2021-04-20 西安交通大学 一种利用肌肉协同作用的多阶段下肢训练系统及方法
CN113515967A (zh) * 2020-03-27 2021-10-19 深圳市联合视觉创新科技有限公司 运动意图识别模型生成方法、装置、设备及存储介质
CN111390877B (zh) * 2020-04-23 2021-07-13 电子科技大学 一种外骨骼装置及外骨骼变导纳控制方法
CN111888194B (zh) * 2020-08-06 2022-08-26 广州一康医疗设备实业有限公司 一种上肢康复训练方法、系统、装置及存储介质
CN112237524A (zh) * 2020-08-11 2021-01-19 东南大学 柔性上肢康复机器人被动康复训练的控制方法
CN111904795B (zh) * 2020-08-28 2022-08-26 中山大学 一种结合轨迹规划的康复机器人变阻抗控制方法
CN111956452B (zh) * 2020-08-29 2022-08-02 上海电气集团股份有限公司 一种上肢康复机器人控制方法及装置
CN112025682B (zh) * 2020-09-02 2022-04-19 中国科学技术大学 基于肌肉协同理论的柔性外骨骼机器人控制方法及系统
CN112472530B (zh) * 2020-12-01 2023-02-03 天津理工大学 一种基于步行比趋势变化的奖励函数建立方法
CN112891127B (zh) * 2021-01-14 2022-07-26 东南大学 一种基于自适应阻抗控制的镜像康复训练方法
CN112494285B (zh) * 2021-01-19 2023-01-03 吉林大学 一种平衡控制训练机器人
CN112966370B (zh) * 2021-02-09 2022-04-19 武汉纺织大学 一种基于Kinect的人体下肢肌肉训练系统的设计方法
CN112842824B (zh) * 2021-02-24 2023-05-16 郑州铁路职业技术学院 一种用于下肢康复恢复的训练方法
CN113069315B (zh) * 2021-03-24 2024-02-20 上海傅利叶智能科技有限公司 机器人提供助力的方法、装置和康复机器人
CN113081429B (zh) * 2021-04-16 2022-08-30 西北工业大学 一种治疗膝骨关节炎的柔性智能辅助系统
CN113199460B (zh) * 2021-05-24 2022-09-02 中国科学院自动化研究所 非线性肌肉骨骼机器人控制方法、系统及设备
CN113616219B (zh) * 2021-07-30 2022-08-16 燕山大学 一种用于飞行员驾驶状态自适应调整的方法
CN114055461B (zh) * 2021-08-20 2023-02-14 华中科技大学 基于肌电接口的机器人力位同步遥操作控制方法及装置
CN113876316B (zh) * 2021-09-16 2023-10-10 河南翔宇医疗设备股份有限公司 下肢屈伸活动异常检测系统、方法、装置、设备及介质
CN113995629B (zh) * 2021-11-03 2023-07-11 中国科学技术大学先进技术研究院 基于镜像力场的上肢双臂康复机器人导纳控制方法及系统
CN114089757B (zh) * 2021-11-17 2024-02-02 北京石油化工学院 一种上下肢协调主动康复机器人控制方法及装置
CN114237045B (zh) * 2021-11-29 2022-08-02 哈尔滨工业大学 一种无传感器式压电驱动闭环控制方法
CN114129399B (zh) * 2021-11-30 2024-04-12 南京伟思医疗科技股份有限公司 一种外骨骼机器人被动训练用在线力矩生成器
CN114454158B (zh) * 2021-12-28 2024-03-15 江苏集萃微纳自动化系统与装备技术研究所有限公司 一种基于导纳控制的仿生机器人的控制方法和仿生机器人
CN116352695A (zh) * 2021-12-28 2023-06-30 上海神泰医疗科技有限公司 机器人控制方法、控制设备、机器人系统及可读存储介质
CN114298230A (zh) * 2021-12-29 2022-04-08 福州大学 一种基于表面肌电信号的下肢运动识别方法及系统
CN114392137B (zh) * 2022-01-13 2023-05-23 上海理工大学 一种穿戴式柔性下肢助力外骨骼控制系统
CN114967775A (zh) * 2022-04-02 2022-08-30 景枢(上海)科技有限公司 一种用于健身器材的力馈调控系统及方法
CN114848391B (zh) * 2022-04-28 2023-08-29 北京邮电大学 一种下肢康复机器人柔顺控制方法
CN114948586B (zh) * 2022-04-28 2023-04-28 北京邮电大学 一种下肢康复机器人的人机系统运动学参数辨识及控制方法
CN116619393B (zh) * 2023-07-24 2023-11-14 杭州键嘉医疗科技股份有限公司 基于svm的机械臂变导纳控制方法、装置及设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104644378A (zh) * 2015-02-13 2015-05-27 中国科学院自动化研究所 基于阻抗控制的康复训练方法
CN106109174A (zh) * 2016-07-14 2016-11-16 燕山大学 一种基于肌电反馈式阻抗自适应的康复机器人控制方法
CN106621209A (zh) * 2016-09-18 2017-05-10 上海交通大学 腕部康复机器人助动训练的力反馈控制方法及系统
CN107397649A (zh) * 2017-08-10 2017-11-28 燕山大学 一种基于径向基神经网络的上肢外骨骼康复机器人控制方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104644378A (zh) * 2015-02-13 2015-05-27 中国科学院自动化研究所 基于阻抗控制的康复训练方法
CN106109174A (zh) * 2016-07-14 2016-11-16 燕山大学 一种基于肌电反馈式阻抗自适应的康复机器人控制方法
CN106621209A (zh) * 2016-09-18 2017-05-10 上海交通大学 腕部康复机器人助动训练的力反馈控制方法及系统
CN107397649A (zh) * 2017-08-10 2017-11-28 燕山大学 一种基于径向基神经网络的上肢外骨骼康复机器人控制方法

Also Published As

Publication number Publication date
CN108785997A (zh) 2018-11-13

Similar Documents

Publication Publication Date Title
CN108785997B (zh) 一种基于变导纳的下肢康复机器人柔顺控制方法
CN107397649B (zh) 一种基于径向基神经网络上肢外骨骼运动意图识别方法
Zhang et al. sEMG-based continuous estimation of joint angles of human legs by using BP neural network
CN102727361B (zh) 坐卧式下肢康复机器人
CN109199783B (zh) 一种利用sEMG来控制踝关节康复设备刚度的控制方法
CN100594867C (zh) 一种穿戴式手功能康复机器人及其控制系统
CN109394476A (zh) 脑肌信息自动意图识别与上肢智能控制方法及系统
CN110279557A (zh) 一种下肢康复机器人控制系统及控制方法
CN108743223B (zh) 一种基于健侧生物电控的智能外骨骼康复机械手及方法
CN110355761A (zh) 一种基于关节刚度和肌肉疲劳的康复机器人控制方法
CN110675933B (zh) 一种手指镜像康复训练系统
CN103431976A (zh) 基于肌电信号反馈的下肢康复机器人系统及其控制方法
CN109009586B (zh) 一种假手腕关节人机自然驱动角度的肌电连续解码方法
CN113101134B (zh) 一种基于动力外骨骼的儿童下肢运动辅助康复系统
CN102698411A (zh) 坐卧式下肢康复机器人及相应的主动训练控制方法
CN106334265A (zh) 以功能性肌肉电刺激驱动的外骨骼助行系统及助行方法
CN109758336A (zh) 一种利用患者患侧sEMG进行主动康复治疗的控制方法
CN114897012A (zh) 一种基于生机接口的智能假肢手臂控制方法
Chen et al. Design and voluntary motion intention estimation of a novel wearable full-body flexible exoskeleton robot
Li et al. A human joint torque estimation method for elbow exoskeleton control
Zhang et al. The design of a hemiplegic upper limb rehabilitation training system based on surface EMG signals
KR20170098058A (ko) 생체인식기반 맞춤형 재활 시스템
Wang et al. Research progress of rehabilitation exoskeletal robot and evaluation methodologies based on bioelectrical signals
Chen et al. A novel design approach for lower limb rehabilitation training robot
Yang et al. Design of elbow rehabilitation exoskeleton robot with semg-based torque estimation control strategy

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant