CN108777796A - 一种基于无人机的图像传输方法及装置 - Google Patents

一种基于无人机的图像传输方法及装置 Download PDF

Info

Publication number
CN108777796A
CN108777796A CN201810553372.5A CN201810553372A CN108777796A CN 108777796 A CN108777796 A CN 108777796A CN 201810553372 A CN201810553372 A CN 201810553372A CN 108777796 A CN108777796 A CN 108777796A
Authority
CN
China
Prior art keywords
image
described image
denoising
wavelet
unmanned plane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810553372.5A
Other languages
English (en)
Inventor
不公告发明人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen Yifei Fonda Technology Co Ltd
Original Assignee
Shenzhen Yifei Fonda Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen Yifei Fonda Technology Co Ltd filed Critical Shenzhen Yifei Fonda Technology Co Ltd
Priority to CN201810553372.5A priority Critical patent/CN108777796A/zh
Publication of CN108777796A publication Critical patent/CN108777796A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/60Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using transform coding
    • H04N19/63Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using transform coding using sub-band based transform, e.g. wavelets
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/045Combinations of networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • G06T5/70Denoising; Smoothing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/42Methods or arrangements for coding, decoding, compressing or decompressing digital video signals characterised by implementation details or hardware specially adapted for video compression or decompression, e.g. dedicated software implementation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/90Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using coding techniques not provided for in groups H04N19/10-H04N19/85, e.g. fractals
    • H04N19/91Entropy coding, e.g. variable length coding [VLC] or arithmetic coding

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Data Mining & Analysis (AREA)
  • Evolutionary Computation (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Computing Systems (AREA)
  • Computational Linguistics (AREA)
  • Biomedical Technology (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • Artificial Intelligence (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Compression Or Coding Systems Of Tv Signals (AREA)
  • Compression Of Band Width Or Redundancy In Fax (AREA)

Abstract

本发明涉及无人机技术领域,公开了一种基于无人机的图像传输方法及装置,该方法包括:采用小波神经网络对待传输的图像进行去噪处理;通过JPEG2000方式对去噪后的所述图像进行压缩;采用Turbo码对压缩后的所述图像进行编码,并传输所述图像;采用Turbo码对传输后的所述图像进行解码;通过JPEG2000方式对解码后的所述图像进行解压缩;通过小波神经网络对图像进行去噪,而后对图像进行基于turbo码和JPEG2000图像压缩码的联合信源信道编解码;有效的解决图像方块、模糊不清、马赛克等现象;克服了信道传输带宽的限制,提高了图像的抗干扰能力,降低了图像传输延时,降低了失真度。

Description

一种基于无人机的图像传输方法及装置
技术领域
本发明涉及无人机技术领域,尤其涉及一种基于无人机的图像传输方法及装置。
背景技术
随着现代科技的迅速发展,无人机越来越受到人们的关注,而且使用价值也越来越受到广泛的认可。无人机图像传输技术是决定其性能的最关键的技术之一。现有的图传技术会延时,图像会出现麻点,或是卡顿等现象,这些都严重地影响了无人机的使用价值。
发明内容
本发明的主要目的在于提出一种基于无人机的图像传输方法及装置,通过小波神经网络对图像进行去噪,而后对图像进行基于turbo码和JPEG2000图像压缩码的联合信源信道编解码;有效的解决图像方块、模糊不清、马赛克等现象;克服了信道传输带宽的限制,提高了图像的抗干扰能力,降低了图像传输延时,降低了失真度。
为实现上述目的,本发明提供的一种基于无人机的图像传输方法,包括:
采用小波神经网络对待传输的图像进行去噪处理;
通过JPEG2000方式对去噪后的所述图像进行压缩;
采用Turbo码对压缩后的所述图像进行编码,并传输所述图像;
采用Turbo码对传输后的所述图像进行解码;
通过JPEG2000方式对解码后的所述图像进行解压缩。
优选的,所述采用小波神经网络对待传输的图像进行去噪处理包括:
采用中值滤波法去除所述图像的噪声点;获取所述图像任意像素点的特征值;
利用均方差误差函数对每个像素点进行网络参数优化;
采用共轭梯度法优化小波神经网络;
采用自适应搜索方法确定小波基个数。
优选的,所述通过JPEG2000方式对去噪后的所述图像进行压缩包括:
对去噪后的所述图像进行预处理;并进行正向分量变换和正向小波变换;
量化所述图像,并进行熵编码;
分层组织压缩位流,并打包为压缩图像。
优选的,所述通过JPEG2000方式对解码后的所述图像进行解压缩包括:
接收压缩码流,并对所述压缩码流解包处理;
进行熵解码和反量化处理,重构小波系数;
进行反向小波变换和反向分量变换,重构图像数据。
优选的,所述Turbo码的编码结构分为:并行级联卷积码PCCC、串行级联卷积码SCCC和混合级联卷积码HCCC,采用串行级联卷积码SCCC对压缩后的所述图像进行编码;采用并行级联卷积码PCCC和混合级联卷积码HCCC对传输后的所述图像进行解码。
作为本发明的另一方面,提供的一种基于无人机的图像传输装置,包括:
去噪模块,用于采用小波神经网络对待传输的图像进行去噪处理;
压缩模块,用于通过JPEG2000方式对去噪后的所述图像进行压缩;
编码传输模块,用于采用Turbo码对压缩后的所述图像进行编码,并传输所述图像;
解码模块,用于采用Turbo码对传输后的所述图像进行解码;
解压缩模块,用于通过JPEG2000方式对解码后的所述图像进行解压缩。
优选的,所述去噪模块包括:
滤波单元,用于采用中值滤波法去除所述图像的噪声点;获取所述图像任意像素点的特征值;
网络参数优化单元,用于利用均方差误差函数对每个像素点进行网络参数优化;
小波优化单元,用于采用共轭梯度法优化小波神经网络;
自适应单元,用于采用自适应搜索方法确定小波基个数。
优选的,所述压缩模块包括:
预处理单元,用于对去噪后的所述图像进行预处理;并进行正向分量变换和正向小波变换;
量化编码单元,用于量化所述图像,并进行熵编码;
打包单元,用于分层组织压缩位流,并打包为压缩图像。
优选的,所述解压缩模块包括:
接收单元,用于接收压缩码流,并对所述压缩码流解包处理;
小波重构单元,用于进行熵解码和反量化处理,重构小波系数;
图像重构单元,用于进行反向小波变换和反向分量变换,重构图像数据。
优选的,所述Turbo码的编码结构分为:并行级联卷积码PCCC、串行级联卷积码SCCC和混合级联卷积码HCCC,采用串行级联卷积码SCCC对压缩后的所述图像进行编码;采用并行级联卷积码PCCC和混合级联卷积码HCCC对传输后的所述图像进行解码。
本发明提出的一种基于无人机的图像传输方法及装置,该方法包括:采用小波神经网络对待传输的图像进行去噪处理;通过JPEG2000方式对去噪后的所述图像进行压缩;采用Turbo码对压缩后的所述图像进行编码,并传输所述图像;采用Turbo码对传输后的所述图像进行解码;通过JPEG2000方式对解码后的所述图像进行解压缩;通过小波神经网络对图像进行去噪,而后对图像进行基于turbo码和JPEG2000图像压缩码的联合信源信道编解码;有效的解决图像方块、模糊不清、马赛克等现象;克服了信道传输带宽的限制,提高了图像的抗干扰能力,降低了图像传输延时,降低了失真度。
附图说明
图1为本发明实施例一提供的一种基于无人机的图像传输方法的流程图;
图2为图1中步骤S10的方法流程图;
图3为图1中步骤S20的方法流程图;
图4为图1中步骤S40的方法流程图;
图5为本发明实施例二提供的一种基于无人机的图像传输装置的示范性结构框图;
图6为图5中去噪模块的示范性结构框图;
图7为图5中压缩模块的示范性结构框图;
图8为图5中解压缩模块的示范性结构框图。
本发明目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
具体实施方式
应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
实施例一
如图1所示,在本实施例中,一种基于无人机的图像传输方法,包括:
S10、采用小波神经网络对待传输的图像进行去噪处理;
S20、通过JPEG2000方式对去噪后的所述图像进行压缩;
S30、采用Turbo码对压缩后的所述图像进行编码,并传输所述图像;
S40、采用Turbo码对传输后的所述图像进行解码;
S50、通过JPEG2000方式对解码后的所述图像进行解压缩。
在本实施例中,通过小波神经网络对图像进行去噪,而后对图像进行基于turbo码和JPEG2000图像压缩码的联合信源信道编解码;有效的解决图像方块、模糊不清、马赛克等现象;克服了信道传输带宽的限制,提高了图像的抗干扰能力,降低了图像传输延时,降低了失真度。
在本实施例中,小波神经网络(wavelet neural network,WNN)是基于小波分析理论而建立起的一种分层的,多分辨率的新型人工神经网络,有机地融合了小波分析良好时-频域特性和神经网络的自适应优点。
在本实施例中,JPEG2000是一种最新的图像压缩方式,它具有更优越的编码质量。Turbo码是一种具有伪随机特性的长码,Turbo码巧妙地将两个简单分量码通过伪随机交织器并行级联来构造具有伪随机特性的长码,并通过在两个软入/软出(SISO)译码器之间进行多次迭代实现了伪随机译码。他的性能远远超过了其他的编码方式,得到了广泛的关注和发展,并对当今的编码理论和研究方法产生了深远的影响,信道编码学也随之进入了一个新的阶段。
如图2所示,在本实施例中,所述步骤S10包括:
S11、采用中值滤波法去除所述图像的噪声点;获取所述图像任意像素点的特征值;
在本实施例中,中值滤波器是某种形式的含有奇数像素点的二维滑动窗口,将窗口内的像素点按照灰度值的大小进行排序,若某点的灰度值与窗口中值相差超过T,则该点为噪声点,其灰度值用窗口中值替代;否则为非噪声点,仍然保留原灰度值。一幅M×N的灰度图像,任意像素点(x,y)的特征值gx,y定义为:
S12、利用均方差误差函数对每个像素点进行网络参数优化;
在本实施例中,一幅M×N的灰度图像,其学习样本总数为M×N。对于某个特征点gx,y,相应的网络输出为:
其中wk,bk,ak分别为权重参数,小波基平移参数和伸缩参数,h(x)为小波函数,K为小波基函数个数。
采用高斯推导式小波函数:h(x,y)=-xexp(-x2/2)
利用均方差误差函数进行网络参数优化:
其中dx,y为期望输出。若像素点为噪声点,则dx,y=1,否则为0。
S13、采用共轭梯度法优化小波神经网络;
令g′x,y=(gx,y-bk)/ak,则E的梯度为:
由此构成列向量g(w)和w,当网络处于第i次迭代时,
其中s(w)为权值参数的搜索方向,为第i次迭代的权值学习步长。平移参数和伸缩参数同样有上述的公式来计算。按照上述公式逐次迭代学习,直至满足误差条件,完成网络参数学习。
S14、采用自适应搜索方法确定小波基个数。
在本实施例中,首先确定一个初始小波基个数,然后进行网络学习。如果满足网络收敛条件,则停止迭代并完成网络学习;如果达到最大迭代次数而网络仍未收敛,则小波基个数增加1,再进行网络学习。
如图3所示,在本实施例中,所述步骤S20包括:
S21、对去噪后的所述图像进行预处理;并进行正向分量变换和正向小波变换;
S22、量化所述图像,并进行熵编码;
S23、分层组织压缩位流,并打包为压缩图像。
在本实施例中,首先对原始图像进行扩充,将高度和宽度扩充为2的整数次幂,填充的部分置数为零,然后再进行编解码。
如图4所示,在本实施例中,所述步骤S40包括:
S41、接收压缩码流,并对所述压缩码流解包处理;
S42、进行熵解码和反量化处理,重构小波系数;
S43、进行反向小波变换和反向分量变换,重构图像数据。
在本实施例中,所述Turbo码的编码结构分为:并行级联卷积码PCCC(ParallelConcatenated Convolutional Code)、串行级联卷积码SCCC(Serial ConcatenatedCovolutional Code)和混合级联卷积码HCCC(Hybrid Concatenated ConvolutionalCode),采用串行级联卷积码SCCC对压缩后的所述图像进行编码;采用并行级联卷积码PCCC和混合级联卷积码HCCC对传输后的所述图像进行解码。
实施例二
如图5所示,在本实施例中,一种基于无人机的图像传输装置,包括:
去噪模块10,用于采用小波神经网络对待传输的图像进行去噪处理;
压缩模块20,用于通过JPEG2000方式对去噪后的所述图像进行压缩;
编码传输模块30,用于采用Turbo码对压缩后的所述图像进行编码,并传输所述图像;
解码模块40,用于采用Turbo码对传输后的所述图像进行解码;
解压缩模块50,用于通过JPEG2000方式对解码后的所述图像进行解压缩。
在本实施例中,通过小波神经网络对图像进行去噪,而后对图像进行基于turbo码和JPEG2000图像压缩码的联合信源信道编解码;有效的解决图像方块、模糊不清、马赛克等现象;克服了信道传输带宽的限制,提高了图像的抗干扰能力,降低了图像传输延时,降低了失真度。
在本实施例中,小波神经网络(wavelet neural network,WNN)是基于小波分析理论而建立起的一种分层的,多分辨率的新型人工神经网络,有机地融合了小波分析良好时-频域特性和神经网络的自适应优点。
在本实施例中,JPEG2000是一种最新的图像压缩方式,它具有更优越的编码质量。Turbo码是一种具有伪随机特性的长码,Turbo码巧妙地将两个简单分量码通过伪随机交织器并行级联来构造具有伪随机特性的长码,并通过在两个软入/软出(SISO)译码器之间进行多次迭代实现了伪随机译码。他的性能远远超过了其他的编码方式,得到了广泛的关注和发展,并对当今的编码理论和研究方法产生了深远的影响,信道编码学也随之进入了一个新的阶段。
如图6所示,在本实施例中,所述去噪模块包括:
滤波单元11,用于采用中值滤波法去除所述图像的噪声点;获取所述图像任意像素点的特征值;
在本实施例中,中值滤波器是某种形式的含有奇数像素点的二维滑动窗口,将窗口内的像素点按照灰度值的大小进行排序,若某点的灰度值与窗口中值相差超过T,则该点为噪声点,其灰度值用窗口中值替代;否则为非噪声点,仍然保留原灰度值。一幅M×N的灰度图像,任意像素点(x,y)的特征值gx,y定义为:
网络参数优化单元12,用于利用均方差误差函数对每个像素点进行网络参数优化;
在本实施例中,一幅M×N的灰度图像,其学习样本总数为M×N。对于某个特征点gx,y,相应的网络输出为:
其中wk,bk,ak分别为权重参数,小波基平移参数和伸缩参数,h(x)为小波函数,K为小波基函数个数。
采用高斯推导式小波函数:h(x,y)=-xexp(-x2/2)
利用均方差误差函数进行网络参数优化:
其中dx,y为期望输出。若像素点为噪声点,则dx,y=1,否则为0。
小波优化单元13,用于采用共轭梯度法优化小波神经网络;
令g′x,y=(gx,y-bk)/ak,则E的梯度为:
由此构成列向量g(w)和w,当网络处于第i次迭代时,
其中s(w)为权值参数的搜索方向,为第i次迭代的权值学习步长。平移参数和伸缩参数同样有上述的公式来计算。按照上述公式逐次迭代学习,直至满足误差条件,完成网络参数学习。
自适应单元14,用于采用自适应搜索方法确定小波基个数。
在本实施例中,首先确定一个初始小波基个数,然后进行网络学习。如果满足网络收敛条件,则停止迭代并完成网络学习;如果达到最大迭代次数而网络仍未收敛,则小波基个数增加1,再进行网络学习。
如图7所示,在本实施例中,所述压缩模块包括:
预处理单元21,用于对去噪后的所述图像进行预处理;并进行正向分量变换和正向小波变换;
量化编码单元22,用于量化所述图像,并进行熵编码;
打包单元23,用于分层组织压缩位流,并打包为压缩图像。
在本实施例中,首先对原始图像进行扩充,将高度和宽度扩充为2的整数次幂,填充的部分置数为零,然后再进行编解码。
如图8所示,在本实施例中,所述解压缩模块包括:
接收单元41,用于接收压缩码流,并对所述压缩码流解包处理;
小波重构单元42,用于进行熵解码和反量化处理,重构小波系数;
图像重构单元43,用于进行反向小波变换和反向分量变换,重构图像数据。
在本实施例中,所述Turbo码的编码结构分为:并行级联卷积码PCCC(ParallelConcatenated Convolutional Code)、串行级联卷积码SCCC(Serial ConcatenatedCovolutional Code)和混合级联卷积码HCCC(Hybrid Concatenated ConvolutionalCode),采用串行级联卷积码SCCC对压缩后的所述图像进行编码;采用并行级联卷积码PCCC和混合级联卷积码HCCC对传输后的所述图像进行解码。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。
上述本发明实施例序号仅仅为了描述,不代表实施例的优劣。
以上仅为本发明的优选实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (10)

1.一种基于无人机的图像传输方法,其特征在于,包括:
采用小波神经网络对待传输的图像进行去噪处理;
通过JPEG2000方式对去噪后的所述图像进行压缩;
采用Turbo码对压缩后的所述图像进行编码,并传输所述图像;
采用Turbo码对传输后的所述图像进行解码;
通过JPEG2000方式对解码后的所述图像进行解压缩。
2.根据权利要求1所述的一种基于无人机的图像传输方法,其特征在于,所述采用小波神经网络对待传输的图像进行去噪处理包括:
采用中值滤波法去除所述图像的噪声点;获取所述图像任意像素点的特征值;
利用均方差误差函数对每个像素点进行网络参数优化;
采用共轭梯度法优化小波神经网络;
采用自适应搜索方法确定小波基个数。
3.根据权利要求1所述的一种基于无人机的图像传输方法,其特征在于,所述通过JPEG2000方式对去噪后的所述图像进行压缩包括:
对去噪后的所述图像进行预处理;并进行正向分量变换和正向小波变换;
量化所述图像,并进行熵编码;
分层组织压缩位流,并打包为压缩图像。
4.根据权利要求3所述的一种基于无人机的图像传输方法,其特征在于,所述通过JPEG2000方式对解码后的所述图像进行解压缩包括:
接收压缩码流,并对所述压缩码流解包处理;
进行熵解码和反量化处理,重构小波系数;
进行反向小波变换和反向分量变换,重构图像数据。
5.根据权利要求1所述的一种基于无人机的图像传输方法,其特征在于,所述Turbo码的编码结构分为:并行级联卷积码PCCC、串行级联卷积码SCCC和混合级联卷积码HCCC,采用串行级联卷积码SCCC对压缩后的所述图像进行编码;采用并行级联卷积码PCCC和混合级联卷积码HCCC对传输后的所述图像进行解码。
6.一种基于无人机的图像传输装置,其特征在于,包括:
去噪模块,用于采用小波神经网络对待传输的图像进行去噪处理;
压缩模块,用于通过JPEG2000方式对去噪后的所述图像进行压缩;
编码传输模块,用于采用Turbo码对压缩后的所述图像进行编码,并传输所述图像;
解码模块,用于采用Turbo码对传输后的所述图像进行解码;
解压缩模块,用于通过JPEG2000方式对解码后的所述图像进行解压缩。
7.根据权利要求6所述的一种基于无人机的图像传输装置,其特征在于,所述去噪模块包括:
滤波单元,用于采用中值滤波法去除所述图像的噪声点;获取所述图像任意像素点的特征值;
网络参数优化单元,用于利用均方差误差函数对每个像素点进行网络参数优化;
小波优化单元,用于采用共轭梯度法优化小波神经网络;
自适应单元,用于采用自适应搜索方法确定小波基个数。
8.根据权利要求6所述的一种基于无人机的图像传输装置,其特征在于,所述压缩模块包括:
预处理单元,用于对去噪后的所述图像进行预处理;并进行正向分量变换和正向小波变换;
量化编码单元,用于量化所述图像,并进行熵编码;
打包单元,用于分层组织压缩位流,并打包为压缩图像。
9.根据权利要求8所述的一种基于无人机的图像传输装置,其特征在于,所述解压缩模块包括:
接收单元,用于接收压缩码流,并对所述压缩码流解包处理;
小波重构单元,用于进行熵解码和反量化处理,重构小波系数;
图像重构单元,用于进行反向小波变换和反向分量变换,重构图像数据。
10.根据权利要求6所述的一种基于无人机的图像传输装置,其特征在于,所述Turbo码的编码结构分为:并行级联卷积码PCCC、串行级联卷积码SCCC和混合级联卷积码HCCC,采用串行级联卷积码SCCC对压缩后的所述图像进行编码;采用并行级联卷积码PCCC和混合级联卷积码HCCC对传输后的所述图像进行解码。
CN201810553372.5A 2018-05-31 2018-05-31 一种基于无人机的图像传输方法及装置 Pending CN108777796A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810553372.5A CN108777796A (zh) 2018-05-31 2018-05-31 一种基于无人机的图像传输方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810553372.5A CN108777796A (zh) 2018-05-31 2018-05-31 一种基于无人机的图像传输方法及装置

Publications (1)

Publication Number Publication Date
CN108777796A true CN108777796A (zh) 2018-11-09

Family

ID=64028366

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810553372.5A Pending CN108777796A (zh) 2018-05-31 2018-05-31 一种基于无人机的图像传输方法及装置

Country Status (1)

Country Link
CN (1) CN108777796A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111131857A (zh) * 2019-12-31 2020-05-08 北京金山云网络技术有限公司 图像压缩方法、装置及电子设备
JP2020150539A (ja) * 2019-03-13 2020-09-17 三菱電機株式会社 通信システム、通信方法、および読取可能記憶媒体
CN114978431A (zh) * 2022-06-09 2022-08-30 北京青云智创科技有限公司 微型无人机数字图像无线传输方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101478373A (zh) * 2009-01-16 2009-07-08 北京航空航天大学 一种信源信道编码联合优化的自适应差错控制方法
US20100239003A1 (en) * 2007-11-30 2010-09-23 Canon Kabushiki Kaisha Wyner ziv coding
CN102256127A (zh) * 2011-07-20 2011-11-23 东南大学 一种多模式无线通信网络的实时视频传输系统
CN102325252A (zh) * 2011-08-08 2012-01-18 哈尔滨工业大学深圳研究生院 基于最优小波包的联合信源信道编码方法及图像传输系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100239003A1 (en) * 2007-11-30 2010-09-23 Canon Kabushiki Kaisha Wyner ziv coding
CN101478373A (zh) * 2009-01-16 2009-07-08 北京航空航天大学 一种信源信道编码联合优化的自适应差错控制方法
CN102256127A (zh) * 2011-07-20 2011-11-23 东南大学 一种多模式无线通信网络的实时视频传输系统
CN102325252A (zh) * 2011-08-08 2012-01-18 哈尔滨工业大学深圳研究生院 基于最优小波包的联合信源信道编码方法及图像传输系统

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
BRIAN A. BANISTER 等: "《Robust Image Transmission Using JPEG2000 and Turbo-Codes》", 《IEEE SIGNAL PROCESSING LETTERS》 *
刘东华: "《Turbo码关键技术及Turbo原理的应用研究》", 《中国优秀博硕士学位论文全文数据库 (博士)信息科技辑(季刊 )》 *
蔡念,等: "《基于小波神经网络的图像去噪算法》", 《生物物理学报》 *
黄庆波: "《JPEG2000标准的研究及其在Internet上的应用》", 《中国优秀博硕士学位论文全文数据库 (硕士) 信息科技辑(季刊 )》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020150539A (ja) * 2019-03-13 2020-09-17 三菱電機株式会社 通信システム、通信方法、および読取可能記憶媒体
JP7186738B2 (ja) 2019-03-13 2022-12-09 三菱電機株式会社 通信システム
CN111131857A (zh) * 2019-12-31 2020-05-08 北京金山云网络技术有限公司 图像压缩方法、装置及电子设备
CN114978431A (zh) * 2022-06-09 2022-08-30 北京青云智创科技有限公司 微型无人机数字图像无线传输方法

Similar Documents

Publication Publication Date Title
US6931067B2 (en) Apparatus and method for image coding using tree-structured quantization based on wavelet transform
Islam et al. Embedded and efficient low-complexity hierarchical image coder
CN108777796A (zh) 一种基于无人机的图像传输方法及装置
US6965700B2 (en) Embedded and efficient low-complexity hierarchical image coder and corresponding methods therefor
KR100355829B1 (ko) 영상의 공간적 유사성을 이용한 dpcm 영상 부호화 장치
Perumal et al. A hybrid discrete wavelet transform with neural network back propagation approach for efficient medical image compression
CN103546759A (zh) 一种基于小波包和矢量量化相结合的图像压缩编码方法
Raja et al. Performance evaluation on EZW & WDR image compression techniques
Li et al. Low-bit-rate coding of underwater color image using improved wavelet difference reduction
CN113938254B (zh) 一种基于注意力机制的分层信源信道联合编码传输系统及其传输方法
CN113450421A (zh) 一种基于增强深度学习的无人机侦察图像压缩与解压方法
Ghazel Adaptive fractal and wavelet image denoising
Ashraf et al. Real time FPGA implemnation of SAR radar reconstruction system based on adaptive OMP compressive sensing
CN116170589A (zh) 一种基于増维双边滤波增强的图像压缩方法及系统
CN115665413A (zh) 图像压缩最优量化参数的估计方法
CN115695810A (zh) 一种基于语义通信的低比特率图像压缩编码方法
Sathik A Comparative Study of Improved Region Selection Process in Image Compression using SPIHT and WDR
Abdul-Wahed et al. Compression of image using multi-wavelet techniques
Ranjeeta et al. Image compression: an overview
Li et al. Research on image compression technology based on Bp neural network
Ravi et al. Optimized two dimensional wavelet filter from BAT algorithm
Ramac et al. Application of image fusion to wireless image transmission
Kok et al. Image coding using DCT of wavelet coefficients
RU2316908C2 (ru) Способ совместного использования векторного квантования и фрактального кодирования изображений
Ananth Comparison of spiht and lifting scheme image compressiontechniques for satellite imageries

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20181109

RJ01 Rejection of invention patent application after publication