CN108770373B - 使用特征回归模型根据mr数据的伪ct生成 - Google Patents

使用特征回归模型根据mr数据的伪ct生成 Download PDF

Info

Publication number
CN108770373B
CN108770373B CN201680072831.7A CN201680072831A CN108770373B CN 108770373 B CN108770373 B CN 108770373B CN 201680072831 A CN201680072831 A CN 201680072831A CN 108770373 B CN108770373 B CN 108770373B
Authority
CN
China
Prior art keywords
image
features
training
pseudo
model
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201680072831.7A
Other languages
English (en)
Chinese (zh)
Other versions
CN108770373A (zh
Inventor
韩晓
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Elekta Ltd
Original Assignee
Elekta Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Elekta Ltd filed Critical Elekta Ltd
Publication of CN108770373A publication Critical patent/CN108770373A/zh
Application granted granted Critical
Publication of CN108770373B publication Critical patent/CN108770373B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7235Details of waveform analysis
    • A61B5/7264Classification of physiological signals or data, e.g. using neural networks, statistical classifiers, expert systems or fuzzy systems
    • A61B5/7267Classification of physiological signals or data, e.g. using neural networks, statistical classifiers, expert systems or fuzzy systems involving training the classification device
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • G06T5/90Dynamic range modification of images or parts thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0033Features or image-related aspects of imaging apparatus, e.g. for MRI, optical tomography or impedance tomography apparatus; Arrangements of imaging apparatus in a room
    • A61B5/0035Features or image-related aspects of imaging apparatus, e.g. for MRI, optical tomography or impedance tomography apparatus; Arrangements of imaging apparatus in a room adapted for acquisition of images from more than one imaging mode, e.g. combining MRI and optical tomography
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves
    • A61B5/055Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves involving electronic [EMR] or nuclear [NMR] magnetic resonance, e.g. magnetic resonance imaging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7271Specific aspects of physiological measurement analysis
    • A61B5/7278Artificial waveform generation or derivation, e.g. synthesizing signals from measured signals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/103Treatment planning systems
    • A61N5/1039Treatment planning systems using functional images, e.g. PET or MRI
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/54Signal processing systems, e.g. using pulse sequences ; Generation or control of pulse sequences; Operator console
    • G01R33/56Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution
    • G01R33/5608Data processing and visualization specially adapted for MR, e.g. for feature analysis and pattern recognition on the basis of measured MR data, segmentation of measured MR data, edge contour detection on the basis of measured MR data, for enhancing measured MR data in terms of signal-to-noise ratio by means of noise filtering or apodization, for enhancing measured MR data in terms of resolution by means for deblurring, windowing, zero filling, or generation of gray-scaled images, colour-coded images or images displaying vectors instead of pixels
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T11/002D [Two Dimensional] image generation
    • G06T11/003Reconstruction from projections, e.g. tomography
    • G06T11/008Specific post-processing after tomographic reconstruction, e.g. voxelisation, metal artifact correction
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • G06T5/60Image enhancement or restoration using machine learning, e.g. neural networks
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H30/00ICT specially adapted for the handling or processing of medical images
    • G16H30/20ICT specially adapted for the handling or processing of medical images for handling medical images, e.g. DICOM, HL7 or PACS
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H30/00ICT specially adapted for the handling or processing of medical images
    • G16H30/40ICT specially adapted for the handling or processing of medical images for processing medical images, e.g. editing
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/50ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for simulation or modelling of medical disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/36Image-producing devices or illumination devices not otherwise provided for
    • A61B90/37Surgical systems with images on a monitor during operation
    • A61B2090/376Surgical systems with images on a monitor during operation using X-rays, e.g. fluoroscopy
    • A61B2090/3762Surgical systems with images on a monitor during operation using X-rays, e.g. fluoroscopy using computed tomography systems [CT]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2576/00Medical imaging apparatus involving image processing or analysis
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10072Tomographic images
    • G06T2207/10081Computed x-ray tomography [CT]
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10072Tomographic images
    • G06T2207/10088Magnetic resonance imaging [MRI]
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20081Training; Learning
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20084Artificial neural networks [ANN]

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Medical Informatics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biomedical Technology (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Artificial Intelligence (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Surgery (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Molecular Biology (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Signal Processing (AREA)
  • Primary Health Care (AREA)
  • Epidemiology (AREA)
  • Psychiatry (AREA)
  • Physiology (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Evolutionary Computation (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Data Mining & Analysis (AREA)
  • Databases & Information Systems (AREA)
  • Apparatus For Radiation Diagnosis (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)
  • Radiation-Therapy Devices (AREA)
CN201680072831.7A 2015-10-13 2016-10-12 使用特征回归模型根据mr数据的伪ct生成 Active CN108770373B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US14/881,903 US10307108B2 (en) 2015-10-13 2015-10-13 Pseudo-CT generation from MR data using a feature regression model
US14/881,903 2015-10-13
PCT/US2016/056538 WO2017066247A1 (en) 2015-10-13 2016-10-12 Pseudo-ct generation from mr data using a feature regression model

Publications (2)

Publication Number Publication Date
CN108770373A CN108770373A (zh) 2018-11-06
CN108770373B true CN108770373B (zh) 2022-08-19

Family

ID=57227090

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201680072831.7A Active CN108770373B (zh) 2015-10-13 2016-10-12 使用特征回归模型根据mr数据的伪ct生成

Country Status (7)

Country Link
US (3) US10307108B2 (enExample)
EP (2) EP3362984B1 (enExample)
JP (1) JP6567179B2 (enExample)
CN (1) CN108770373B (enExample)
AU (1) AU2016338923B2 (enExample)
RU (1) RU2703344C1 (enExample)
WO (1) WO2017066247A1 (enExample)

Families Citing this family (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10102451B2 (en) * 2015-10-13 2018-10-16 Elekta, Inc. Pseudo-CT generation from MR data using tissue parameter estimation
US10307108B2 (en) 2015-10-13 2019-06-04 Elekta, Inc. Pseudo-CT generation from MR data using a feature regression model
US10792515B2 (en) * 2015-12-18 2020-10-06 Koninklijke Philips N.V. Method for determining a patient specific locally varying margin
WO2017141317A1 (ja) * 2016-02-15 2017-08-24 三菱電機株式会社 音響信号強調装置
US10794977B2 (en) * 2016-06-23 2020-10-06 Siemens Healthcare Gmbh System and method for normalized reference database for MR images via autoencoders
RU2698997C1 (ru) * 2016-09-06 2019-09-02 Электа, Инк. Нейронная сеть для генерации синтетических медицинских изображений
US11478212B2 (en) * 2017-02-16 2022-10-25 Siemens Healthcare Gmbh Method for controlling scanner by estimating patient internal anatomical structures from surface data using body-surface and organ-surface latent variables
EP3631808B1 (en) * 2017-05-31 2024-09-11 Koninklijke Philips N.V. Machine learning on raw medical imaging data for clinical decision support
US11276208B2 (en) * 2017-06-12 2022-03-15 The Research Foundation For The State University Of New York System, method and computer-accessible medium for ultralow dose computed tomography image reconstruction
US10753997B2 (en) * 2017-08-10 2020-08-25 Siemens Healthcare Gmbh Image standardization using generative adversarial networks
CN108416846A (zh) * 2018-03-16 2018-08-17 北京邮电大学 一种无标识三维注册算法
EP3543911A1 (en) * 2018-03-22 2019-09-25 Koninklijke Philips N.V. Anomaly detection using magnetic resonance fingerprinting
EP3583982A1 (en) * 2018-06-18 2019-12-25 Koninklijke Philips N.V. Therapy planning device
EP3617733A1 (en) * 2018-08-30 2020-03-04 Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. Method and apparatus for processing magnetic resonance data using machine learning
EP3633622A1 (en) * 2018-10-02 2020-04-08 Koninklijke Philips N.V. Generation of pseudo radiographic images from optical images
CN109710793B (zh) * 2018-12-25 2021-08-17 科大讯飞股份有限公司 一种哈希参数确定方法、装置、设备及存储介质
CN109785405A (zh) * 2019-01-29 2019-05-21 子威·林 利用多组磁共振图像的多变量回归生成准ct图像的方法
US10467504B1 (en) * 2019-02-08 2019-11-05 Adhark, Inc. Systems, methods, and storage media for evaluating digital images
US11531840B2 (en) 2019-02-08 2022-12-20 Vizit Labs, Inc. Systems, methods, and storage media for training a model for image evaluation
CN109918519A (zh) * 2019-02-26 2019-06-21 重庆善功科技有限公司 一种面向海量延时摄影胚胎图像存储与查询的方法及系统
CN109978965B (zh) * 2019-03-21 2025-09-30 江南大学 一种模拟ct图像生成方法、装置、计算机设备和存储介质
CN109893784A (zh) * 2019-04-19 2019-06-18 深圳先进技术研究院 一种实现超声穿颅聚焦的方法以及电子设备
WO2020218967A1 (en) * 2019-04-26 2020-10-29 Spectronic Ab Generating synthetic electron density images from magnetic resonance images
CN110084318B (zh) * 2019-05-07 2020-10-02 哈尔滨理工大学 一种结合卷积神经网络和梯度提升树的图像识别方法
CN110270015B (zh) * 2019-05-08 2021-03-09 中国科学技术大学 一种基于多序列MRI的sCT生成方法
JP7451293B2 (ja) * 2019-06-13 2024-03-18 キヤノンメディカルシステムズ株式会社 放射線治療システム
US11024034B2 (en) * 2019-07-02 2021-06-01 Acist Medical Systems, Inc. Image segmentation confidence determination
GB2586791B (en) * 2019-08-30 2022-11-16 Elekta ltd Pseudo-CT image generation
EP3828579A1 (en) * 2019-11-28 2021-06-02 Koninklijke Philips N.V. Adaptive reconstruction of magnetic resonance images
US11562482B2 (en) * 2020-03-30 2023-01-24 Varian Medical Systems International Ag Systems and methods for pseudo image data augmentation for training machine learning models
US12008695B2 (en) * 2020-09-25 2024-06-11 GE Precision Healthcare LLC Methods and systems for translating magnetic resonance images to pseudo computed tomography images
CN112435554B (zh) * 2020-11-25 2022-04-12 皖南医学院 一种ct教学模拟系统及其控制方法
CN112509022A (zh) * 2020-12-17 2021-03-16 安徽埃克索医疗机器人有限公司 一种术前三维影像与术中透视图像的无标定物配准方法
CN114692665B (zh) * 2020-12-25 2024-05-24 西南电子技术研究所(中国电子科技集团公司第十研究所) 基于度量学习的辐射源开集个体识别方法
US11966454B2 (en) * 2021-10-28 2024-04-23 Shanghai United Imaging Intelligence Co., Ltd. Self-contrastive learning for image processing
CN114190889A (zh) * 2021-11-19 2022-03-18 上海联影智能医疗科技有限公司 心电信号的分类方法、系统、电子设备及可读存储介质
CN114638745B (zh) * 2022-03-16 2023-08-18 江南大学 一种基于多借鉴信息的医学影像智能转换方法
US20250345638A1 (en) * 2022-05-01 2025-11-13 The General Hospital Corporation System for and method of planning and real-time navigation for transcranial focused ultrasound stimulation
US20240296527A1 (en) * 2023-03-02 2024-09-05 GE Precision Healthcare LLC Reducing noise in ct images using synthetic data
CN120125505B (zh) * 2025-01-27 2025-09-16 中国人民解放军总医院第四医学中心 一种基于roi-hu数据库构建骨骼预测模型的方法和应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1595451A (zh) * 2004-06-17 2005-03-16 上海交通大学 核磁共振多谱图像分割方法
CN101061490A (zh) * 2004-11-19 2007-10-24 皇家飞利浦电子股份有限公司 利用支持向量机(svm)在计算机辅助检测(cad)中进行假阳性降低的系统和方法
CN101732048A (zh) * 2008-11-21 2010-06-16 西门子公司 处理组合的磁共振-发射断层造影图像的方法和装置
CN104039262A (zh) * 2011-09-30 2014-09-10 儿童医院医疗中心 用于计算机断层成像(ct)辐射剂量的一致性和可验证的优化方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2053972B1 (en) * 2006-08-17 2013-09-11 Koninklijke Philips Electronics N.V. Computed tomography image acquisition
US8068654B2 (en) * 2007-02-02 2011-11-29 Siemens Akteingesellschaft Method and system for detection and registration of 3D objects using incremental parameter learning
CN101959454B (zh) * 2008-03-07 2013-11-20 皇家飞利浦电子股份有限公司 通过磁共振图像的自动分割进行ct替代
US9123095B2 (en) * 2008-09-29 2015-09-01 Koninklijke Philips N.V. Method for increasing the robustness of computer-aided diagnosis to image processing uncertainties
WO2011015957A1 (en) * 2009-08-06 2011-02-10 Koninklijke Philips Electronics N.V. Method and apparatus for generating computed tomography images with offset detector geometries
US8774482B2 (en) 2010-05-20 2014-07-08 Siemens Aktiengesellschaft Generating pseudo-CT image volumes from ultra-short echo time MR
US8706668B2 (en) * 2010-06-02 2014-04-22 Nec Laboratories America, Inc. Feature set embedding for incomplete data
US9256965B2 (en) 2013-01-30 2016-02-09 Impac Medical Systems, Inc. Method and apparatus for generating a derived image using images of different types
JP5966112B1 (ja) * 2013-04-02 2016-08-10 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 磁気共鳴画像法を使用した骨組織の検出
US9235781B2 (en) * 2013-08-09 2016-01-12 Kabushiki Kaisha Toshiba Method of, and apparatus for, landmark location
US10307108B2 (en) 2015-10-13 2019-06-04 Elekta, Inc. Pseudo-CT generation from MR data using a feature regression model
EP4212057B1 (en) 2016-10-26 2025-08-13 Nike Innovate C.V. Deformable lace guides for automated footwear platform
KR102187717B1 (ko) 2017-03-15 2020-12-07 나이키 이노베이트 씨.브이. 케이블 및 갑피 텐셔너를 구비하는 자동화된 신발

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1595451A (zh) * 2004-06-17 2005-03-16 上海交通大学 核磁共振多谱图像分割方法
CN101061490A (zh) * 2004-11-19 2007-10-24 皇家飞利浦电子股份有限公司 利用支持向量机(svm)在计算机辅助检测(cad)中进行假阳性降低的系统和方法
CN101732048A (zh) * 2008-11-21 2010-06-16 西门子公司 处理组合的磁共振-发射断层造影图像的方法和装置
CN104039262A (zh) * 2011-09-30 2014-09-10 儿童医院医疗中心 用于计算机断层成像(ct)辐射剂量的一致性和可验证的优化方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MRI-Based Attenuation Correction for PET/MRI:A Noval Approach Combining Pattern Recognition and Atlas Registration;Jeffery D.Steinberg等;《THE JOURNAL OF NUCLEAR MEDICINE,SOCIETY OF NUCLEAR MEDICINE》;20081101;全文 *
人工神经网络肝癌CT影像辅助诊断模型的建立;张波等;《实用放射学杂志》;20060925(第09期);全文 *

Also Published As

Publication number Publication date
US11944463B2 (en) 2024-04-02
US20190209099A1 (en) 2019-07-11
JP2018530401A (ja) 2018-10-18
US11234654B2 (en) 2022-02-01
EP3940624B1 (en) 2025-03-26
JP6567179B2 (ja) 2019-08-28
US20170100078A1 (en) 2017-04-13
AU2016338923B2 (en) 2019-06-27
EP3940624A1 (en) 2022-01-19
EP3362984B1 (en) 2023-07-12
US20220079529A1 (en) 2022-03-17
WO2017066247A1 (en) 2017-04-20
AU2016338923A1 (en) 2018-04-26
CN108770373A (zh) 2018-11-06
EP3362984A1 (en) 2018-08-22
US10307108B2 (en) 2019-06-04
RU2703344C1 (ru) 2019-10-16

Similar Documents

Publication Publication Date Title
US11944463B2 (en) Pseudo-CT generation from MR data using a feature regression model
US10664723B2 (en) Pseudo-CT generation from MR data using tissue parameter estimation
US11386557B2 (en) Systems and methods for segmentation of intra-patient medical images
US10149987B2 (en) Method and system for generating synthetic electron density information for dose calculations based on MRI
US20230281842A1 (en) Generation of 3d models of anatomical structures from 2d radiographs
Nasief et al. Predicting necessity of daily online adaptive replanning based on wavelet image features for MRI guided adaptive radiation therapy
Wodzinski et al. Application of B-splines FFD image registration in breast cancer radiotherapy planning
Meharban et al. A comprehensive review on MRI to CT and MRI to PET image synthesis using deep learning

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant