AU2016338923B2 - Pseudo-CT generation from MR data using a feature regression model - Google Patents
Pseudo-CT generation from MR data using a feature regression model Download PDFInfo
- Publication number
- AU2016338923B2 AU2016338923B2 AU2016338923A AU2016338923A AU2016338923B2 AU 2016338923 B2 AU2016338923 B2 AU 2016338923B2 AU 2016338923 A AU2016338923 A AU 2016338923A AU 2016338923 A AU2016338923 A AU 2016338923A AU 2016338923 B2 AU2016338923 B2 AU 2016338923B2
- Authority
- AU
- Australia
- Prior art keywords
- image
- pseudo
- features
- training
- parameter
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/72—Signal processing specially adapted for physiological signals or for diagnostic purposes
- A61B5/7235—Details of waveform analysis
- A61B5/7264—Classification of physiological signals or data, e.g. using neural networks, statistical classifiers, expert systems or fuzzy systems
- A61B5/7267—Classification of physiological signals or data, e.g. using neural networks, statistical classifiers, expert systems or fuzzy systems involving training the classification device
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T5/00—Image enhancement or restoration
- G06T5/90—Dynamic range modification of images or parts thereof
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/0033—Features or image-related aspects of imaging apparatus, e.g. for MRI, optical tomography or impedance tomography apparatus; Arrangements of imaging apparatus in a room
- A61B5/0035—Features or image-related aspects of imaging apparatus, e.g. for MRI, optical tomography or impedance tomography apparatus; Arrangements of imaging apparatus in a room adapted for acquisition of images from more than one imaging mode, e.g. combining MRI and optical tomography
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/05—Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves
- A61B5/055—Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves involving electronic [EMR] or nuclear [NMR] magnetic resonance, e.g. magnetic resonance imaging
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/72—Signal processing specially adapted for physiological signals or for diagnostic purposes
- A61B5/7271—Specific aspects of physiological measurement analysis
- A61B5/7278—Artificial waveform generation or derivation, e.g. synthesizing signals from measured signals
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N5/00—Radiation therapy
- A61N5/10—X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
- A61N5/103—Treatment planning systems
- A61N5/1039—Treatment planning systems using functional images, e.g. PET or MRI
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/20—Arrangements or instruments for measuring magnetic variables involving magnetic resonance
- G01R33/44—Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
- G01R33/48—NMR imaging systems
- G01R33/54—Signal processing systems, e.g. using pulse sequences ; Generation or control of pulse sequences; Operator console
- G01R33/56—Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution
- G01R33/5608—Data processing and visualization specially adapted for MR, e.g. for feature analysis and pattern recognition on the basis of measured MR data, segmentation of measured MR data, edge contour detection on the basis of measured MR data, for enhancing measured MR data in terms of signal-to-noise ratio by means of noise filtering or apodization, for enhancing measured MR data in terms of resolution by means for deblurring, windowing, zero filling, or generation of gray-scaled images, colour-coded images or images displaying vectors instead of pixels
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T11/00—2D [Two Dimensional] image generation
- G06T11/003—Reconstruction from projections, e.g. tomography
- G06T11/008—Specific post-processing after tomographic reconstruction, e.g. voxelisation, metal artifact correction
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T5/00—Image enhancement or restoration
- G06T5/60—Image enhancement or restoration using machine learning, e.g. neural networks
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H30/00—ICT specially adapted for the handling or processing of medical images
- G16H30/20—ICT specially adapted for the handling or processing of medical images for handling medical images, e.g. DICOM, HL7 or PACS
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H30/00—ICT specially adapted for the handling or processing of medical images
- G16H30/40—ICT specially adapted for the handling or processing of medical images for processing medical images, e.g. editing
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H50/00—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
- G16H50/50—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for simulation or modelling of medical disorders
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B90/00—Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
- A61B90/36—Image-producing devices or illumination devices not otherwise provided for
- A61B90/37—Surgical systems with images on a monitor during operation
- A61B2090/376—Surgical systems with images on a monitor during operation using X-rays, e.g. fluoroscopy
- A61B2090/3762—Surgical systems with images on a monitor during operation using X-rays, e.g. fluoroscopy using computed tomography systems [CT]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B2576/00—Medical imaging apparatus involving image processing or analysis
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10072—Tomographic images
- G06T2207/10081—Computed x-ray tomography [CT]
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10072—Tomographic images
- G06T2207/10088—Magnetic resonance imaging [MRI]
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20081—Training; Learning
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20084—Artificial neural networks [ANN]
Landscapes
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Physics & Mathematics (AREA)
- Public Health (AREA)
- General Health & Medical Sciences (AREA)
- Medical Informatics (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Biomedical Technology (AREA)
- Pathology (AREA)
- Radiology & Medical Imaging (AREA)
- Artificial Intelligence (AREA)
- Animal Behavior & Ethology (AREA)
- Veterinary Medicine (AREA)
- General Physics & Mathematics (AREA)
- Heart & Thoracic Surgery (AREA)
- Molecular Biology (AREA)
- Surgery (AREA)
- Biophysics (AREA)
- Theoretical Computer Science (AREA)
- Signal Processing (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Epidemiology (AREA)
- Primary Health Care (AREA)
- Physiology (AREA)
- Psychiatry (AREA)
- High Energy & Nuclear Physics (AREA)
- Evolutionary Computation (AREA)
- Fuzzy Systems (AREA)
- Mathematical Physics (AREA)
- Databases & Information Systems (AREA)
- Data Mining & Analysis (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Apparatus For Radiation Diagnosis (AREA)
- Magnetic Resonance Imaging Apparatus (AREA)
- Radiation-Therapy Devices (AREA)
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US14/881,903 US10307108B2 (en) | 2015-10-13 | 2015-10-13 | Pseudo-CT generation from MR data using a feature regression model |
| US14/881,903 | 2015-10-13 | ||
| PCT/US2016/056538 WO2017066247A1 (en) | 2015-10-13 | 2016-10-12 | Pseudo-ct generation from mr data using a feature regression model |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| AU2016338923A1 AU2016338923A1 (en) | 2018-04-26 |
| AU2016338923B2 true AU2016338923B2 (en) | 2019-06-27 |
Family
ID=57227090
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| AU2016338923A Active AU2016338923B2 (en) | 2015-10-13 | 2016-10-12 | Pseudo-CT generation from MR data using a feature regression model |
Country Status (7)
| Country | Link |
|---|---|
| US (3) | US10307108B2 (enExample) |
| EP (2) | EP3362984B1 (enExample) |
| JP (1) | JP6567179B2 (enExample) |
| CN (1) | CN108770373B (enExample) |
| AU (1) | AU2016338923B2 (enExample) |
| RU (1) | RU2703344C1 (enExample) |
| WO (1) | WO2017066247A1 (enExample) |
Families Citing this family (40)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US10102451B2 (en) * | 2015-10-13 | 2018-10-16 | Elekta, Inc. | Pseudo-CT generation from MR data using tissue parameter estimation |
| US10307108B2 (en) | 2015-10-13 | 2019-06-04 | Elekta, Inc. | Pseudo-CT generation from MR data using a feature regression model |
| US10792515B2 (en) * | 2015-12-18 | 2020-10-06 | Koninklijke Philips N.V. | Method for determining a patient specific locally varying margin |
| WO2017141317A1 (ja) * | 2016-02-15 | 2017-08-24 | 三菱電機株式会社 | 音響信号強調装置 |
| US10794977B2 (en) * | 2016-06-23 | 2020-10-06 | Siemens Healthcare Gmbh | System and method for normalized reference database for MR images via autoencoders |
| RU2698997C1 (ru) * | 2016-09-06 | 2019-09-02 | Электа, Инк. | Нейронная сеть для генерации синтетических медицинских изображений |
| US11478212B2 (en) * | 2017-02-16 | 2022-10-25 | Siemens Healthcare Gmbh | Method for controlling scanner by estimating patient internal anatomical structures from surface data using body-surface and organ-surface latent variables |
| EP3631808B1 (en) * | 2017-05-31 | 2024-09-11 | Koninklijke Philips N.V. | Machine learning on raw medical imaging data for clinical decision support |
| US11276208B2 (en) * | 2017-06-12 | 2022-03-15 | The Research Foundation For The State University Of New York | System, method and computer-accessible medium for ultralow dose computed tomography image reconstruction |
| US10753997B2 (en) * | 2017-08-10 | 2020-08-25 | Siemens Healthcare Gmbh | Image standardization using generative adversarial networks |
| CN108416846A (zh) * | 2018-03-16 | 2018-08-17 | 北京邮电大学 | 一种无标识三维注册算法 |
| EP3543911A1 (en) * | 2018-03-22 | 2019-09-25 | Koninklijke Philips N.V. | Anomaly detection using magnetic resonance fingerprinting |
| EP3583982A1 (en) * | 2018-06-18 | 2019-12-25 | Koninklijke Philips N.V. | Therapy planning device |
| EP3617733A1 (en) * | 2018-08-30 | 2020-03-04 | Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. | Method and apparatus for processing magnetic resonance data using machine learning |
| EP3633622A1 (en) * | 2018-10-02 | 2020-04-08 | Koninklijke Philips N.V. | Generation of pseudo radiographic images from optical images |
| CN109710793B (zh) * | 2018-12-25 | 2021-08-17 | 科大讯飞股份有限公司 | 一种哈希参数确定方法、装置、设备及存储介质 |
| CN109785405A (zh) * | 2019-01-29 | 2019-05-21 | 子威·林 | 利用多组磁共振图像的多变量回归生成准ct图像的方法 |
| US10467504B1 (en) * | 2019-02-08 | 2019-11-05 | Adhark, Inc. | Systems, methods, and storage media for evaluating digital images |
| US11531840B2 (en) | 2019-02-08 | 2022-12-20 | Vizit Labs, Inc. | Systems, methods, and storage media for training a model for image evaluation |
| CN109918519A (zh) * | 2019-02-26 | 2019-06-21 | 重庆善功科技有限公司 | 一种面向海量延时摄影胚胎图像存储与查询的方法及系统 |
| CN109978965B (zh) * | 2019-03-21 | 2025-09-30 | 江南大学 | 一种模拟ct图像生成方法、装置、计算机设备和存储介质 |
| CN109893784A (zh) * | 2019-04-19 | 2019-06-18 | 深圳先进技术研究院 | 一种实现超声穿颅聚焦的方法以及电子设备 |
| WO2020218967A1 (en) * | 2019-04-26 | 2020-10-29 | Spectronic Ab | Generating synthetic electron density images from magnetic resonance images |
| CN110084318B (zh) * | 2019-05-07 | 2020-10-02 | 哈尔滨理工大学 | 一种结合卷积神经网络和梯度提升树的图像识别方法 |
| CN110270015B (zh) * | 2019-05-08 | 2021-03-09 | 中国科学技术大学 | 一种基于多序列MRI的sCT生成方法 |
| JP7451293B2 (ja) * | 2019-06-13 | 2024-03-18 | キヤノンメディカルシステムズ株式会社 | 放射線治療システム |
| US11024034B2 (en) * | 2019-07-02 | 2021-06-01 | Acist Medical Systems, Inc. | Image segmentation confidence determination |
| GB2586791B (en) * | 2019-08-30 | 2022-11-16 | Elekta ltd | Pseudo-CT image generation |
| EP3828579A1 (en) * | 2019-11-28 | 2021-06-02 | Koninklijke Philips N.V. | Adaptive reconstruction of magnetic resonance images |
| US11562482B2 (en) * | 2020-03-30 | 2023-01-24 | Varian Medical Systems International Ag | Systems and methods for pseudo image data augmentation for training machine learning models |
| US12008695B2 (en) * | 2020-09-25 | 2024-06-11 | GE Precision Healthcare LLC | Methods and systems for translating magnetic resonance images to pseudo computed tomography images |
| CN112435554B (zh) * | 2020-11-25 | 2022-04-12 | 皖南医学院 | 一种ct教学模拟系统及其控制方法 |
| CN112509022A (zh) * | 2020-12-17 | 2021-03-16 | 安徽埃克索医疗机器人有限公司 | 一种术前三维影像与术中透视图像的无标定物配准方法 |
| CN114692665B (zh) * | 2020-12-25 | 2024-05-24 | 西南电子技术研究所(中国电子科技集团公司第十研究所) | 基于度量学习的辐射源开集个体识别方法 |
| US11966454B2 (en) * | 2021-10-28 | 2024-04-23 | Shanghai United Imaging Intelligence Co., Ltd. | Self-contrastive learning for image processing |
| CN114190889A (zh) * | 2021-11-19 | 2022-03-18 | 上海联影智能医疗科技有限公司 | 心电信号的分类方法、系统、电子设备及可读存储介质 |
| CN114638745B (zh) * | 2022-03-16 | 2023-08-18 | 江南大学 | 一种基于多借鉴信息的医学影像智能转换方法 |
| US20250345638A1 (en) * | 2022-05-01 | 2025-11-13 | The General Hospital Corporation | System for and method of planning and real-time navigation for transcranial focused ultrasound stimulation |
| US20240296527A1 (en) * | 2023-03-02 | 2024-09-05 | GE Precision Healthcare LLC | Reducing noise in ct images using synthetic data |
| CN120125505B (zh) * | 2025-01-27 | 2025-09-16 | 中国人民解放军总医院第四医学中心 | 一种基于roi-hu数据库构建骨骼预测模型的方法和应用 |
Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20110286649A1 (en) * | 2010-05-20 | 2011-11-24 | Siemens Corporation | Generating pseudo-ct image volumes from ultra-short echo time mr |
| US20140212013A1 (en) * | 2013-01-30 | 2014-07-31 | Impac Medical Systems, Inc. | Method and Apparatus for Generating a Derived Image Using Images of Different Types |
Family Cites Families (15)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN1271570C (zh) * | 2004-06-17 | 2006-08-23 | 上海交通大学 | 核磁共振多谱图像分割方法 |
| CN101061490A (zh) * | 2004-11-19 | 2007-10-24 | 皇家飞利浦电子股份有限公司 | 利用支持向量机(svm)在计算机辅助检测(cad)中进行假阳性降低的系统和方法 |
| EP2053972B1 (en) * | 2006-08-17 | 2013-09-11 | Koninklijke Philips Electronics N.V. | Computed tomography image acquisition |
| US8068654B2 (en) * | 2007-02-02 | 2011-11-29 | Siemens Akteingesellschaft | Method and system for detection and registration of 3D objects using incremental parameter learning |
| CN101959454B (zh) * | 2008-03-07 | 2013-11-20 | 皇家飞利浦电子股份有限公司 | 通过磁共振图像的自动分割进行ct替代 |
| US9123095B2 (en) * | 2008-09-29 | 2015-09-01 | Koninklijke Philips N.V. | Method for increasing the robustness of computer-aided diagnosis to image processing uncertainties |
| DE102008058488B4 (de) * | 2008-11-21 | 2018-09-20 | Siemens Healthcare Gmbh | Verfahren und Vorrichtung zur Aufbereitung von kombinierten MR-Emissionstomographieaufnahmen |
| WO2011015957A1 (en) * | 2009-08-06 | 2011-02-10 | Koninklijke Philips Electronics N.V. | Method and apparatus for generating computed tomography images with offset detector geometries |
| US8706668B2 (en) * | 2010-06-02 | 2014-04-22 | Nec Laboratories America, Inc. | Feature set embedding for incomplete data |
| WO2013049818A1 (en) * | 2011-09-30 | 2013-04-04 | Cincinnati Children's Hospital Medical Center | Method for consistent and verifiable optimization of computed tomography (ct) radiation dose |
| JP5966112B1 (ja) * | 2013-04-02 | 2016-08-10 | コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. | 磁気共鳴画像法を使用した骨組織の検出 |
| US9235781B2 (en) * | 2013-08-09 | 2016-01-12 | Kabushiki Kaisha Toshiba | Method of, and apparatus for, landmark location |
| US10307108B2 (en) | 2015-10-13 | 2019-06-04 | Elekta, Inc. | Pseudo-CT generation from MR data using a feature regression model |
| EP4212057B1 (en) | 2016-10-26 | 2025-08-13 | Nike Innovate C.V. | Deformable lace guides for automated footwear platform |
| KR102187717B1 (ko) | 2017-03-15 | 2020-12-07 | 나이키 이노베이트 씨.브이. | 케이블 및 갑피 텐셔너를 구비하는 자동화된 신발 |
-
2015
- 2015-10-13 US US14/881,903 patent/US10307108B2/en active Active
-
2016
- 2016-10-12 EP EP16790780.7A patent/EP3362984B1/en active Active
- 2016-10-12 AU AU2016338923A patent/AU2016338923B2/en active Active
- 2016-10-12 WO PCT/US2016/056538 patent/WO2017066247A1/en not_active Ceased
- 2016-10-12 RU RU2018117510A patent/RU2703344C1/ru active
- 2016-10-12 EP EP21191291.0A patent/EP3940624B1/en active Active
- 2016-10-12 CN CN201680072831.7A patent/CN108770373B/zh active Active
- 2016-10-12 JP JP2018519442A patent/JP6567179B2/ja active Active
-
2019
- 2019-03-15 US US16/354,495 patent/US11234654B2/en active Active
-
2021
- 2021-11-24 US US17/456,513 patent/US11944463B2/en active Active
Patent Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20110286649A1 (en) * | 2010-05-20 | 2011-11-24 | Siemens Corporation | Generating pseudo-ct image volumes from ultra-short echo time mr |
| US20140212013A1 (en) * | 2013-01-30 | 2014-07-31 | Impac Medical Systems, Inc. | Method and Apparatus for Generating a Derived Image Using Images of Different Types |
Also Published As
| Publication number | Publication date |
|---|---|
| US11944463B2 (en) | 2024-04-02 |
| US20190209099A1 (en) | 2019-07-11 |
| CN108770373B (zh) | 2022-08-19 |
| JP2018530401A (ja) | 2018-10-18 |
| US11234654B2 (en) | 2022-02-01 |
| EP3940624B1 (en) | 2025-03-26 |
| JP6567179B2 (ja) | 2019-08-28 |
| US20170100078A1 (en) | 2017-04-13 |
| EP3940624A1 (en) | 2022-01-19 |
| EP3362984B1 (en) | 2023-07-12 |
| US20220079529A1 (en) | 2022-03-17 |
| WO2017066247A1 (en) | 2017-04-20 |
| AU2016338923A1 (en) | 2018-04-26 |
| CN108770373A (zh) | 2018-11-06 |
| EP3362984A1 (en) | 2018-08-22 |
| US10307108B2 (en) | 2019-06-04 |
| RU2703344C1 (ru) | 2019-10-16 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US11944463B2 (en) | Pseudo-CT generation from MR data using a feature regression model | |
| US10664723B2 (en) | Pseudo-CT generation from MR data using tissue parameter estimation | |
| US11386557B2 (en) | Systems and methods for segmentation of intra-patient medical images | |
| US11954761B2 (en) | Neural network for generating synthetic medical images | |
| US10149987B2 (en) | Method and system for generating synthetic electron density information for dose calculations based on MRI | |
| EP3268931B1 (en) | Method and apparatus for assessing image registration | |
| Nasief et al. | Predicting necessity of daily online adaptive replanning based on wavelet image features for MRI guided adaptive radiation therapy | |
| Opposits et al. | Population based ranking of frameless CT-MRI registration methods | |
| EP4513425A1 (en) | Generating synthetic image | |
| Meharban et al. | A comprehensive review on MRI to CT and MRI to PET image synthesis using deep learning |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| FGA | Letters patent sealed or granted (standard patent) |