CN108767297A - 一种燃料电池膜电极的制备方法 - Google Patents

一种燃料电池膜电极的制备方法 Download PDF

Info

Publication number
CN108767297A
CN108767297A CN201810545546.3A CN201810545546A CN108767297A CN 108767297 A CN108767297 A CN 108767297A CN 201810545546 A CN201810545546 A CN 201810545546A CN 108767297 A CN108767297 A CN 108767297A
Authority
CN
China
Prior art keywords
fuel cell
preparation
membrane electrode
cell membrane
proton exchange
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810545546.3A
Other languages
English (en)
Other versions
CN108767297B (zh
Inventor
隋升
曹晓兰
王晓颖
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Jiaotong University
Original Assignee
Shanghai Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Jiaotong University filed Critical Shanghai Jiaotong University
Priority to CN201810545546.3A priority Critical patent/CN108767297B/zh
Publication of CN108767297A publication Critical patent/CN108767297A/zh
Application granted granted Critical
Publication of CN108767297B publication Critical patent/CN108767297B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1004Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

本发明公开了一种燃料电池膜电极的制备方法,涉及燃料电池技术领域,其制备方法为,将催化剂粉末、树脂溶液和分散溶液制成混合浆料,通过超声处理使所述混合浆料混合均匀;将质子交换膜需喷涂面朝上,另一面覆盖在静电衬膜上并用喷涂夹具固定;所述喷涂夹具放置于40~60℃环境中,将所述混合浆料喷涂在所述质子交换膜上,制得燃料电池膜电极。本发明的制备方法,由于采用了静电衬膜约束质子交换膜形变,即使在非抽真空条件下进行混合浆料喷涂,质子交换膜也不会产生溶胀变形,因此本工艺具备操作简单,节约成本,成品率高,简化了传统CCM的制备方法,又保留了热转印法的优点。

Description

一种燃料电池膜电极的制备方法
技术领域
本发明涉及燃料电池技术领域,尤其涉及一种燃料电池膜电极的制备方法。
背景技术
燃料电池是一种将燃料中的化学能通过催化剂催化转变为电能的发电装置,燃料电池的燃料为氢气、甲醇和甲烷等,发生电化学反应后生成水、二氧化碳等,不会产生有毒物质污染环境。相比于其他发电技术,燃料电池为具有能量转换率高、负荷响应快、运行质量高、绿色环保的新能源技术。质子交换膜燃料电池是燃料电池中的一种,具有结构简单、容易操作、启动快速、工作温度低、比功率高等优点,在便携电源、电动汽车、建筑电气系统上具有广阔的应用前景。质子交换膜燃料电池最重要的部分是膜电极(MembraneElectrode Assembly,简称MEA),是由质子交换膜和两个电极(阴极和阳极)组成的“三明治”结构。质子交换膜是质子迁移和运输的通道,电极中的催化剂加速电化学反应,质子通过膜从阳极到达阴极,与外电路的电子转移构成回路,向外界提供电流。
传统的MEA有三种制备方法:(1)将混合浆料直接涂覆在气体扩散层上,然后与质子交换膜热压,构成MEA;(2)将混合浆料涂直接覆在质子交换膜上,制成MEA,这种方法属于传统的CCM法,可以使催化剂与质子交换膜有良好的接触,但为了减少质子交换膜遇到溶剂的溶胀变形,质子交换膜必须在抽真空条件下进行,对设备要求严格,制备环境苛刻;(3)先将混合浆料涂覆在转印介质上,然后通过热压将催化层转印到质子交换膜上,这种方法称为印花转印法(CCS法),虽然可以避免质子交换膜的溶胀问题,但是增加了热压转印工序,工艺相对复杂,可能遇到转印不完全现象,浪费材料。
发明内容
有鉴于现有技术的上述缺陷,本发明所要解决的问题是提供一种简单的MEA制备方法,保留传统CCM法和CCS法的优点,在无抽真空条件下质子交换膜也不会发生溶胀变形。相比于传统CCM法,降低设备要求,简化操作条件;相比于CCS法,无需热压转印,简化工艺步骤,也能避免转印不完全现象。
为实现上述目的,本发明提供了一种燃料电池膜电极的制备方法,包括如下步骤:
(1)将催化剂粉末、树脂溶液和分散溶液制成混合浆料,通过超声处理使所述混合浆料混合均匀;
(2)将质子交换膜需喷涂面朝上,另一面覆盖于静电衬膜上,叠合在一起的两层膜采用喷涂夹具固定;
(3)将所述步骤(2)中所述喷涂夹具放置于40~60℃环境中,将所述步骤(1)中所述浆料喷涂在所述步骤(2)中所述质子交换膜上。
进一步地,所述步骤(1)中,所述催化剂为碳载铂催化剂。
进一步地,所述碳载铂催化剂质量百分比为20~60wt%。
进一步地,所述步骤(1)中,所述树脂溶液为具有质子传导功能的离子交换树脂的醇溶液。
进一步地,所述步骤(1)中,所述树脂溶液为具有质子传导功能的离子交换树脂的水溶液。
进一步地,所述步骤(1)中,所述分散溶液为异丙醇溶液。
进一步地,所述步骤(2)中,所述质子交换膜为具有质子交换能力的聚合物膜。
进一步地,所述步骤(2)中,所述静电衬膜为聚对苯二甲酸乙二酯(PET)、聚乙烯(PE)、聚氯乙烯(PVC)或丙烯腈-丁二烯-苯乙烯共聚物(ABS)中的一种。
进一步地,所述静电衬膜厚度为0.08~0.2mm。
进一步地,所述步骤(3)中,所述环境温度为50℃。
本发明的有益效果:
本发明所提供的燃料电池膜电极CCM简化制备方法,利用所述质子交换膜与所述静电衬膜之间的静电吸附作用,以及所述喷涂夹具对膜边缘施压起的机械固定作用,使所述质子交换膜在催化层制备过程中保持平整。在40~60℃左右的环境下,可以使喷涂的混合浆料中溶剂较快挥发,所述质子交换膜不会发生较大溶胀变形。与传统CCM法相比,不需要特定的抽真空仪器,操作条件简单,设备要求低,与CCS法相比,无需借助转印介质和热压转印工序,工序简单,容易操作,节约成本,成品率高,适合规模化生产。
本发明还可用于直接在所述质子交换膜上喷涂碳粉基体,再原位沉积催化剂,即所谓原位法制备催化层。由于质子交换膜通过沉积夹具机械力以及底部静电衬膜静电力作用,即使被水溶液长时间浸泡也不会发生溶胀变形,可以取代CCS法,原位沉积制作催化层。
以下将结合附图对本发明的构思、具体组成及产生的技术效果作进一步说明,以充分地了解本发明的目的、特征和效果。
附图说明
图1是本发明实施例1所制备的单燃料电池的极化性能(I-V)曲线;
图2是本发明实施例2所制备的单燃料电池的极化性能(I-V)曲线;
图3是本发明对比例所制备的单燃料电池的极化性能(I-V)曲线;
图4是本发明实施例1所用的喷涂夹具示意图;
图5为本发明实施例2所用的沉积夹具示意图。
附图说明
1-喷涂夹具,2-沉积夹具。
具体实施方式
下面实施例是对本发明做进一步地详细说明,实施例是在以本发明技术方案为前提下进行实施,给出了实施方式和操作过程,但本发明的保护范围不限于下述实施例。
实施例中,混合浆料为一定比例的催化剂粉末、树脂溶液和分散溶液的混合物,其中,树脂溶液为具有质子传导功能的离子交换树脂的醇溶液或者水溶液,分散溶液为异丙醇溶液。质子交换膜为具有质子交换能力的聚合物膜,静电衬膜为聚对苯二甲酸乙二酯(PET)、聚乙烯(PE)、聚氯乙烯(PVC)或丙烯腈-丁二烯-苯乙烯共聚物(ABS),厚度为0.08~0.2mm。
实施例1
该实施例中,燃料电池膜电极制备方法的步骤如下:
(1)将27.2mg碳载铂催化剂、116μLNafion醇溶液和5mL异丙醇配置成混合浆料,其中,碳载铂催化剂质量百分比为20~60wt%,优选40wt%,Nafion醇溶液质量分数为10%,超声处理使浆料混合均匀;
(2)将质子交换膜需喷涂面朝上,另一面覆盖于静电衬膜上,两层膜一起用喷涂夹具1固定(如图4所示),喷涂夹具1为可以完全固定两层膜外边缘,需固定的外边缘宽度大于1.0cm;
(3)将喷涂夹具1整体置于40~60℃环境下加热,优选50℃,需喷涂面朝上,使催化剂浆料均匀喷涂在质子交换膜上,制得一侧催化层,催化层面积为3.3x3.3cm2,铂载量为0.4mg/cm2
(4)将喷涂夹具1打开,翻转质子交换膜,使附有催化层的一侧覆盖于静电衬膜上,另一侧未喷涂面朝上,再次固定于喷涂夹具1中;
(5)按照步骤(1)、(3)完成质子交换膜另一侧喷涂,得到燃料电池膜电极CCM。
最后,在燃料电池膜电极上各附上一片碳纸,碳纸面积为3.3x3.3cm2,装配成一个单燃料电池。
将上述单燃料电池进行测试,本实施例制备的燃料电池的极化性能(I-V)曲线如图1所示。可以看出,燃料电池的最高功率密度为0.35W/cm2;在0.6V时,电流密度达到0.56A/cm2
实施例2
该实施例中,包含通过在质子交换膜上原位沉积催化剂以制备催化层的步骤,具体燃料电池膜电极制备方法的步骤如下:
(1)将3.2mg碳粉、3.6μLNafion醇溶液和3mL异丙醇配置成混合浆料,其中,Nafion醇溶液质量分数为10%,超声处理使浆料混合均匀;
(2)将质子交换膜需喷涂面朝上,另一面覆盖于静电衬膜上,两层膜一起用喷涂夹具1固定,喷涂夹具1为可以完全固定两层膜外边缘,需固定的外边缘宽度大于1.0cm;
(3)将喷涂夹具1整体置于40~60℃环境下加热,优选50℃,需喷涂面朝上,使混合浆料均匀喷涂在质子交换膜上,制得一面碳粉基体层,碳粉基体层面积为3.3x3.3cm2,碳载量0.1mg/cm2
(4)将质子交换膜和静电衬膜取出然后一起固定在沉积夹具2(如图5所示)中,碳粉基体层朝上,加入325μL氯铂酸溶液、32μL甲酸和30ml去离子水,其中,氯铂酸溶液中铂含量为11.1mg/mL,甲酸质量分数88%,之后,在室温下静置24小时,即在上述碳粉基体层上沉积0.3mg/cm2的铂,制得沉积层,用去离子水对沉积层进行反复清洗,然后置于50℃环境中干燥2小时后取出;
(5)将上述质子交换膜和静电衬膜再次固定在喷涂夹具1中,沉积层朝上,置于50℃环境中,在沉积层表面喷涂一层质子传导聚合物溶液,该质子传导聚合物溶液由10μLNafion醇溶液和1mL异丙醇溶液配制而成,其中,Nafion醇溶液质量分数为10%,之后在50℃环境中干燥30分钟后取出,制得原位沉积的催化层。
(6)将20.4mg碳载铂催化剂、87μLNafion醇溶液和5mL异丙醇配置成混合浆料,其中,碳载铂催化剂质量百分比为20~60wt%,优选40wt%,Nafion醇溶液质量分数为10%,超声处理使浆料混合均匀,按照步骤(2)、(3)将浆料喷涂在质子交换膜另一侧,制得商业催化层,其铂载量为0.3mg/cm2,即得到燃料电池膜电极。
最后,在燃料电池膜电极上各附上一片碳纸,碳纸面积3.3x3.3cm2,装配成一个单燃料电池。
将上述单燃料电池进行测试,本实施例制备的燃料电池的极化性能(I-V)曲线如图2所示。可以看出,燃料电池的最高功率密度为0.37W/cm2;在0.6V时,电流密度达到0.50A/cm2
通过实施例2和对比例的电池测试结果可知,在相同的测试条件和阴极铂载量(均为0.3mg/cm2),采用实施例制备的原位沉积法制备的膜电极优于采用热转印法制备的膜电极的性能。
对比例
该实施例中,燃料电池膜电极制备方法的步骤如下:
(1)将3.2mg碳粉、3.6μLNafion醇溶液和3mL异丙醇配置成混合浆料,其中,Nafion醇溶液质量分数为10%,超声处理使浆料混合均匀;
(2)将碳粉基体层浆料喷涂在PTFE转印介质上,PTFE转印介质面积为4x4cm2,置于50℃环境中,制得碳粉基体层,其碳粉载量0.1mg/cm2
(3)将上述PTFE转印介质固定在沉积夹具2中,碳粉基体层朝上,加入385μL氯铂酸溶液、162μL甲酸和30ml去离子水,其中,氯铂酸溶液中铂含量11.1mg/mL,甲酸质量分数为88%,之后在室温下静置72小时,即在上述碳粉基体层上沉积0.3mg/cm2的铂,制得沉积层,面积为3.6x3.6cm2,用去离子水对沉积层进行反复清洗,然后置于50℃环境中干燥2小时后取出;
(4)将上述PTFE转印介质表面喷涂一层质子传导聚合物溶液,该溶液由32μLNafion醇溶液和1mL异丙醇溶液配制而成,其中,Nafion醇溶液质量分数为10%,在50℃环境中干燥30min后取出,制得催化层;
(5)将30mg碳载铂催化剂、128μLNafion醇溶液和5mL异丙醇配置成混合浆料,其中,碳载铂催化剂质量百分比为20~60wt%,优选40wt%,Nafion醇溶液质量分数为10%,超声处理使混合浆料混合均匀,之后将混合浆料均匀喷涂在另一片PTFE转印介质上,介质面积为4x4cm2,制得催化层,其铂载量为0.3mg/cm2
(6)将上述两片PTFE转印介质置于质子交换膜两侧对齐,有催化层一侧朝向质子交换膜,在145℃温度下热压3分钟,之后剥离两侧PTFE转印介质,得到燃料电池膜电极。
最后,在燃料电池膜电极上各附上一片碳纸,碳纸面积3.3x3.3cm2,装配成一个单燃料电池。
将上述单燃料电池进行测试,本对比例制备的燃料电池的极化性能(I-V)曲线如图3所示。可以看出,燃料电池的最高功率密度为0.34W/cm2;在0.6V时,电流密度达到0.51A/cm2
以上详细描述了本发明的较佳具体实施例。应当理解,本领域的普通技术无需创造性劳动就可以根据本发明的构思作出诸多修改和变化。因此,凡本技术领域中技术人员依本发明的构思在现有技术的基础上通过逻辑分析、推理或者有限的实验可以得到的技术方案,皆应在由权利要求书所确定的保护范围内。

Claims (10)

1.一种燃料电池膜电极的制备方法,其特征在于,包括如下步骤:
(1)将催化剂粉末、树脂溶液和分散溶液制成混合浆料,通过超声处理使所述混合浆料混合均匀;
(2)将质子交换膜需喷涂面朝上,另一面覆盖于静电衬膜上,叠合在一起的两层膜采用喷涂夹具固定;
(3)将所述步骤(2)中所述喷涂夹具放置于40~60℃环境中,将所述步骤(1)中所述混合浆料喷涂在所述步骤(2)中所述质子交换膜上。
2.如权利要求1所述燃料电池膜电极的制备方法,其特征在于,所述步骤(1)中,所述催化剂为碳载铂催化剂。
3.如权利要求2所述燃料电池膜电极的制备方法,其特征在于,所述碳载铂催化剂质量百分比为20~60wt%。
4.如权利要求1所述燃料电池膜电极的制备方法,其特征在于,所述步骤(1)中,所述树脂溶液为具有质子传导功能的离子交换树脂的醇溶液。
5.如权利要求1所述燃料电池膜电极的制备方法,其特征在于,所述步骤(1)中,所述树脂溶液为具有质子传导功能的离子交换树脂的水溶液。
6.如权利要求1所述燃料电池膜电极的制备方法,其特征在于,所述步骤(1)中,所述分散溶液为异丙醇溶液。
7.如权利要求1所述燃料电池膜电极的制备方法,其特征在于,所述步骤(2)中,所述质子交换膜为具有质子交换能力的聚合物膜。
8.如权利要求1所述燃料电池膜电极的制备方法,其特征在于,所述步骤(2)中,所述静电衬膜为聚对苯二甲酸乙二酯(PET)、聚乙烯(PE)、聚氯乙烯(PVC)或丙烯腈-丁二烯-苯乙烯共聚物(ABS)中的一种。
9.如权利要求8所述燃料电池膜电极的制备方法,其特征在于,所述静电衬膜厚度为0.08~0.2mm。
10.如权利要求1所述燃料电池膜电极的制备方法,其特征在于,所述步骤(3)中,所述环境温度为50℃。
CN201810545546.3A 2018-05-25 2018-05-25 一种燃料电池膜电极的制备方法 Active CN108767297B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810545546.3A CN108767297B (zh) 2018-05-25 2018-05-25 一种燃料电池膜电极的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810545546.3A CN108767297B (zh) 2018-05-25 2018-05-25 一种燃料电池膜电极的制备方法

Publications (2)

Publication Number Publication Date
CN108767297A true CN108767297A (zh) 2018-11-06
CN108767297B CN108767297B (zh) 2021-11-23

Family

ID=64000929

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810545546.3A Active CN108767297B (zh) 2018-05-25 2018-05-25 一种燃料电池膜电极的制备方法

Country Status (1)

Country Link
CN (1) CN108767297B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109755595A (zh) * 2018-12-26 2019-05-14 武汉喜玛拉雅光电科技股份有限公司 一种燃料电池膜电极的喷涂方法
CN110212225A (zh) * 2019-05-31 2019-09-06 苏州擎动动力科技有限公司 一种直接涂布法制备膜电极的方法及其制备得到的膜电极
CN111082071A (zh) * 2019-12-31 2020-04-28 武汉理工氢电科技有限公司 燃料电池的电极组件及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001160405A (ja) * 1999-12-02 2001-06-12 Asahi Glass Co Ltd 固体高分子型燃料電池の製造方法
CN1838456A (zh) * 2006-04-28 2006-09-27 华南理工大学 直接喷涂制备燃料电池膜电极的方法
CN1913206A (zh) * 2005-03-07 2007-02-14 三星Sdi株式会社 膜电极组件及其制备方法以及包含它的燃料电池系统
CN101036253A (zh) * 2004-09-02 2007-09-12 百拉得动力系统公司 离子交换膜或流体扩散层静电涂布催化剂层的方法与装置
CN101483241A (zh) * 2008-01-09 2009-07-15 汉能科技有限公司 一种质子交换膜燃料电池膜电极的制备方法
CN101626084A (zh) * 2009-08-12 2010-01-13 江苏新源动力有限公司 Ccm制备膜电极的方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001160405A (ja) * 1999-12-02 2001-06-12 Asahi Glass Co Ltd 固体高分子型燃料電池の製造方法
CN101036253A (zh) * 2004-09-02 2007-09-12 百拉得动力系统公司 离子交换膜或流体扩散层静电涂布催化剂层的方法与装置
CN1913206A (zh) * 2005-03-07 2007-02-14 三星Sdi株式会社 膜电极组件及其制备方法以及包含它的燃料电池系统
CN1838456A (zh) * 2006-04-28 2006-09-27 华南理工大学 直接喷涂制备燃料电池膜电极的方法
CN101483241A (zh) * 2008-01-09 2009-07-15 汉能科技有限公司 一种质子交换膜燃料电池膜电极的制备方法
CN101626084A (zh) * 2009-08-12 2010-01-13 江苏新源动力有限公司 Ccm制备膜电极的方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109755595A (zh) * 2018-12-26 2019-05-14 武汉喜玛拉雅光电科技股份有限公司 一种燃料电池膜电极的喷涂方法
CN110212225A (zh) * 2019-05-31 2019-09-06 苏州擎动动力科技有限公司 一种直接涂布法制备膜电极的方法及其制备得到的膜电极
CN111082071A (zh) * 2019-12-31 2020-04-28 武汉理工氢电科技有限公司 燃料电池的电极组件及其制备方法

Also Published As

Publication number Publication date
CN108767297B (zh) 2021-11-23

Similar Documents

Publication Publication Date Title
Lim et al. Comparison of catalyst-coated membranes and catalyst-coated substrate for PEMFC membrane electrode assembly: A review
Vincent et al. Hydrogen production by water electrolysis with an ultrathin anion-exchange membrane (AEM)
CN110504472B (zh) 一种提高催化剂利用率的直接甲醇燃料电池膜电极及其制备方法
Kim et al. The effects of Nafion® ionomer content in PEMFC MEAs prepared by a catalyst-coated membrane (CCM) spraying method
Thanasilp et al. Effect of MEA fabrication techniques on the cell performance of Pt–Pd/C electrocatalyst for oxygen reduction in PEM fuel cell
Arico et al. Investigation of grafted ETFE-based polymer membranes as alternative electrolyte for direct methanol fuel cells
CN103460470B (zh) 固体高分子型燃料电池用膜电极接合体的制造方法及制造装置、固体高分子型燃料电池
CN101557001B (zh) 一种燃料电池膜电极及其制备方法
US20060199070A1 (en) Membrane-electrode assembly, method for preparing the same, and fuel cell system comprising the same
Sun et al. Fabrication and performance test of a catalyst-coated membrane from direct spray deposition
CN100505395C (zh) 一种自增湿质子交换膜燃料电池膜电极的制备方法
CN108767297A (zh) 一种燃料电池膜电极的制备方法
EP2519989B1 (en) Performance enhancing layers for fuel cells
CN100521317C (zh) 用于直接甲醇燃料电池的膜电极单元及其制造方法
CN1251344C (zh) 用于固态聚合物燃料电池的阴极层结构和装有该结构的燃料电池
Kim et al. Sulfonated poly (ether sulfone) for universal polymer electrolyte fuel cell operations
US20070224486A1 (en) Direct oxidation fuel cell and production method thereof
JP2007213988A (ja) 高分子電解質型燃料電池用電極触媒層、その製造方法および高分子電解質型燃料電池
Basu et al. Improvement in performance of a direct ethanol fuel cell: Effect of sulfuric acid and Ni-mesh
KR20090132214A (ko) 연료전지용 막전극 접합체, 그 제조방법 및 이를 포함하는연료전지
JP5870643B2 (ja) 固体高分子形燃料電池用膜電極接合体の製造方法
CN1259744C (zh) 碳酸氢铵造孔剂及其膜电极的制备方法
JP4649094B2 (ja) 燃料電池用膜電極接合体の製造方法
CN101771150A (zh) 一种具有可再生功能的燃料电池膜电极及制备方法
WO2017154475A1 (ja) 触媒組成物、高分子電解質膜電極接合体の製造方法、および高分子電解質膜電極接合体

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant