CN108766532A - 提高注意力的教学方法、装置及计算机可读存储介质 - Google Patents

提高注意力的教学方法、装置及计算机可读存储介质 Download PDF

Info

Publication number
CN108766532A
CN108766532A CN201810447302.1A CN201810447302A CN108766532A CN 108766532 A CN108766532 A CN 108766532A CN 201810447302 A CN201810447302 A CN 201810447302A CN 108766532 A CN108766532 A CN 108766532A
Authority
CN
China
Prior art keywords
attention
user
brain
electrical feature
waves
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810447302.1A
Other languages
English (en)
Inventor
韩璧丞
阿迪斯
于翔
孙悦
孙东圣
邵真
杨钊祎
刘晨皓
孟木子
郑辉
程翼
贺欢
单思聪
周承邦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen Heart Flow Technology Co Ltd
Original Assignee
Shenzhen Heart Flow Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen Heart Flow Technology Co Ltd filed Critical Shenzhen Heart Flow Technology Co Ltd
Priority to CN201810447302.1A priority Critical patent/CN108766532A/zh
Publication of CN108766532A publication Critical patent/CN108766532A/zh
Priority to PCT/CN2019/084247 priority patent/WO2019214445A1/zh
Priority to US17/036,084 priority patent/US20210012675A1/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H20/00ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance
    • G16H20/70ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance relating to mental therapies, e.g. psychological therapy or autogenous training
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/16Devices for psychotechnics; Testing reaction times ; Devices for evaluating the psychological state
    • A61B5/165Evaluating the state of mind, e.g. depression, anxiety
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/16Devices for psychotechnics; Testing reaction times ; Devices for evaluating the psychological state
    • A61B5/168Evaluating attention deficit, hyperactivity
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/369Electroencephalography [EEG]
    • A61B5/372Analysis of electroencephalograms
    • A61B5/374Detecting the frequency distribution of signals, e.g. detecting delta, theta, alpha, beta or gamma waves
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/011Arrangements for interaction with the human body, e.g. for user immersion in virtual reality
    • G06F3/015Input arrangements based on nervous system activity detection, e.g. brain waves [EEG] detection, electromyograms [EMG] detection, electrodermal response detection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/017Gesture based interaction, e.g. based on a set of recognized hand gestures
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/033Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor
    • G06F3/0346Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor with detection of the device orientation or free movement in a 3D space, e.g. 3D mice, 6-DOF [six degrees of freedom] pointers using gyroscopes, accelerometers or tilt-sensors
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09BEDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
    • G09B5/00Electrically-operated educational appliances
    • G09B5/02Electrically-operated educational appliances with visual presentation of the material to be studied, e.g. using film strip
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H15/00ICT specially adapted for medical reports, e.g. generation or transmission thereof
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H40/00ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices
    • G16H40/60ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices
    • G16H40/63ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices for local operation
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/20ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for computer-aided diagnosis, e.g. based on medical expert systems
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/30ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for calculating health indices; for individual health risk assessment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2503/00Evaluating a particular growth phase or type of persons or animals
    • A61B2503/12Healthy persons not otherwise provided for, e.g. subjects of a marketing survey
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2218/00Aspects of pattern recognition specially adapted for signal processing
    • G06F2218/08Feature extraction
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2218/00Aspects of pattern recognition specially adapted for signal processing
    • G06F2218/12Classification; Matching

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Public Health (AREA)
  • Medical Informatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Pathology (AREA)
  • Psychiatry (AREA)
  • Developmental Disabilities (AREA)
  • General Physics & Mathematics (AREA)
  • Psychology (AREA)
  • Epidemiology (AREA)
  • Primary Health Care (AREA)
  • Educational Technology (AREA)
  • Child & Adolescent Psychology (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Biophysics (AREA)
  • Social Psychology (AREA)
  • Veterinary Medicine (AREA)
  • Hospice & Palliative Care (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Human Computer Interaction (AREA)
  • Business, Economics & Management (AREA)
  • Databases & Information Systems (AREA)
  • Educational Administration (AREA)
  • Data Mining & Analysis (AREA)
  • Neurosurgery (AREA)
  • Neurology (AREA)
  • Dermatology (AREA)
  • General Business, Economics & Management (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)
  • User Interface Of Digital Computer (AREA)
  • Electrically Operated Instructional Devices (AREA)

Abstract

本发明公开了一种提高注意力的教学方法,包括以下步骤:获取学生的脑电波数据;获取脑电采集设备采集到用户的脑电波数据,基于所述脑电波数据计算注意力值;若所述注意力值小于第一预设阈值,则切换至训练模式;获取用户训练时的脑电特征,基于所述脑电特征输出并显示对应的动画效果,以调整用户注意力。本发明还公开了一种提高注意力的教学装置及计算机可读存储介质。本发明实现了在监测用户注意力的同时对用户注意力进行训练,从而提高了用户注意力。

Description

提高注意力的教学方法、装置及计算机可读存储介质
技术领域
本发明涉及教育信息化技术领域,尤其涉及一种提高注意力的教学方法、装置及计算机可读存储介质。
背景技术
脑电信号(Electroencephalograph,EEG)伴随我们生命的始终,是脑细胞群的自发性、节律性电活动在大脑皮层和头皮的总体反应,可以通过放置在头皮上的电极检测得到,EEG按照不同的频率可分为δ、θ、α、β四种节律波。很多国外的学者专家经过大量实验分析发现,人体脑电波中的α波段是在安静、觉醒状态下的主要活动频率。
目前,教学系统只包含播放富媒体课件,亦或监测学生注意力水平,没有在检测学生注意力水平的同时训练学生在课堂中提升注意力,所以,目前的教学系统不能提升学生的注意力。
上述内容仅用于辅助理解本发明的技术方案,并不代表承认上述内容是现有技术。
发明内容
本发明的主要目的在于提供一种提高注意力的教学方法、装置及计算机可读存储介质,旨在解决目前的教学系统不能提升学生的注意力的问题。
为实现上述目的,本发明提供一种提高注意力的教学方法,所述方法包括以下步骤:
获取脑电采集设备采集到用户的脑电波数据,基于所述脑电波数据计算注意力值;
若所述注意力值小于第一预设阈值,则切换至训练模式;
获取用户训练时的脑电特征,基于所述脑电特征输出并显示对应的动画效果,以调整用户注意力。
优选地,所述获取用户训练时的脑电特征,基于所述脑电特征输出并显示对应的动画效果,以调整用户注意力水平的步骤包括:
对所述脑电特征进行分析,并根据预设计分规则对所述脑电特征进行评分;
将所述评分与第二预设阈值进行比较,以得到比较结果;
基于所述比较结果加载对应的所述动画效果的文件,并播放所述文件内容。
优选地,所述对所述脑电特征进行分析,并根据预设计分规则对所述脑电特征进行评分的步骤包括:
获取所述脑电特征对应的Alpha波、Beta波、Delta波、Gamma波及Theta 波;
计算所述Alpha波、Beta波、Delta波、Gamma波及Theta波对应的能量值在频域上的均值、标准差、比值及乘积,以得到计算结果;
基于所述计算结果及所述预设计分规则对所述脑电特征进行评分。
优选地,所述获取脑电采集设备采集到用户的脑电波数据的步骤之后,所述提高注意力的教学方法还包括:
基于第一预设函数去除脑电波数据中心电、眼电以及随机噪声,以得到待滤波数据;
基于第二预设函数对所述待滤波数据利用滤波器滤波,其中,所述滤波器用于对低频、高频以及50Hz工频干扰噪声的去除,并且分离出各个频段的节律波。
优选地,所述获取用户训练时的脑电特征,基于所述脑电特征输出并显示对应的动画效果,以调整用户注意力的步骤之后,所述提高注意力的教学方法还包括:
若所述训练模式结束,则切换至普通教学模式。
优选地,所述若所述注意力值小于第一预设阈值,则切换至训练模式的步骤包括:
若所述注意力值小于第一预设阈值,则将切换至训练模式的提示发送至管理终端。
优选地,所述若所述注意力值小于第一预设阈值,则切换至训练模式的步骤还包括:
若所述注意力值小于第一预设阈值,则获取当前播放内容对应隔断点;
在所述隔断点对应时间自动切换至训练模式。
优选地,所述提高注意力的教学方法还包括:
获取用户在所述训练模式的训练结果;
分类存储用户训练时的所述脑电特征、所述注意力值及所述训练结果;
将所述脑电特征、所述注意力值及所述训练结果进行压缩加密,并生成注意力分析报告。
此外,为实现上述目的,本发明还提供一种提高注意力的教学装置,提高注意力的教学装置包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的提高注意力的教学程序,所述提高注意力的教学程序被所述处理器执行时实现上述任一项提高注意力的教学方法的步骤。
此外,为实现上述目的,本发明还提供一种计算机可读存储介质,所述计算机可读存储介质上存储有提高注意力的教学程序,所述提高注意力的教学程序被处理器执行时实现上述任一项提高注意力的教学方法的步骤。
本发明通过获取脑电采集设备采集到用户的脑电波数据,基于所述脑电波数据计算注意力值,然后若所述注意力值小于第一预设阈值,则切换至训练模式,最后获取用户训练时的脑电特征,基于所述脑电特征输出并显示对应的动画效果,以调整用户注意力;由此实现了在监测用户注意力的同时对用户注意力进行训练,从而提高了用户注意力。
附图说明
图1是本发明实施例方案涉及的硬件运行环境中提高注意力的教学装置所属终端的结构示意图;
图2为本发明提高注意力的教学方法第一实施例的流程示意图;
图3为本发明提高注意力的教学方法第二实施例中所述获取用户训练时的脑电特征,基于所述脑电特征输出并显示对应的动画效果,以调整用户注意力水平步骤的细化流程示意图;
图4为本发明提高注意力的教学方法第三实施例中所述对所述脑电特征进行分析,并根据预设计分规则对所述脑电特征进行评分步骤的细化流程示意图;
图5为本发明提高注意力的教学方法第四实施例的流程示意图;
图6为本发明提高注意力的教学方法第五实施例的流程示意图;
图7为本发明提高注意力的教学方法第七实施例中所述若所述注意力值小于第一预设阈值,则切换至训练模式步骤的流程示意图;
图8为本发明提高注意力的教学方法第八实施例的流程示意图。
本发明目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
具体实施方式
应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
如图1所示,图1是本发明实施例方案涉及的硬件运行环境中装置所属终端的结构示意图。
本发明实施例终端可以是PC。如图1所示,该终端可以包括:处理器1001,例如CPU,网络接口1004,用户接口1003,存储器1005,通信总线1002。其中,通信总线1002用于实现这些组件之间的连接通信。用户接口1003可以包括显示屏(Display)、输入单元比如键盘(Keyboard),可选用户接口 1003还可以包括标准的有线接口、无线接口。网络接口1004可选的可以包括标准的有线接口、无线接口(如WI-FI接口)。存储器1005可以是高速RAM 存储器,也可以是稳定的存储器(non-volatile memory),例如磁盘存储器。存储器1005可选的还可以是独立于前述处理器1001的存储装置。
可选地,终端还可以包括摄像头、RF(Radio Frequency,射频)电路,传感器、音频电路、WiFi模块等等。其中,传感器比如光传感器、运动传感器以及其他传感器。具体地,光传感器可包括环境光传感器及接近传感器,其中,环境光传感器可根据环境光线的明暗来调节显示屏的亮度,接近传感器可在移动终端移动到耳边时,关闭显示屏和/或背光。作为运动传感器的一种,重力加速度传感器可检测方向上(一般为三轴)加速度的大小,静止时可检测出重力的大小及方向,可用于识别移动终端姿态的应用(比如横竖屏切换、相关游戏、磁力计姿态校准)、振动识别相关功能(比如计步器、敲击)等;当然,移动终端还可配置陀螺仪、气压计、湿度计、温度计、红外线传感器等其他传感器,在此不再赘述。
本领域技术人员可以理解,图1中示出的终端结构并不构成对终端的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。
如图1所示,作为一种计算机存储介质的存储器1005中可以包括操作服务器、网络通信模块、用户接口模块以及程序。
在图1所示的终端中,网络接口1004主要用于连接后台服务器,与后台服务器进行数据通信;用户接口1003主要用于连接客户端(用户端),与客户端进行数据通信;而处理器1001可以用于调用存储器1005中存储的程序。
在本实施例中,装置包括:存储器1005、处理器1001及存储在所述存储器1005上并可在所述处理器1001上运行的程序,其中,处理器1001调用存储器1005中存储的程序时,执行以下操作:
获取脑电采集设备采集到用户的脑电波数据,基于所述脑电波数据计算注意力值;
若所述注意力值小于第一预设阈值,则切换至训练模式;
获取用户训练时的脑电特征,基于所述脑电特征输出并显示对应的动画效果,以调整用户注意力。
进一步地,处理器1001可以调用存储器1005中存储的提高注意力的教学程序,还执行以下操作:
对所述脑电特征进行分析,并根据预设计分规则对所述脑电特征进行评分;
将所述评分与第二预设阈值进行比较,以得到比较结果;
基于所述比较结果加载对应的所述动画效果的文件,并播放所述文件内容。
进一步地,处理器1001可以调用存储器1005中存储的提高注意力的教学程序,还执行以下操作:
获取所述脑电特征对应的Alpha波、Beta波、Delta波、Gamma波及Theta 波;
计算所述Alpha波、Beta波、Delta波、Gamma波及Theta波对应的能量值在频域上的均值、标准差、比值及乘积,以得到计算结果;
基于所述计算结果及所述预设计分规则对所述脑电特征进行评分。
进一步地,处理器1001可以调用存储器1005中存储的提高注意力的教学程序,还执行以下操作:
基于第一预设函数去除脑电波数据中心电、眼电以及随机噪声,以得到待滤波数据;
基于第二预设函数对所述待滤波数据利用滤波器滤波,其中,所述滤波器用于对低频、高频以及50Hz工频干扰噪声的去除,并且分离出各个频段的节律波。
进一步地,处理器1001可以调用存储器1005中存储的提高注意力的教学程序,还执行以下操作:
若所述训练模式结束,则切换至普通教学模式。
进一步地,处理器1001可以调用存储器1005中存储的提高注意力的教学程序,还执行以下操作:
若所述注意力值小于第一预设阈值,则将切换至训练模式的提示发送至管理终端。
进一步地,处理器1001可以调用存储器1005中存储的提高注意力的教学程序,还执行以下操作:
若所述注意力值小于第一预设阈值,则获取当前播放内容对应隔断点;
在所述隔断点对应时间自动切换至训练模式。
进一步地,处理器1001可以调用存储器1005中存储的提高注意力的教学程序,还执行以下操作:
获取用户在所述训练模式的训练结果;
分类存储用户训练时的所述脑电特征、所述注意力值及所述训练结果;
将所述脑电特征、所述注意力值及所述训练结果进行压缩加密,并生成注意力分析报告。
本发明进一步提供一种提高注意力的教学。参照图2,图2为本发明提高注意力的教学第一实施例的流程示意图。
在本实施例中,该提高注意力的教学包括以下步骤:
步骤S10,获取脑电采集设备采集到用户的脑电波数据,基于所述脑电波数据计算注意力值;
在本实施例中,该脑电采集设备包括采集EEG(electroencephalo-graph脑电波)的头环,该头环能够实时采集用户的脑电波数据,该脑电波数据包括 Alpha波、Beta波、Delta波、Gamma波及Theta波对应的数值,不同频率波的数值能够反映当前人体脑部的状态,例如,人在专心学习、注意力集中时,大脑频率处于Alpha波,(频率范围8-13Hz),此时脑波比较平稳,是人们学习与思考的最佳脑波状态。当学习兴奋,或精神紧张时,大脑频率处于Beta 波(频率范围14Hz以上),此时脑波频率变快,幅度加大,适当的Beta波对注意力提升以及认知行为的发展有积极作用,但持续时间较短,且易疲劳。当学习疲劳、精神松弛时,大脑频率处于Theta波。
进一步地,将采集到的脑电波数据发送至注意力训练系统,例如,当数据采集频率设置为160HZ,每0.5秒将80个原始脑电数据作为一个数据包发送给注意力训练系统,注意力系统将根据脑电波数据计算用户当前注意力值,可以通过机器学习训练模型计算预测注意力数值,将注意力值发送至显示终端,并对该该注意力值实时监测。
步骤S20,若所述注意力值小于第一预设阈值,则切换至训练模式;
在本实施例中,第一预设阈值由技术人员进行设定,在处于普通教学模式时,注意力系统将检测用户在普通教学模式下的注意力值,当检测到注意力值小于第一预设阈值时,则将切换至训练模式,进一步地,若检测到用户的注意力值低于某设定的下限值时,则判定该用户注意力不集中,若检测到用户注意力值高于某上限值,则判定该用户注意力高度集中,若检测到用户注意力值在该下限值与该上限值,则判定该用户注意力集中。
进一步地,当用户为全班学生时,则将获取每个学生的注意力值,并计算平均注意力值,根据该平均注意力值判定整个班的注意力是否集中,具体地,若平均注意力值小于某一预设阈值时,则判定该班级注意力不集中,若该平均注意力值大于某一预设阈值时,则判定该班级注意力集中,当该平均注意力值小于某一预设阈值时,则将正常教学系统切换至训练系统,进训练模式。
步骤S30,获取用户训练时的脑电特征,基于所述脑电特征输出并显示对应的动画效果,以调整用户注意力。
在本实施例中,该脑电特征包括delta,theta,alpha,beta,high-beta,gamma 各频率能量值,各频率能量在频域上的均值,标准差,各频段能量的比值、乘积,当然,还包括预设频率范围内的全频域信号及各频率波的频域特征,例如,获取80Hz以下全频域信号及Theta波,Alpha波、Beta波、Gamma波及Theta波段的频域特征。该频域特征包括频率波对应的均值、峰值、标准差等,通过机器学习训练模型对各频率波的脑电特征及频域特征进行分析,确定各频率波的脑电特征对应数值的权重,然后根据该权重及计分规则对脑电特征进行评分。
进一步地,可以通过小游戏、图片及动画效果来训练用户注意力,例如,花朵开放、树叶生长、沉潜等游戏程序。人类类大脑在运作过程中会产生微量电流,注意力训练系统会检测到训练者当前的脑波活动状态,并结合大脑的实际情况,针对大脑薄弱的区域运用指定的的电脑游戏来协助人们锻炼大脑神经,从而达到提升大脑注意力的目的,在训练过程中,会对用户的脑电特征进行评分,通过动画效果奖励或者惩罚用户,从而给与用户神经反馈,提高用户注意力水平。
本实施提出的提高注意力的教学方法,通过获取脑电采集设备采集到用户的脑电波数据,基于所述脑电波数据计算注意力值,然后若所述注意力值小于第一预设阈值,则切换至训练模式,最后获取用户训练时的脑电特征,基于所述脑电特征输出并显示对应的动画效果,以调整用户注意力;实现了在监测用户注意力的同时对用户注意力进行训练,从而提高了用户注意力。
基于第一实施例,提出本发明提高注意力的教学方法的第二实施例,参照图3,本实施例中,步骤S30包括:
步骤S31,对所述脑电特征进行分析,并根据预设计分规则对所述脑电特征进行评分;
在本实施例中,对脑电特征进行分析包括计算计算所述Alpha波、Beta 波、Delta波、Gamma波及Theta波对应的能量值在频域上的均值、标准差、比值及乘积,还可以计算各频率波对应的能量值占总能量的百分比,当然,还可以计算全频域信号对应的能量值,该全频域信号包括Alpha波、Beta波、 Delta波、Gamma波及Theta波及其它频段的信号,例如,计算Alpha波、Beta 波、Delta波、Gamma波及Theta波对应的能量值的总能量值,然后根据总能量值计算Alpha波、Beta波、Delta波、Gamma波及Theta波各自对应的能量值占总能量值的百分比。
进一步地,该预设计分规则由技术人员进行设定,注意力训练系统中可以存储着脑电波特征对应评分的评分表,不能范围内的脑电波特征对应的评分不一样,例如,若计算Alpha波、Beta波、Delta波、Gamma波及Theta波各自对应的能量值占总能量值的百分比,将计算得到的百分比与评分比中的能量值百分比进行比较,确定最终的评分。
步骤S32,将所述评分与第二预设阈值进行比较,以得到比较结果;
步骤S33,基于所述比较结果加载对应的所述动画效果的文件,并播放所述文件内容。
在本实施例中,该第二预设阈值由技术人员进行设定,将评分与该第二预设阈值比较,若该评分小于第二预设阈值,则将加载对应动画效果的文件,并播放文件内容,例如,若评分小于第二预设阈值,则加载惩罚主题的动画效果的文件,并播放该文件对应的内容,若评分大于该第二预设阈值时,则加载奖励主题的动画效果的文件,并播放该文件对应的内容,当然,可以根据全班同学的脑电特征,计算脑电特征对应的平均值,然后根据该平均值进行评分。
本实施例提出的提高注意力的教学方法,通过对所述脑电特征进行分析,并根据预设计分规则对所述脑电特征进行评分,然后将所述评分与第二预设阈值进行比较,以得到比较结果,最后基于所述比较结果加载对应的所述动画效果的文件,并播放所述文件内容;实现了对脑电特征进行评分,并且显示对应的动画效果,从而提高学生注意力。
基于第二实施例,提出本发明提高注意力的教学方法的第三实施例,参照图4,本实施例中,步骤S31包括:
步骤S311,获取所述脑电特征对应的Alpha波、Beta波、Delta波、Gamma 波及Theta波;
步骤S312,计算所述Alpha波、Beta波、Delta波、Gamma波及Theta 波对应的能量值在频域上的均值、标准差、比值及乘积,以得到计算结果;
步骤S313,基于所述计算结果及所述预设计分规则对所述脑电特征进行评分。
在本实施例中,脑电特征包括delta,theta,alpha,beta,high-beta,gamma 各频率能量值、各频率能量在频域上的均值,标准差,各频段能量的比值、乘积。可以选择delta,theta,alpha,beta,high-beta,gamma各频率能量值、各频率能量在频域上的均值,标准差,各频段能量的比值中任一种或多种作为脑d特征,还可以计算各频率波对应的能量值占总能量的百分比,例如,计算Alpha波、Beta波、Delta波、Gamma波及Theta波对应的能量值的总能量值,然后根据总能量值计算Alpha波、Beta波、Delta波、Gamma波及Theta 波各自对应的能量值占总能量值的百分比。
本实施例提出的基于注意力,通过获取所述脑电特征对应的Alpha波、 Beta波、Delta波、Gamma波及Theta波,然后计算所述Alpha波、Beta波、 Delta波、Gamma波及Theta波对应的能量值在频域上的均值、标准差、比值及乘积,以得到计算结果,最后基于所述计算结果及所述预设计分规则对所述脑电特征进行评分;实现了根据脑电特征进行评分,从而提高了用户注意力。
基于第一实施例,提出本发明提高注意力的教学方法的第四实施例,参照图5,本实施例中,步骤S10之后,还包括:
步骤S40,基于第一预设函数去除脑电波数据中心电、眼电以及随机噪声,以得到待滤波数据;
在本实施例中,脑电信号是一种随机性很强的电生理信号,各种不同的情绪和心态都会影响它的变化。因此,脑电信号具有很高的时变敏感性,极易被无关噪声污染,从而形成各种脑电伪迹,其中影响最大的是心电以及眼电伪迹,因眨眼等造成的肌电信号干扰、因头环与皮肤摩擦造成的电势变化。这些噪音的主要特征为:在频域信号以及分频信号上的特殊峰值。数据预处理模块的主要功能是检测这些噪声并对这些噪声进行剔除。该数据清理包含三个部分,IMU动作处理,眨眼检测,波峰压缩,具体地,IMU数据是头环内置模块采集的头环物理运动数据,该数据包括头环在该时间点在三维空间三个坐标轴上的加速度,当加速度大于一定阈值,则判断该时间的数据不可信,对于不可信的数据段,直接丢弃,并在频域上进行线性插值,利用第一预设函数去除脑电波数据中心电、眼电以及随机噪声,以得到待滤波数据,例如,V=V_{0}+(t-t_{0})*(V_{1}-V_{0})/(t_{1}-t{0}),其中,V为在时刻t进行的插值,V_{0}和V_{1}分别是丢弃数据段的起始和结束时刻,V_{0} 和V_{1}是相应时刻的电压值。
步骤S50,基于第二预设函数对所述待滤波数据利用滤波器滤波,其中,所述滤波器用于对低频、高频以及50Hz工频干扰噪声的去除,并且分离出各个频段的节律波。
在本实施例中,该第二预设函数包括butter函数与filtfilt函数,可以利用滤波器对待滤波数据进行滤波,首先通过带通滤波,然后再进行带阻滤波,低频干扰主要为基线漂移,由测量时电极和人体接触不良、放大器温漂或呼吸引起,高频干扰主要是采集中存在的射频干扰和肌电干扰。可以用巴特沃斯滤波器进行带通滤波,调用butter函数与filtfilt函数对待滤波数据进行滤波。进一步地,可以使用数字陷波器对50Hz工频干扰去除,利用FIR数字滤波器分离各种节律波。
本实施例提出的提高注意力的教学方法,通过基于第一预设函数去除脑电波数据中心电、眼电以及随机噪声,以得到待滤波数据,然后基于第二预设函数对所述待滤波数据利用滤波器滤波,其中,所述滤波器用于对低频、高频以及50Hz工频干扰噪声的去除,并且分离出各个频段的节律波;实现了对脑电波数据进行去噪及滤波,从而保证了检测的准确性。
基于第四实施例,提出本发明提高注意力的教学方法的第五实施例,参照图6,本实施例中,步骤S30之后,还包括:
步骤S60,若所述训练模式结束,则切换至普通教学模式;
在本实施例中,若训练模式结束,则自动切换至普通教学模式,并且将用户在该训练模式的训练结果进行存储并在终端显示,该训练结果包括用户训练时Alpha波、Beta波、Delta波、Gamma波及Theta波等频率波的能量值、脑电特征、脑电特征对应的评分及注意力值等,用户可以在显示终端看到自己脑电波的变化反应的注意力的变化,将这些数据进行存储,从而能够进行对用户的注意力进行分析。
本实施例提出的提高注意力的教学方法,通过若所述训练模式结束,则切换至普通教学模式;实现了在训练模式与普通教学模式的切换,从而进一步提高了用户的注意力、
基于第一实施例,提出本发明提高注意力的教学方法的第六实施例,本实施例中,步骤S20包括:
步骤S21,若所述注意力值小于第一预设阈值,则将切换至训练模式的提示发送至管理终端。
在本实施例中,当注意力值小于第一预设阈值时,将切换至训练模式的提示消息发送至管理终端,管理者可以利用管理终端切换至训练模式,并在训练模式对应的界面选择训练模式对应的场景,例如,可以选择小游戏或者动画特效等,例如,当管理者在管理终端显示界面点击训练模式中小游戏训练时,则将小游戏对应的场景进行显示,用户可以根据小游戏进行测试,脑电波采集装置实时对用户脑电波进行采集,脑电波监测装置实时监测用户脑电波的变化,将以不同形式在软件界面中警示,教师可以迅速地看到哪些同学注意力不集中。
本实施例提出的提高注意力的教学方法,通过若所述注意力值小于第一预设阈值,则将切换至训练模式的提示发送至管理终端;实现了能够在用户注意力值小于第一预设阈值时,提示管理者切换模式,从而提高了用户体验。
基于以上实施例,提出本发明提高注意力的教学方法的第七实施例,参照图7,本实施例中,步骤S20还包括:
步骤S22,若所述注意力值小于第一预设阈值,则获取当前播放内容对应隔断点;
步骤S23,在所述隔断点对应时间自动切换至训练模式。
在本实施例中,该隔断点可由技术人员进行设定,将普通模式教学中的内容分成很多部分,该隔断点是指用户在普通教学模式中各部分内容之间的临界点,可以在该临界点对应数据的位置用特殊标识标记,每部分内容用隔断点连接,每个隔断点对应不同的时间,若注意力小于第一预设阈值,则识别当前播放内容所在隔断点的时间,并在该时间切换至训练模式,例如,普通教学模式中课件内容分为5部分,当老师教第二部分时,计算得到的脑电波对应的注意力值小于第一预设阈值,则获取该部分内容对应的隔断点,并获取该隔断点对应的时间,并在该时间切换为训练模式。
本实施楼梯处的提高注意力的教学方法,通过若所述注意力值小于第一预设阈值,则获取当前播放内容对应隔断点,然后在所述隔断点对应时间自动切换至训练模式;实现了在隔断点进行模式切换,从而避免了模式切换的混乱,进一步提高了教学效率及质量。
基于第七实施例,提出本发明提高注意力的教学方法的第八实施例,参照图8,本实施例中,该提高注意力的教学方法还包括:
步骤S70,获取用户在所述训练模式的训练结果;
步骤S80,分类存储用户训练时的所述脑电特征、所述注意力值及所述训练结果;
步骤S90,将所述脑电特征、所述注意力值及所述训练结果进行压缩加密,并生成注意力分析报告。
在本实施例中,脑电采集终端将用户训练时的脑电特征、训练结果及注意力值等发送至云服务器,云服务器将数据根据用户、数据采集的环境等标签进行分类与存储,将数据压缩加密后存入脑电数据库,并生成注意力分析报告,将生成的注意力分析报告通过电子邮件发至学生老师家长和教务处所在终端,其中,该注意力分析报告包括注意力值、注意力数值阶段性的变化曲线及脑电波数据、特征数据的曲线图分析等。当然,云服务可通过重新设计API(Application Programming Interface应用程序编程接口)替代。
进一步地,还支持学生成绩的录入和导入,通过对学生上课情况的历史数据与学生的学习成果的进行分析,分析数据,横向对比不同学生、不同班级、不同课程、不同老师的注意力水平,纵向对比学生或班级一段时间内的注意力波动,给出提高学生学习效率的方法与建议。教师可以根据课堂实际情况在检测终端上根据班级人数,学生学习情况个性化设置座位布局并连接和显示相应设备终端的连接情况。
本实施例提出的提高注意力的教学方法,通过获取用户在所述训练模式的训练结果,然后分类存储用户训练时的所述脑电特征、所述注意力值及所述训练结果,最后将所述脑电特征、所述注意力值及所述训练结果进行压缩加密,并生成注意力分析报告;实现了生成注意力分析报告,方便用户了解课堂教学中学生的注意力变化,有利于用户注意力的分析。
此外,本发明实施例还提出一种计算机可读存储介质。本发明计算机可读存储介质上存储有提高注意力的教学程序,所述提高注意力的教学程序被处理器执行时实现如下步骤:
获取脑电采集设备采集到用户的脑电波数据,基于所述脑电波数据计算注意力值;
若所述注意力值小于第一预设阈值,则切换至训练模式;
获取用户训练时的脑电特征,基于所述脑电特征输出并显示对应的动画效果,以调整用户注意力。
进一步地,该提高注意力的教学程序被所述处理器执行时,还实现如下步骤:
对所述脑电特征进行分析,并根据预设计分规则对所述脑电特征进行评分;
将所述评分与第二预设阈值进行比较,以得到比较结果;
基于所述比较结果加载对应的所述动画效果的文件,并播放所述文件内容。
进一步地,该提高注意力的教学程序被所述处理器执行时,还实现如下步骤:
获取所述脑电特征对应的Alpha波、Beta波、Delta波、Gamma波及Theta 波;
计算所述Alpha波、Beta波、Delta波、Gamma波及Theta波对应的能量值在频域上的均值、标准差、比值及乘积,以得到计算结果;
基于所述计算结果及所述预设计分规则对所述脑电特征进行评分。
进一步地,该提高注意力的教学程序被所述处理器执行时,还实现如下步骤:
基于第一预设函数去除脑电波数据中心电、眼电以及随机噪声,以得到待滤波数据;
基于第二预设函数对所述待滤波数据利用滤波器滤波,其中,所述滤波器用于对低频、高频以及50Hz工频干扰噪声的去除,并且分离出各个频段的节律波。
进一步地,该提高注意力的教学程序被所述处理器执行时,还实现如下步骤:
若所述训练模式结束,则切换至普通教学模式。
进一步地,该提高注意力的教学程序被所述处理器执行时,还实现如下步骤:
若所述注意力值小于第一预设阈值,则将切换至训练模式的提示发送至管理终端。
进一步地,该提高注意力的教学程序被所述处理器执行时,还实现如下步骤:
若所述注意力值小于第一预设阈值,则获取当前播放内容对应隔断点;
在所述隔断点对应时间自动切换至训练模式。
进一步地,该提高注意力的教学程序被所述处理器执行时,还实现如下步骤:
获取用户在所述训练模式的训练结果;
分类存储用户训练时的所述脑电特征、所述注意力值及所述训练结果;
将所述脑电特征、所述注意力值及所述训练结果进行压缩加密,并生成注意力分析报告。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者系统不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者系统所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者系统中还存在另外的相同要素。
上述本发明实施例序号仅仅为了描述,不代表实施例的优劣。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在如上所述的一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本发明各个实施例所述的方法。
以上仅为本发明的优选实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (10)

1.一种提高注意力的教学方法,其特征在于,所述提高注意力的教学方法包括以下步骤:
获取脑电采集设备采集到用户的脑电波数据,基于所述脑电波数据计算注意力值;
若所述注意力值小于第一预设阈值,则切换至训练模式;
获取用户训练时的脑电特征,基于所述脑电特征输出并显示对应的动画效果,以调整用户注意力。
2.如权利要求1所述的提高注意力的教学方法,其特征在于,所述获取用户训练时的脑电特征,基于所述脑电特征输出并显示对应的动画效果,以调整用户注意力水平的步骤包括:
对所述脑电特征进行分析,并根据预设计分规则对所述脑电特征进行评分;
将所述评分与第二预设阈值进行比较,以得到比较结果;
基于所述比较结果加载对应的所述动画效果的文件,并播放所述文件内容。
3.如权利要求2所述的提高注意力的教学方法,其特征在于,所述对所述脑电特征进行分析,并根据预设计分规则对所述脑电特征进行评分的步骤包括:
获取所述脑电特征对应的Alpha波、Beta波、Delta波、Gamma波及Theta波;
计算所述Alpha波、Beta波、Delta波、Gamma波及Theta波对应的能量值在频域上的均值、标准差、比值及乘积,以得到计算结果;
基于所述计算结果及所述预设计分规则对所述脑电特征进行评分。
4.如权利要求1所述的提高注意力的教学方法,其特征在于,所述获取脑电采集设备采集到用户的脑电波数据的步骤之后,所述提高注意力的教学方法还包括:
基于第一预设函数去除脑电波数据中心电、眼电以及随机噪声,以得到待滤波数据;
基于第二预设函数对所述待滤波数据利用滤波器滤波,其中,所述滤波器用于对低频、高频以及50Hz工频干扰噪声的去除,并且分离出各个频段的节律波。
5.如权利要求4所述的提高注意力的教学方法,其特征在于,所述获取用户训练时的脑电特征,基于所述脑电特征输出并显示对应的动画效果,以调整用户注意力的步骤之后,所述提高注意力的教学方法还包括:
若所述训练模式结束,则切换至普通教学模式。
6.如权利要求1所述的提高注意力的教学方法,其特征在于,所述若所述注意力值小于第一预设阈值,则切换至训练模式的步骤包括:
若所述注意力值小于第一预设阈值,则将切换至训练模式的提示发送至管理终端。
7.如权利要求1-6任一项所述的提高注意力的教学方法,其特征在于,所述若所述注意力值小于第一预设阈值,则切换至训练模式的步骤还包括:
若所述注意力值小于第一预设阈值,则获取当前播放内容对应隔断点;
在所述隔断点对应时间自动切换至训练模式。
8.如权利7所述的提高注意力的教学方法,其特征在于,所述提高注意力的教学方法还包括:
获取用户在所述训练模式的训练结果;
分类存储用户训练时的所述脑电特征、所述注意力值及所述训练结果;
将所述脑电特征、所述注意力值及所述训练结果进行压缩加密,并生成注意力分析报告。
9.一种提高注意力的教学装置,其特征在于,所述提高注意力的教学装置包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的提高注意力的教学程序,所述提高注意力的教学程序被所述处理器执行时实现如权利要求1至8中任一项所述的方法的步骤。
10.一种计算机可读存储介质,其特征在于,所述计算机可读存储介质上存储有提高注意力的教学程序,所述提高注意力的教学程序被处理器执行时实现如权利要求1至8中任一项所述的提高注意力的教学方法步骤。
CN201810447302.1A 2018-05-11 2018-05-11 提高注意力的教学方法、装置及计算机可读存储介质 Pending CN108766532A (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201810447302.1A CN108766532A (zh) 2018-05-11 2018-05-11 提高注意力的教学方法、装置及计算机可读存储介质
PCT/CN2019/084247 WO2019214445A1 (zh) 2018-05-11 2019-04-25 提高注意力的教学方法、装置及计算机可读存储介质
US17/036,084 US20210012675A1 (en) 2018-05-11 2020-09-29 Teaching method and teaching device for improving attention, and computer readable storage medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810447302.1A CN108766532A (zh) 2018-05-11 2018-05-11 提高注意力的教学方法、装置及计算机可读存储介质

Publications (1)

Publication Number Publication Date
CN108766532A true CN108766532A (zh) 2018-11-06

Family

ID=64009538

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810447302.1A Pending CN108766532A (zh) 2018-05-11 2018-05-11 提高注意力的教学方法、装置及计算机可读存储介质

Country Status (3)

Country Link
US (1) US20210012675A1 (zh)
CN (1) CN108766532A (zh)
WO (1) WO2019214445A1 (zh)

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109464152A (zh) * 2019-01-09 2019-03-15 浙江强脑科技有限公司 脑部疲劳状态的检测方法、设备及计算机可读存储介质
CN109464130A (zh) * 2019-01-09 2019-03-15 浙江强脑科技有限公司 睡眠辅助方法、系统及可读存储介质
CN109567797A (zh) * 2019-01-30 2019-04-05 浙江强脑科技有限公司 癫痫预警方法、装置及计算机可读存储介质
CN109637222A (zh) * 2019-01-28 2019-04-16 探客柏瑞科技(北京)有限公司 脑科学智慧教室
CN109754866A (zh) * 2019-01-02 2019-05-14 浙江强脑科技有限公司 注意力训练方法、装置及计算机可读存储介质
CN109859821A (zh) * 2018-12-21 2019-06-07 睿远空间教育科技(深圳)有限公司 基于脑波采集的专注力训练方法、装置、系统及存储介质
CN110151199A (zh) * 2019-03-29 2019-08-23 江苏理工学院 一种基于脑电信号的家教辅助系统
CN110200625A (zh) * 2019-07-05 2019-09-06 郭长娥 一种大脑脑部神经强化训练装置及方法
WO2019214445A1 (zh) * 2018-05-11 2019-11-14 深圳市心流科技有限公司 提高注意力的教学方法、装置及计算机可读存储介质
CN110478593A (zh) * 2019-05-15 2019-11-22 常州大学 基于vr技术的脑电注意力训练系统
CN111223566A (zh) * 2019-12-30 2020-06-02 浙江强脑科技有限公司 注意力测评和训练方法、装置、设备及可读存储介质
CN111402643A (zh) * 2020-04-07 2020-07-10 符智博 基于脑电教育系统的教学方法、教育系统、设备及介质
CN111887845A (zh) * 2020-07-31 2020-11-06 昆明理工大学 一种基于eeg神经反馈注意力调节系统
CN112185191A (zh) * 2020-09-21 2021-01-05 信阳职业技术学院 一种智能数字化教学模型
CN112363627A (zh) * 2020-11-26 2021-02-12 西安慧脑智能科技有限公司 基于脑机交互的注意力训练方法和系统
CN112890831A (zh) * 2021-01-15 2021-06-04 褚明礼 一种基于脑电信息的效率管理方法
CN113990449A (zh) * 2021-09-30 2022-01-28 浙江强脑科技有限公司 自闭症干预训练方法、装置、终端设备及可读存储介质
CN114121220A (zh) * 2021-09-30 2022-03-01 浙江强脑科技有限公司 多动症干预训练方法、装置、终端设备及可读存储介质
CN114224364A (zh) * 2022-02-21 2022-03-25 深圳市心流科技有限公司 用于专注力训练的脑电波信号处理方法、装置及存储介质
CN114287953A (zh) * 2021-12-02 2022-04-08 浙江迈联医疗科技有限公司 被试用户训练状态识别方法、基于bci的康复训练方法
CN115067944A (zh) * 2022-08-22 2022-09-20 深圳市心流科技有限公司 一种眼动状态评估方法、装置、终端设备及存储介质
CN115188447A (zh) * 2022-09-08 2022-10-14 浙江强脑科技有限公司 一种基于脑电信号的记忆力训练方法和训练装置
CN115844340A (zh) * 2022-11-11 2023-03-28 青岛杰瑞自动化有限公司 一种辅助训练用人员身体指标监测方法、系统及电子设备
CN116138780A (zh) * 2022-12-30 2023-05-23 北京视友科技有限责任公司 一种学生注意力评价方法、终端及计算机可读存储介质
CN116392700A (zh) * 2023-06-06 2023-07-07 深圳市心流科技有限公司 一种基于脑电信号训练专注力的方法、装置及存储介质
CN116687411A (zh) * 2023-08-09 2023-09-05 深圳市心流科技有限公司 一种游戏综合分数获取方法、装置、智能终端和存储介质

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11514805B2 (en) * 2019-03-12 2022-11-29 International Business Machines Corporation Education and training sessions
CN113694531B (zh) * 2020-05-21 2024-01-19 抖音视界有限公司 游戏特效的生成方法、装置、电子设备及计算机可读介质
CN114020148B (zh) * 2021-10-12 2023-06-16 北京师范大学 提升注意力的训练方法、装置以及电子设备
CN114872028B (zh) * 2022-04-13 2023-07-14 中国兵器工业计算机应用技术研究所 操控手训练方法及设备
CN116370788B (zh) * 2023-06-05 2023-10-17 浙江强脑科技有限公司 专注力训练的训练效果实时反馈方法、装置及终端设备
CN116370789B (zh) * 2023-06-07 2023-09-12 慧创科仪(北京)科技有限公司 一种用于儿童的注意力训练装置和介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100482155C (zh) * 2007-05-09 2009-04-29 西安电子科技大学 基于脑机交互的注意力状态即时检测系统及检测方法
CN201949631U (zh) * 2010-09-29 2011-08-31 上海科睿展览展示工程科技有限公司 一种多媒体脑电波游戏装置
CN102920453A (zh) * 2012-10-29 2013-02-13 泰好康电子科技(福建)有限公司 一种脑电波信号处理方法及其装置
CN105139695A (zh) * 2015-09-28 2015-12-09 南通大学 一种基于脑电波采集的课堂教学监测方法及系统

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5724987A (en) * 1991-09-26 1998-03-10 Sam Technology, Inc. Neurocognitive adaptive computer-aided training method and system
US9439593B2 (en) * 2011-11-04 2016-09-13 Questionmark Computing Limited System and method for data anomaly detection process in assessments
US9842511B2 (en) * 2012-12-20 2017-12-12 The United States Of America As Represented By The Secretary Of The Army Method and apparatus for facilitating attention to a task
EP3313279A4 (en) * 2015-06-26 2019-03-20 BrainMarc Ltd. METHOD AND SYSTEMS FOR DETERMINING THE MENTAL CONDITION
EP3399915A4 (en) * 2015-08-28 2019-11-27 Atentiv LLC SYSTEM AND PROGRAM FOR TRAINING COGNITIVE SKILLS
CN106691441A (zh) * 2016-12-22 2017-05-24 蓝色传感(北京)科技有限公司 基于脑电与运动状态反馈的注意力训练系统及方法
US20180184935A1 (en) * 2017-01-04 2018-07-05 BrainCo Inc. Systems and methods for neuro-feedback training using iot devices
US11751796B2 (en) * 2017-01-04 2023-09-12 Brainco, Inc. Systems and methods for neuro-feedback training using video games
CN107024987B (zh) * 2017-03-20 2020-04-14 南京邮电大学 一种基于eeg的实时人脑注意力测试和训练系统
CN108766532A (zh) * 2018-05-11 2018-11-06 深圳市心流科技有限公司 提高注意力的教学方法、装置及计算机可读存储介质

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100482155C (zh) * 2007-05-09 2009-04-29 西安电子科技大学 基于脑机交互的注意力状态即时检测系统及检测方法
CN201949631U (zh) * 2010-09-29 2011-08-31 上海科睿展览展示工程科技有限公司 一种多媒体脑电波游戏装置
CN102920453A (zh) * 2012-10-29 2013-02-13 泰好康电子科技(福建)有限公司 一种脑电波信号处理方法及其装置
CN105139695A (zh) * 2015-09-28 2015-12-09 南通大学 一种基于脑电波采集的课堂教学监测方法及系统

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019214445A1 (zh) * 2018-05-11 2019-11-14 深圳市心流科技有限公司 提高注意力的教学方法、装置及计算机可读存储介质
CN109859821A (zh) * 2018-12-21 2019-06-07 睿远空间教育科技(深圳)有限公司 基于脑波采集的专注力训练方法、装置、系统及存储介质
CN109754866A (zh) * 2019-01-02 2019-05-14 浙江强脑科技有限公司 注意力训练方法、装置及计算机可读存储介质
WO2020140845A1 (zh) * 2019-01-02 2020-07-09 浙江强脑科技有限公司 注意力训练方法、装置及计算机可读存储介质
CN109464152A (zh) * 2019-01-09 2019-03-15 浙江强脑科技有限公司 脑部疲劳状态的检测方法、设备及计算机可读存储介质
CN109464130A (zh) * 2019-01-09 2019-03-15 浙江强脑科技有限公司 睡眠辅助方法、系统及可读存储介质
CN109464130B (zh) * 2019-01-09 2021-11-09 浙江强脑科技有限公司 睡眠辅助方法、系统及可读存储介质
CN109637222A (zh) * 2019-01-28 2019-04-16 探客柏瑞科技(北京)有限公司 脑科学智慧教室
CN109567797A (zh) * 2019-01-30 2019-04-05 浙江强脑科技有限公司 癫痫预警方法、装置及计算机可读存储介质
CN110151199A (zh) * 2019-03-29 2019-08-23 江苏理工学院 一种基于脑电信号的家教辅助系统
CN110478593A (zh) * 2019-05-15 2019-11-22 常州大学 基于vr技术的脑电注意力训练系统
CN110200625A (zh) * 2019-07-05 2019-09-06 郭长娥 一种大脑脑部神经强化训练装置及方法
CN111223566A (zh) * 2019-12-30 2020-06-02 浙江强脑科技有限公司 注意力测评和训练方法、装置、设备及可读存储介质
CN111402643A (zh) * 2020-04-07 2020-07-10 符智博 基于脑电教育系统的教学方法、教育系统、设备及介质
CN111887845A (zh) * 2020-07-31 2020-11-06 昆明理工大学 一种基于eeg神经反馈注意力调节系统
CN112185191A (zh) * 2020-09-21 2021-01-05 信阳职业技术学院 一种智能数字化教学模型
CN112185191B (zh) * 2020-09-21 2022-08-16 信阳职业技术学院 一种智能数字化教学模型
CN112363627A (zh) * 2020-11-26 2021-02-12 西安慧脑智能科技有限公司 基于脑机交互的注意力训练方法和系统
CN112890831A (zh) * 2021-01-15 2021-06-04 褚明礼 一种基于脑电信息的效率管理方法
CN113990449A (zh) * 2021-09-30 2022-01-28 浙江强脑科技有限公司 自闭症干预训练方法、装置、终端设备及可读存储介质
CN114121220A (zh) * 2021-09-30 2022-03-01 浙江强脑科技有限公司 多动症干预训练方法、装置、终端设备及可读存储介质
CN114287953B (zh) * 2021-12-02 2023-10-27 浙江迈联医疗科技有限公司 被试用户训练状态识别方法、基于bci的康复训练方法
CN114287953A (zh) * 2021-12-02 2022-04-08 浙江迈联医疗科技有限公司 被试用户训练状态识别方法、基于bci的康复训练方法
CN114224364B (zh) * 2022-02-21 2022-05-17 深圳市心流科技有限公司 用于专注力训练的脑电波信号处理方法、装置及存储介质
CN114224364A (zh) * 2022-02-21 2022-03-25 深圳市心流科技有限公司 用于专注力训练的脑电波信号处理方法、装置及存储介质
CN115067944A (zh) * 2022-08-22 2022-09-20 深圳市心流科技有限公司 一种眼动状态评估方法、装置、终端设备及存储介质
CN115067944B (zh) * 2022-08-22 2022-11-11 深圳市心流科技有限公司 一种眼动状态评估方法、装置、终端设备及存储介质
CN115188447A (zh) * 2022-09-08 2022-10-14 浙江强脑科技有限公司 一种基于脑电信号的记忆力训练方法和训练装置
CN115188447B (zh) * 2022-09-08 2022-12-09 浙江强脑科技有限公司 一种基于脑电信号的记忆力训练方法和训练装置
CN115844340A (zh) * 2022-11-11 2023-03-28 青岛杰瑞自动化有限公司 一种辅助训练用人员身体指标监测方法、系统及电子设备
CN116138780B (zh) * 2022-12-30 2023-08-08 北京视友科技有限责任公司 一种学生注意力评价方法、终端及计算机可读存储介质
CN116138780A (zh) * 2022-12-30 2023-05-23 北京视友科技有限责任公司 一种学生注意力评价方法、终端及计算机可读存储介质
CN116392700A (zh) * 2023-06-06 2023-07-07 深圳市心流科技有限公司 一种基于脑电信号训练专注力的方法、装置及存储介质
CN116392700B (zh) * 2023-06-06 2023-08-29 深圳市心流科技有限公司 一种基于脑电信号训练专注力的方法、装置及存储介质
CN116687411A (zh) * 2023-08-09 2023-09-05 深圳市心流科技有限公司 一种游戏综合分数获取方法、装置、智能终端和存储介质
CN116687411B (zh) * 2023-08-09 2023-11-17 深圳市心流科技有限公司 一种游戏综合分数获取方法、装置、智能终端和存储介质

Also Published As

Publication number Publication date
WO2019214445A1 (zh) 2019-11-14
US20210012675A1 (en) 2021-01-14

Similar Documents

Publication Publication Date Title
CN108766532A (zh) 提高注意力的教学方法、装置及计算机可读存储介质
US11013449B2 (en) Methods and systems for decoding, inducing, and training peak mind/body states via multi-modal technologies
Blandón et al. Influence of a BCI neurofeedback videogame in children with ADHD. Quantifying the brain activity through an EEG signal processing dedicated toolbox
WO2020037332A2 (en) Systems and methods for personalized learning and attention evaluation through neuro-feedback training
US10198958B2 (en) Method and apparatus for training a team by employing brainwave monitoring and synchronized attention levels of team trainees
KR101006107B1 (ko) 피험자 반응 분석 장치 및 방법
CN111223566A (zh) 注意力测评和训练方法、装置、设备及可读存储介质
US10390722B2 (en) Method for quantifying the perceptive faculty of a person
CN110680314A (zh) 基于脑电多参数的虚拟现实情境任务注意力测训系统
WO2012071545A1 (en) Detection and feedback of information associated with executive function
CN113974657B (zh) 基于脑电信号的训练方法、装置、设备及存储介质
CN113425297A (zh) 基于脑电信号的儿童注意力专注度训练方法及系统
KR20160031187A (ko) 뉴로피드백을 활용한 심리 케어 시스템
RU2736709C1 (ru) Система и способ определения состояния когнитивной нагрузки на основе биометрического сигнала ЭЭГ
CN106913333A (zh) 一种持续性注意水平的敏感性特征指标的选取方法
WO2021027593A1 (zh) 基于脑电数据的汽车控制方法、装置和存储介质
Zhang et al. Reliability of MUSE 2 and Tobii Pro Nano at capturing mobile application users' real-time cognitive workload changes
CN110942816A (zh) 线下社会心理服务场馆系统
CN104966423B (zh) 一种基于生物反馈的远程学习者分类方法
EP1377205B1 (en) Personalized information distribution system
CN116088686B (zh) 一种脑电溯源的运动想象脑机接口训练方法与系统
Giannakos et al. Exploring EEG signals during the different phases of game-player interaction
Cheng et al. Exploring the difference in brain activities under three distinct tasks: listening to music, gaming, and learning
AU2019100848A4 (en) A system for leadership skills measurement
Mansour et al. On The road to a comparative car racing EEG-based signals for mental and physical brain activity evaluation

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB03 Change of inventor or designer information

Inventor after: Han Bicheng

Inventor after: Zheng Hui

Inventor after: Cheng Yi

Inventor after: He Huan

Inventor after: Dan Sicong

Inventor after: Zhou Chengbang

Inventor after: A Disi

Inventor after: Yu Xiang

Inventor after: Sun Yue

Inventor after: Sun Dongsheng

Inventor after: Shao Zhen

Inventor after: Yang Zhaodai

Inventor after: Liu Chenhao

Inventor after: Meng Muzi

Inventor before: Han Bicheng

Inventor before: Zheng Hui

Inventor before: Cheng Yi

Inventor before: He Huan

Inventor before: Dan Sicong

Inventor before: Zhou Chengbang

Inventor before: A Disi

Inventor before: Yu Xiang

Inventor before: Sun Yue

Inventor before: Sun Dongsheng

Inventor before: Shao Zhen

Inventor before: Yang Zhaodai

Inventor before: Liu Chenhao

Inventor before: Meng Muzi

CB03 Change of inventor or designer information
RJ01 Rejection of invention patent application after publication

Application publication date: 20181106

RJ01 Rejection of invention patent application after publication