CN108764340A - 一种b型超声和超声弹性双模态图像的定量分析方法 - Google Patents

一种b型超声和超声弹性双模态图像的定量分析方法 Download PDF

Info

Publication number
CN108764340A
CN108764340A CN201810530320.6A CN201810530320A CN108764340A CN 108764340 A CN108764340 A CN 108764340A CN 201810530320 A CN201810530320 A CN 201810530320A CN 108764340 A CN108764340 A CN 108764340A
Authority
CN
China
Prior art keywords
feature
type
ultrasonoscopy
ultrasound
bimodal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810530320.6A
Other languages
English (en)
Inventor
张麒
熊竞宇
华英汇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Shanghai for Science and Technology
Original Assignee
University of Shanghai for Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Shanghai for Science and Technology filed Critical University of Shanghai for Science and Technology
Priority to CN201810530320.6A priority Critical patent/CN108764340A/zh
Publication of CN108764340A publication Critical patent/CN108764340A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/24Classification techniques
    • G06F18/241Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches
    • G06F18/2411Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches based on the proximity to a decision surface, e.g. support vector machines
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/25Fusion techniques
    • G06F18/253Fusion techniques of extracted features
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/20ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for computer-aided diagnosis, e.g. based on medical expert systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Data Mining & Analysis (AREA)
  • Theoretical Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Evolutionary Biology (AREA)
  • Evolutionary Computation (AREA)
  • Physics & Mathematics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Physics & Mathematics (AREA)
  • Artificial Intelligence (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Biomedical Technology (AREA)
  • Public Health (AREA)
  • Medical Informatics (AREA)
  • Pathology (AREA)
  • Databases & Information Systems (AREA)
  • Epidemiology (AREA)
  • General Health & Medical Sciences (AREA)
  • Primary Health Care (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

本发明涉及一种B型超声和超声弹性双模态图像的定量分析方法。其优势在于:一方面,提取了B型超声和超声弹性双模态图像的特征,融合两种超声模态的信息达到互补的目的,使图像的定量分析结果更精确。另一方面,在特征学习过程中,采用逐点门控玻尔兹曼机将双模态特征进一步抽象表达,剔除其中的任务不相关的信息,提高定量分析的精度,为临床诊断提供重要的依据。本发明保证了图像定量分析的准确性,有望用于临床辅助诊断。

Description

一种B型超声和超声弹性双模态图像的定量分析方法
技术领域
本发明属于医学图像处理领域,具体涉及一种B型超声和超声弹性双模态图像的定量分析方法
背景技术
超声图像是目前许多疾病无创诊断的重要依据。其中,B型超声是最早运用于临床诊断的超声技术,其特点是方便快捷。超声弹性成像是一种测量生物组织弹性的超声检查方法。当生物组织发生病变时,正常组织、良性病变组织和恶性肿瘤之间的硬度和弹性具有较大的差异;同时,在生物组织病变的过程中,组织弹性的变化一般要早于形态学的变化。因此,B型超声和超声弹性成像技术可作为临床无创辅助诊断依据。
与此同时,超声图像的分析仍然建立在医生判读的基础上,过度依赖于医生的经验性判断,具有很强的主观性,且耗时耗力。因此,需要计算机定量分析以减少医生的工作量并增强客观性和准确性。本文提出一种B型超声和超声弹性双模态图像的定量分析方法。
发明内容
本发明的目的在于针对已有的技术存在的技术问题,提供一种B型超声和超声弹性双模态图像的定量分析方法。该方法提取了B型超声和超声弹性双模态图像的特征,融合两种超声模态的信息达到互补的目的,使图像的定量分析结果更精确。同时,在特征学习过程中,采用逐点门控玻尔兹曼机将双模态特征进一步抽象表达,剔除其中的任务不相关的信息,提高定量分析的精度,为临床诊断提供重要的依据。本发明保证了图像定量分析的准确性,有望用于临床辅助诊断。
为实现上述目的,本发明采用下述技术方案:
一种B型超声和超声弹性双模态图像的定量分析方法,包含以下步骤:
步骤1、输入B型超声图像的超声弹性图像;
步骤2、预处理:预处理双模态超声图像:
步骤3、特征提取:利用计算机自动算法分别从B型超声图像和超声弹性图像中提取量化特征;
步骤4、特征融合:通过典型相关分析,分别融合B型特征和弹性特征;
步骤5、特征学习:利用逐点门控玻尔兹曼机对特征进行抽象表达,获取更高级的特征;
步骤6、分类:利用支持向量机对学习得到的特征进行分类;
步骤7、利用五折交叉验证评估整个模型的准确性。
步骤2的预处理中,包括以下步骤:
步骤2.1、针对每幅超声弹性图像,减去对应的B型超声图像;
步骤2.2、针对每幅超声图像,通过医生手动勾勒病灶边界,分割出完整的病灶区域。
步骤3的特征提取中,包括以下步骤:
步骤3.1、提取一阶统计量特征包括:均值,中值,标准差,变异系数,偏度,亮度熵;
步骤3.2、提取灰度共生矩阵特征,包括对比度、能量、均一度和熵。针对每幅图片分别计算0°、90°、180°和270°四个方向的1-15像素偏移量的GLCM,然后对四个方向上的结果求均值,最终得到60个特征;
步骤3.3、提取二值图像特征包括:二值图中取1的像素占整个病灶面积的比值;中心偏离度,表示取值为1的像素到病灶中心的归一化平均距离;离散度与径向偏离度,分别表示像素值为1的点到取值为1的像素区域中心的归一化距离的均值与标准差;
步骤3.4、提取分区特征:将病灶及其周边区域分解为不同分区:病灶轮廓往内缩1/3,两层轮廓围成的区域即为“病灶内边缘1/3”分区;同理可得“病灶外边缘1/3”分区、“病灶中间”分区、“病灶核心”分区;不同分区内选取像素值的分位数,可获取诸多分区的特征。
步骤4的特征融合中,包含以下步骤:
步骤4.1、对于B型和弹性特征x和y,可以将它们表示成各自特征间的线性组合:
u=aTx,
v=bTy;
式中,u、v分别代表B型特征x和弹性特征y的线性组合,a、b分别表示权重;
步骤4.2、计算B型和弹性特征之间的Pearson相关系数:
式中,E[·]代表均值,Var[·]代表标准差;
步骤4.3、计算使Pearson相关系数最大时的u和v,即为一组典型变量;
步骤4.4、重复步骤5.3至求出所有的典型变量,组合成新的向量x’与y’;
步骤4.5、由x’与y’加权求和得到最终的融合向量z。
步骤5的特征学习中,利用预训练的受限玻尔兹曼机网络参数来初始化逐点门控玻尔兹曼机的网络节点。计算逐点门控玻尔兹曼机的能量:
式中,E(·)表示能量函数,v{0,1}表示可视节点,h{0,1}表示隐藏节点,zr{0,1}表示开关节点;分别表示权重,可视层偏置和隐藏层偏置;i,j,r分别表示第几个可视层节点、第几个隐藏层节点、任务相关的节点;
通过随机梯度下降法优化能量函数,寻找最优的参数。
步骤6的分类中,采用支持向量机的libsvm版,利用网格参数寻优法搜索最优参数。
步骤7的五折交叉验证中,所有样本平均分为五等份,取其中一份为测试集,剩余四份为训练集,执行步骤1至步骤6;重复五次,直至每份都获得测试结果,评估模型的准确性。
采用上述技术方案,本发明产生的有益效果在于:
本发明可借助双模态超声图像,通过计算机定量分析,为临床辅助诊断提供重要的依据。
附图说明
图1为本发明一种B型超声和超声弹性双模态图像的定量分析方法的流程图。
图2为五折交叉验证示意图。
具体实施方式
本发明的优选实施例结合附图1详述如下:
实施例一:
本B型超声和超声弹性双模态图像的定量分析方法,包含以下步骤:
步骤1、输入B型超声图像的超声弹性图像;
步骤2、预处理:预处理双模态超声图像:
步骤3、特征提取:利用计算机自动算法分别从B型超声图像和超声弹性图像中提取量化特征;
步骤4、特征融合:通过典型相关分析,分别融合B型特征和弹性特征;
步骤5、特征学习:利用逐点门控玻尔兹曼机对特征进行抽象表达,获取更高级的特征;
步骤6、分类:利用支持向量机对学习得到的特征进行分类;
步骤7、利用五折交叉验证评估整个模型的准确性。
实施例二:
本实施例与实施例一基本相同,特别之处如下:
所述的步骤2预处理中,包括以下步骤:
步骤2.1、针对每幅超声弹性图像,减去对应的B型超声图像;
步骤2.2、针对每幅超声图像,通过医生手动勾勒病灶边界,分割出完整的病灶区域。
所述的步骤3特征提取中,包括以下步骤:
步骤3.1、提取一阶统计量特征包括:均值,中值,标准差,变异系数,偏度,亮度熵。
步骤3.2、提取灰度共生矩阵特征,包括对比度、能量、均一度和熵;针对每幅图片分别计算0°、90°、180°和270°四个方向的1-15像素偏移量的GLCM,然后对四个方向上的结果求均值,最终得到60个特征;
步骤3.3、提取二值图像特征包括:二值图中取1的像素占整个病灶面积的比值;中心偏离度,表示取值为1的像素到病灶中心的归一化平均距离;离散度与径向偏离度,分别表示像素值为1的点到取值为1的像素区域中心的归一化距离的均值与标准差;
步骤3.4、提取分区特征:将病灶及其周边区域分解为不同分区:病灶轮廓往内缩1/3,两层轮廓围成的区域即为“病灶内边缘1/3”分区;同理可得“病灶外边缘1/3”分区、“病灶中间”分区、“病灶核心”分区;不同分区内选取像素值的分位数,可获取诸多分区的特征。
所述的步骤4特征融合中,包含以下步骤:
步骤4.1、对于B型和弹性特征x和y,可以将它们表示成各自特征间的线性组合:
u=aTx,
v=bTy;
式中,u、v分别代表B型特征x和弹性特征y的线性组合,a、b分别表示权重;
步骤4.2、计算B型和弹性特征之间的Pearson相关系数:
式中,E[·]代表均值,Var[·]代表标准差;
步骤4.3、计算使Pearson相关系数最大时的u和v,即为一组典型变量;
步骤4.4、重复步骤5.3至求出所有的典型变量,组合成新的向量x’与y’;
步骤4.5、由x’与y’加权求和得到最终的融合向量z。
所述的步骤5特征学习中,利用预训练的受限玻尔兹曼机网络参数来初始化逐点门控玻尔兹曼机的网络节点。计算逐点门控玻尔兹曼机的能量:
式中,E(·)表示能量函数,v{0,1}表示可视节点,h{0,1}表示隐藏节点,zr{0,1}表示开关节点;分别表示权重,可视层偏置和隐藏层偏置;i,j,r分别表示第几个可视层节点、第几个隐藏层节点、任务相关的节点;
通过随机梯度下降法优化能量函数,寻找最优的参数。
所述的步骤6分类中,采用支持向量机的libsvm版,利用网格参数寻优法搜索最优参数。
所述的步骤7五折交叉验证中,所有样本平均分为五等份,取其中一份为测试集,剩余四份为训练集,执行步骤1至步骤6;重复五次,直至每份都获得测试结果,评估模型的准确性。
实施例三:
结合附图1,以跟腱超声双模态图像的病变与否分类为例,
步骤1、输入所有跟腱样本的B型超声图像和超声弹性图像;
步骤2、预处理双模态超声图像:
步骤3、利用计算机自动算法分别从B型超声图像和超声弹性图像的病灶中提取量化特征;;
步骤4、特征融合:通过典型相关分析,分别融合训练集和测试集的B型特征和弹性特征,得到融合特征的训练集和测试集;
步骤5、特征学习:利用逐点门控玻尔兹曼机对训练集和测试集的特征进行抽象表达,获取更高级的特征;
步骤6、分类:利用支持向量机在训练集中学习分类模型,在测试集中对学习的分类模型进行测试。
步骤7、利用五折交叉验证评估整个模型的准确性。
步骤2的预处理中,包括以下步骤:
步骤2.1、针对每幅超声弹性图像,减去对应的B型超声图像;
步骤2.2、针对每幅超声图像,通过医生手动勾勒跟腱边界,分割出完整的跟腱区域。
步骤3的特征提取中,包括以下步骤:
步骤3.1、提取一阶统计量特征包括:均值,中值,标准差,变异系数,偏度,亮度熵;
步骤3.2、提取灰度共生矩阵特征,包括对比度、能量、均一度和熵。针对每幅图片分别计算0°、90°、180°和270°四个方向的1-15像素偏移量的GLCM,然后对四个方向上的结果求均值,最终得到60个特征;
步骤3.3、提取二值图像特征包括:二值图中取1的像素占整个病灶面积的比值;中心偏离度,表示取值为1的像素到病灶中心的归一化平均距离;离散度与径向偏离度,分别表示像素值为1的点到取值为1的像素区域中心的归一化距离的均值与标准差;
步骤3.4、提取分区特征:将病灶及其周边区域分解为不同分区:病灶轮廓往内缩1/3,两层轮廓围成的区域即为“病灶内边缘1/3”分区;同理可得“病灶外边缘1/3”分区、“病灶中间”分区、“病灶核心”分区;不同分区内选取像素值的分位数,可获取诸多分区的特征。
步骤5的特征融合中,包含以下步骤:
步骤5.1、对于B型和弹性特征x和y,可以将它们表示成各自特征间的线性组合:
u=aTx,
v=bTy;
式中,u、v分别代表B型特征x和弹性特征y的线性组合,a、b分别表示权重;
步骤5.2、计算B型和弹性特征之间的Pearson相关系数:
式中,E[·]代表均值,Var[·]代表标准差;
步骤5.3、计算使Pearson相关系数最大时的u和v,即为一组典型变量;
步骤5.4、重复步骤5.3至求出所有的典型变量,组合成新的向量x’与y’;
步骤5.5、由x’与y’加权求和得到最终的融合向量z。
步骤6的特征学习中,利用预训练的受限玻尔兹曼机网络参数来初始化逐点门控玻尔兹曼机的网络节点。计算逐点门控玻尔兹曼机的能量
式中,E(·)表示能量函数,v{0,1}表示可视节点,h{0,1}表示隐藏节点,zr{0,1}表示开关节点;分别表示权重,可视层偏置和隐藏层偏置;i,j,r分别表示第几个可视层节点、第几个隐藏层节点、任务相关的节点;
通过随机梯度下降法优化能量函数,寻找最优的参数。
步骤6的分类中,采用支持向量机的libsvm版,利用网格参数寻优法搜索最优参数。
步骤7的五折交叉验证中,所有样本平均分为五等份,取其中一份为测试集,剩余四份为训练集,执行步骤1至步骤6;重复五次,直至每份都获得测试结果,评估跟腱分类的准确性。
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (7)

1.一种B型超声和超声弹性双模态超声图像的定量分析方法,其特征在于:包括以下步骤:
步骤1、输入B型超声图像的超声弹性图像;
步骤2、预处理:预处理双模态超声图像:
步骤3、特征提取:利用计算机自动算法分别从B型超声图像和超声弹性图像中提取量化特征;;
步骤4、特征融合:通过典型相关分析,分别融合B型特征和弹性特征;
步骤5、特征学习:利用逐点门控玻尔兹曼机对特征进行抽象表达,获取更高级的特征;
步骤6、分类:利用支持向量机对学习得到的特征进行分类;
步骤7、利用五折交叉验证评估整个模型的准确性。
2.根据权利要求1所述的一种基于B型超声和超声弹性双模态超声图像的定量分析方法,其特征在于:所述的步骤2预处理中,包括以下步骤:
步骤2.1、针对每幅超声弹性图像,减去对应的B型超声图像;
步骤2.2、针对每幅超声图像,通过医生手动勾勒病灶边界,分割出完整的病灶区域。
3.根据权利要求1所述的一种基于B型超声和超声弹性双模态超声图像的定量分析方法,其特征在于:所述的步骤3特征提取中,包括以下步骤:
步骤3.1、提取一阶统计量特征包括:均值,中值,标准差,变异系数,偏度,亮度熵;
步骤3.2、提取灰度共生矩阵特征,包括对比度、能量、均一度和熵;针对每幅图片分别计算0°、90°、180°和270°四个方向的1-15像素偏移量的GLCM,然后对四个方向上的结果求均值,最终得到60个特征;
步骤3.3、提取二值图像特征包括:二值图中取1的像素占整个病灶面积的比值;中心偏离度,表示取值为1的像素到病灶中心的归一化平均距离;离散度与径向偏离度,分别表示像素值为1的点到取值为1的像素区域中心的归一化距离的均值与标准差;
步骤3.4、提取分区特征:将病灶及其周边区域分解为不同分区:病灶轮廓往内缩1/3,两层轮廓围成的区域即为“病灶内边缘1/3”分区;同理可得“病灶外边缘1/3”分区、“病灶中间”分区、“病灶核心”分区;不同分区内选取像素值的分位数,可获取诸多分区的特征。
4.根据权利要求1所述的一种基于B型超声和超声弹性双模态超声图像的定量分析方法,其特征在于:所述的步骤4特征融合中,包含以下步骤:
步骤4.1、对于B型和弹性特征x和y,可以将它们表示成各自特征间的线性组合:
u=aTx,
v=bTy;
式中,u、v分别代表B型特征x和弹性特征y的线性组合,a、b分别表示权重;
步骤4.2、计算B型和弹性特征之间的Pearson相关系数:
式中,E[·]代表均值,Var[·]代表标准差;
步骤4.3、计算使Pearson相关系数最大时的u和v,即为一组典型变量;
步骤4.4、重复步骤5.3至求出所有的典型变量,组合成新的向量x’与y’;
步骤4.5、由x’与y’加权求和得到最终的融合向量z。
5.根据权利要求1所述的一种基于B型超声和超声弹性双模态超声图像的定量分析方法,其特征在于:所述的步骤5特征学习中,利用预训练的受限玻尔兹曼机网络参数来初始化逐点门控玻尔兹曼机的网络节点,计算逐点门控玻尔兹曼机的能量:
式中,E(·)表示能量函数,v{0,1}表示可视节点,h{0,1}表示隐藏节点,zr{0,1}表示开关节点;分别表示权重,可视层偏置和隐藏层偏置;i,j,r分别表示第几个可视层节点、第几个隐藏层节点、任务相关的节点;通过随机梯度下降法优化能量函数,寻找最优的参数。
6.根据权利要求1所述的一种基于B型超声和超声弹性双模态超声图像的定量分析方法,其特征在于:所述的步骤6分类中,采用支持向量机的libsvm版,利用网格参数寻优法搜索最优参数。
7.根据权利要求1所述的一种基于B型超声和超声弹性双模态超声图像的定量分析方法,其特征在于:所述的步骤7五折交叉验证中,所有样本平均分为五等份,取其中一份为测试集,剩余四份为训练集,执行步骤1至步骤6;重复五次,直至每份都获得测试结果,评估模型的准确性。
CN201810530320.6A 2018-05-29 2018-05-29 一种b型超声和超声弹性双模态图像的定量分析方法 Pending CN108764340A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810530320.6A CN108764340A (zh) 2018-05-29 2018-05-29 一种b型超声和超声弹性双模态图像的定量分析方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810530320.6A CN108764340A (zh) 2018-05-29 2018-05-29 一种b型超声和超声弹性双模态图像的定量分析方法

Publications (1)

Publication Number Publication Date
CN108764340A true CN108764340A (zh) 2018-11-06

Family

ID=64003309

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810530320.6A Pending CN108764340A (zh) 2018-05-29 2018-05-29 一种b型超声和超声弹性双模态图像的定量分析方法

Country Status (1)

Country Link
CN (1) CN108764340A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110930367A (zh) * 2019-10-31 2020-03-27 上海交通大学 多模态超声影像分类方法以及乳腺癌诊断装置
CN112288733A (zh) * 2020-11-06 2021-01-29 深圳先进技术研究院 一种肌肉超声图像检测方法、系统、终端以及存储介质
CN112465839A (zh) * 2020-12-10 2021-03-09 山东承势电子科技有限公司 一种基于数据增强的眼底图像病灶分割和定量分析方法
CN117672463A (zh) * 2024-02-02 2024-03-08 吉林大学 用于放射治疗的数据处理系统及方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103198322A (zh) * 2013-01-18 2013-07-10 江南大学 基于机器视觉的磁瓦表面缺陷特征提取及缺陷分类方法
CN103413548A (zh) * 2013-08-16 2013-11-27 中国科学技术大学 一种基于受限玻尔兹曼机的联合频谱建模的声音转换方法
CN104881685A (zh) * 2015-05-27 2015-09-02 清华大学 基于捷径深度神经网络的视频分类方法
JP2016022124A (ja) * 2014-07-18 2016-02-08 ジーイー・メディカル・システムズ・グローバル・テクノロジー・カンパニー・エルエルシー 超音波診断装置及びその制御プログラム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103198322A (zh) * 2013-01-18 2013-07-10 江南大学 基于机器视觉的磁瓦表面缺陷特征提取及缺陷分类方法
CN103413548A (zh) * 2013-08-16 2013-11-27 中国科学技术大学 一种基于受限玻尔兹曼机的联合频谱建模的声音转换方法
JP2016022124A (ja) * 2014-07-18 2016-02-08 ジーイー・メディカル・システムズ・グローバル・テクノロジー・カンパニー・エルエルシー 超音波診断装置及びその制御プログラム
CN104881685A (zh) * 2015-05-27 2015-09-02 清华大学 基于捷径深度神经网络的视频分类方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
KIHYUK SOHN ET AL: ""Learning and Selecting Features Jointly with Point-wise Gated Boltzmann Machines"", 《ICML》 *
NAN ZHANG ET AL: ""Research on Point-wise Gated Deep Networks"", 《APPLIED SOFT COMPUTING》 *
XIAOFENG YANG ET AL: ""Ultrasound GLCM texture analysis of radiation-induced parotid-gland injury in head-and-neck cancer radiotherapy: An in vivo study of late toxicity"", 《MEDICAL PHYSICS》 *
熊竞宇等: ""凭借弹性与B型双模态超声的前列腺癌辅助诊断"", 《自动化仪表》 *
邹建成等: "《数学及其在图像处理中的应用》", 31 March 2015 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110930367A (zh) * 2019-10-31 2020-03-27 上海交通大学 多模态超声影像分类方法以及乳腺癌诊断装置
CN110930367B (zh) * 2019-10-31 2022-12-20 上海交通大学 多模态超声影像分类方法以及乳腺癌诊断装置
CN112288733A (zh) * 2020-11-06 2021-01-29 深圳先进技术研究院 一种肌肉超声图像检测方法、系统、终端以及存储介质
WO2022095254A1 (zh) * 2020-11-06 2022-05-12 深圳先进技术研究院 一种肌肉超声图像检测方法、系统、终端以及存储介质
CN112465839A (zh) * 2020-12-10 2021-03-09 山东承势电子科技有限公司 一种基于数据增强的眼底图像病灶分割和定量分析方法
CN117672463A (zh) * 2024-02-02 2024-03-08 吉林大学 用于放射治疗的数据处理系统及方法
CN117672463B (zh) * 2024-02-02 2024-04-05 吉林大学 用于放射治疗的数据处理系统及方法

Similar Documents

Publication Publication Date Title
Mohammed et al. Neural network and multi-fractal dimension features for breast cancer classification from ultrasound images
CN108764340A (zh) 一种b型超声和超声弹性双模态图像的定量分析方法
Dheeba et al. Computer-aided detection of breast cancer on mammograms: A swarm intelligence optimized wavelet neural network approach
US10176408B2 (en) Systems and methods for analyzing pathologies utilizing quantitative imaging
CN102165454B (zh) 用于提高计算机辅助诊断对图像处理不确定性的鲁棒性的方法
US5732697A (en) Shift-invariant artificial neural network for computerized detection of clustered microcalcifications in mammography
He et al. A review on automatic mammographic density and parenchymal segmentation
Rani et al. Brain tumor detection and classification with feed forward back-prop neural network
CN113343755A (zh) 红细胞图像中的红细胞分类系统及方法
Tey et al. Automated quantification of renal interstitial fibrosis for computer-aided diagnosis: A comprehensive tissue structure segmentation method
Das et al. Digital image analysis of ultrasound images using machine learning to diagnose pediatric nonalcoholic fatty liver disease
Cheng et al. Quantitative evaluation of liver fibrosis based on ultrasound radio frequency signals: An animal experimental study
Fayyadh et al. Brain tumor detection and classifiaction using CNN algorithm and deep learning techniques
Cao et al. 3D convolutional neural networks fusion model for lung nodule detection onclinical CT scans
Tasnim et al. CAM-QUS guided self-tuning modular CNNs with multi-loss functions for fully automated breast lesion classification in ultrasound images
Sheha et al. Automated imaging system for pigmented skin lesion diagnosis
Sriwong et al. The Study of Noise Effect on CNN-Based Deep Learning from Medical Images
Rani Krithiga et al. A novel automated classification technique for diagnosing liver disorders using wavelet and texture features on liver ultrasound images
Govinda et al. Artificial neural networks in UWB image processing for early detection of breast cancer
Marcomini et al. Quantitative evaluation of automatic methods for lesions detection in breast ultrasound images
CN112634208A (zh) 基于深度学习的超声影像混合训练方法
Tardy et al. Breast density quantification using weakly annotated dataset
CN112132790A (zh) Dac-gan模型构建方法及在乳腺mr图像中的应用
Kore et al. A novel incomplete sparse least square optimized regression model for abdominal mass detection in ultrasound images
Paul et al. Experimental Analysis for Non-Alcoholic Fatty Liver Disease in Ultrasound Images Based on Efficient Net Classifier

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20181106

RJ01 Rejection of invention patent application after publication