CN108760217A - 一种基于分布式架构的风洞运行控制系统 - Google Patents

一种基于分布式架构的风洞运行控制系统 Download PDF

Info

Publication number
CN108760217A
CN108760217A CN201810398630.7A CN201810398630A CN108760217A CN 108760217 A CN108760217 A CN 108760217A CN 201810398630 A CN201810398630 A CN 201810398630A CN 108760217 A CN108760217 A CN 108760217A
Authority
CN
China
Prior art keywords
subsystem
control
primary heater
sequential
master
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810398630.7A
Other languages
English (en)
Other versions
CN108760217B (zh
Inventor
张凯
齐斌
宋文潇
田宁
邹样辉
赵玲
曹知红
岳晖
张利嵩
那伟
杨驰
李彦良
夏吝时
张昕
曹宇清
姜通
姜一通
李文浩
鲁宇
朱广生
李建林
孟刚
周岩
水涌涛
张岩
陈卫国
黄凯
王树信
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Academy of Launch Vehicle Technology CALT
Beijing Aerospace Changzheng Aircraft Institute
Original Assignee
China Academy of Launch Vehicle Technology CALT
Beijing Aerospace Changzheng Aircraft Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Academy of Launch Vehicle Technology CALT, Beijing Aerospace Changzheng Aircraft Institute filed Critical China Academy of Launch Vehicle Technology CALT
Priority to CN201810398630.7A priority Critical patent/CN108760217B/zh
Publication of CN108760217A publication Critical patent/CN108760217A/zh
Application granted granted Critical
Publication of CN108760217B publication Critical patent/CN108760217B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M9/00Aerodynamic testing; Arrangements in or on wind tunnels
    • G01M9/02Wind tunnels
    • G01M9/04Details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M9/00Aerodynamic testing; Arrangements in or on wind tunnels
    • G01M9/06Measuring arrangements specially adapted for aerodynamic testing
    • G01M9/065Measuring arrangements specially adapted for aerodynamic testing dealing with flow
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/418Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM]
    • G05B19/4183Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM] characterised by data acquisition, e.g. workpiece identification
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D27/00Simultaneous control of variables covered by two or more of main groups G05D1/00 - G05D25/00
    • G05D27/02Simultaneous control of variables covered by two or more of main groups G05D1/00 - G05D25/00 characterised by the use of electric means
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/20Pc systems
    • G05B2219/25Pc structure of the system
    • G05B2219/25232DCS, distributed control system, decentralised control unit

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Fluid Mechanics (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Quality & Reliability (AREA)
  • Testing And Monitoring For Control Systems (AREA)
  • Feedback Control In General (AREA)

Abstract

本发明公开了一种基于分布式架构的风洞运行控制系统,属于航天地面防隔热试验技术领域,用于控制燃气流热风洞试验系统的各个部分,实现航天器防热结构件的热考核。本发明应用了分布式的控制架构,风洞的各控制子系统具有独立的控制器,对相应设备进行运行控制,并通过顶层总控指挥调度子系统实现整体动作的协调配合,保证了整个风洞系统能够协调有序动作,为风洞系统的稳定运行提供了软硬件支撑,为设备的状态监控和时序控制提供了技术保障。

Description

一种基于分布式架构的风洞运行控制系统
技术领域
本发明涉及一种基于分布式架构的风洞运行控制系统,用于控制燃气流热风洞试验系统的各个部分,实现航天器防热结构件的热考核,属于航天地面防隔热试验技术领域。
背景技术
燃气流试验是防热系统地面考核的关键环节,它具有能量密度高、总温高、热环境恶劣的特点,是防热材料及结构热考核不可替代的试验手段。而大尺寸的防热结构试件考核需要依托于燃气流超音速风洞进行,它有别于常规的常温气动试验风洞,它是通过燃料和氧化剂在燃烧室充分混合燃烧,通过拉沃尔喷管的膨胀加速作用,产生高温超音速燃气气流,对试验舱内的试验件进行热考核,并通过相应的引射或抽真空装置将考核后的高温高压气体增压降温排入大气。
燃气流超音速风洞是利用氧气和煤油燃烧产生高温、高速、低压试验环境的热结构考核用试验风洞,主要由主加热器、主试验台、喷水降温装置、喷淋冷凝装置、大流量抽真空装置、配套能源管路和测控系统几部分组成。它主要承担着高超声速飞行器再入机动过程中防隔热技术的地面试验研究。该燃气流超音速风洞系统环节众多,产生的高温高压试验环境极为恶劣,对于各组成部分的协同配合和时序控制要求极为苛刻,稍有差池就可能造成设备的烧毁,影响试验的成败。传统风洞系统缺少统一的管理机制,各组成部分功能相对独立,不能实现高要求的时序控制和协同配合。
因此,如何实现燃气流超音速风洞各组成部分之间的协同配合,保证各组成部分之间的时序动作逻辑精确可靠以及稳定运行就成为整个系统设计的核心和关键。
发明内容
本发明的技术解决问题是:克服现有技术的不足,提供一种基于分布式架构的风洞运行控制系统,实现燃气流超音速风洞各组成部分的时序控制和协同配合,保证各组成部分之间的时序动作逻辑精确可靠以及稳定运行。
本发明的技术解决方案是:一种基于分布式架构的风洞运行控制系统,包括总控指挥调度子系统、燃气主加热器时序控制子系统、喷淋冷凝抽真空控制子系统和主试验台控制子系统;
在试验运行阶段,总控指挥调度子系统根据预先设计的时序向喷淋冷凝抽真空控制子系统、主试验台控制子系统、燃气主加热器时序控制子系统发送时序触发信号,并接收各个子系统反馈的时序动作状态;
燃气主加热器时序控制子系统接收总控指挥调度子系统的时序触发信号,按照预先设定的时序控制主加热器燃料路、氧路和高压冷却水路中各个阀门的开关,并根据阀门动作完成情况向总控指挥调度子系统反馈时序动作状态;
喷淋冷凝抽真空控制子系统接收总控指挥调度子系统的时序触发信号,
按照预先设定的时序控制各个阀门的开关,依次实现冷凝水供应、喷淋水供应和大流量真空切换,并将时序动作完成状态反馈给总控指挥调度子系统;
主试验台控制子系统接收总控指挥调度子系统的时序触发信号,按照预先设定的时序控制试验舱和扩压器夹套冷却水路中各个时序阀门的开关,并将时序动作状态反馈给总控指挥调度子系统。
还包括燃气主加热器工况调节子系统、常温水供应控制子系统和气源供应控制子系统;
在试验准备阶段,总控指挥调度子系统根据预先设计的调度流程向常温水供应控制子系统、气源供应控制子系统、喷淋冷凝抽真空控制子系统、燃气主加热器工况调节子系统发送调度指令,接收各个子系统反馈的完成状态;
燃气主加热器工况调节子系统接收总控指挥调度子系统的调度指令,完成主加热器燃料路、氧路和高压冷却水路的管路压力调节,并向总控指挥调度子系统反馈完成状态;
喷淋冷凝抽真空控制子系统接收总控指挥调度子系统的调度指令,完成柴油机水环泵启动、柴油机水泵启动和阀门开启工作,向总控指挥调度子系统反馈完成状态;
常温水供应控制子系统接收总控指挥调度子系统的调度指令,控制电力水泵连续抽取常温水罐内的水源提供给风洞中的水冷设备,并向总控指挥调度子系统反馈完成状态;
气源供应控制子系统接收总控指挥调度子系统的调度指令,为风洞中的燃气主加热器提供氧气和氮气,向总控指挥调度子系统反馈完成状态。
所述总控指挥调度子系统向气源供应控制子系统发送的调度指令包括氮气供应调度指令和氧气供应调度指令;所述总控指挥调度子系统向燃气主加热器工况调节子系统发送的调度指令包括氮气管路调节调度指令和氧气管路调节调度指令。
所述总控指挥调度子系统预先设计的调度流程如下:
(4.1)向气源供应控制子系统发送氮气供应调度指令;
(4.2)当接收到气源供应控制子系统反馈的完成状态后,向喷淋冷凝抽真空控制子系统发送调度指令,向燃气主加热器工况调节子系统发送氮气管路调节调度指令;
(4.3)当接收到喷淋冷凝抽真空控制子系统、燃气主加热器工况调节子系统反馈的完成状态后,向常温水供应控制子系统发送调度指令;
(4.4)当接收到常温水供应控制子系统反馈的完成状态后,向气源供应控制子系统发送氧气供应调度指令;
(4.5)当接收到气源供应控制子系统反馈的完成状态后,向燃气主加热器工况调节子系统发送氧气管路调节调度指令。
所述总控指挥调度子系统预先设计的时序如下:
(5.1)向喷淋冷凝抽真空控制子系统发送冷凝水供应开启的时序触发信号;
(5.2)向主试验台控制子系统发送试验舱和扩压器夹套冷却水路开启的时序触发信号;
(5.3)向喷淋冷凝抽真空控制子系统发送喷淋水供应开启的时序触发信号;
(5.4)当接收到喷淋冷凝抽真空控制子系统和主试验台控制子系统反馈的上述时序动作完成状态后,向燃气主加热器时序控制子系统发送点火启动时序触发信号;
(5.5)当接收到燃气主加热器时序控制子系统反馈的时序动作完成状态后,认为点火成功,否则点火不成功,进入步骤(5.6);点火成功后向喷淋冷凝抽真空控制子系统发送大流量真空切换时序触发信号,进入步骤(5.6);
(5.6)当到达预先设定的试验时间后,依次向燃气主加热器时序控制子系统发送熄火关闭时序触发信号、喷淋冷凝抽真空控制子系统发送喷淋水供应关闭的时序触发信号、向主试验台控制子系统发送试验舱和扩压器夹套冷却水路关闭的时序触发信号、向喷淋冷凝抽真空控制子系统发送冷凝水供应关闭的时序触发信号。
所述总控指挥调度子系统包括总控上位机单元和主控PLC控制单元,总控上位机单元和主控PLC控制单元通过OPC方式实现数据交互;
总控上位机单元:存储预先设计的调度流程,在试验准备阶段,根据所述调度流程发送调度指令,并接收各个子系统反馈的完成状态;提供人机交互界面,供操作人员修改时序配置参数,并下发至PLC控制单元;访问PLC控制单元向其他控制分系统发出的时序触发信号的状态,在人机交互界面上进行时序流程触发进程显示;
主控PLC控制单元:存储预先设计的时序,在试验运行阶段,根据所述时序发送时序触发信号,接收各个子系统反馈的时序动作完成状态。
所述燃气主加热器工况调节系统包括主加热器上位机单元和主加热器PLC控制单元,主加热器PLC控制单元通过工业以太网实现与主加热器上位机单元之间的网络连接;
主加热器上位机单元:接收总控指挥调度子系统的调度指令,并将其分解成一系列气动阀阀门动作指令和减压阀阀门动作指令,下发至主加热器PLC控制单元;接收主加热器PLC控制单元反馈的管路压力、流量和温度,当所述管路压力达到预设值后,向总控指挥调度子系统反馈完成状态;
主加热器PLC控制单元:根据气动阀阀门动作指令,实现对燃气主加热器燃料路、氧路、高压冷却水路气动阀单元的开关控制;根据减压阀阀门动作指令,实现对主加热器燃料路、氧路、高压冷却水路电子比例减压阀单元的减压后压力调节;对管路压力、流量和温度进行实时采集,并反馈给主加热器上位机单元。
所述主加热器PLC控制单元包括主程序模块、气动阀控制功能模块、减压阀控制功能模块和传感器信息采集功能模块;
主程序模块:以一定的扫描周期循环执行,在接收到主加热器上位机单元下发的气动阀阀门动作指令时,调用气动阀控制功能模块;接收到主加热器上位机单元下发的减压阀阀门动作指令时,调用减压阀控制功能模块;
气动阀控制功能模块:根据气动阀阀门动作指令,通过驱动数字量输出模块和继电器,实现对燃气主加热器燃料路、氧路、高压冷却水路气动阀单元的开关控制;
减压阀控制功能模块:根据减压阀阀门动作指令,通过驱动模拟量输出模块,实现对主加热器燃料路、氧路、高压冷却水路电子比例减压阀单元的减压后压力调节;
传感器信息采集功能模块:通过驱动模拟量输入模块实现对管路压力、流量和温度的实时采集,并反馈给主加热器上位机单元。
所述燃气主加热器时序控制系统包括主加热器时序上位机单元和NI cRIO控制单元,主加热器时序上位机单元和NI cRIO控制单元通过工业以太网进行连接;
主加热器时序上位机单元:提供人机交互界面,操作人员通过人机交互界面能够进行时序参数配置,并将配置好的时序参数下发至NI cRIO控制单元;实时显示主加热器燃料路、氧路和高压冷却水路中各个气动阀阀门动作情况以及燃烧室压力;
NI cRIO控制单元:接收总控指挥调度子系统的时序触发信号,按照预先设定的时序以及主加热器时序上位机单元发送的时序参数,控制主加热器燃料路、氧路和高压冷却水路中各个气动阀阀门动作,并采集燃烧室压力,发送给主加热器时序上位机单元;当燃烧室压力达到预设值后,向总控指挥调度子系统反馈时序动作完成状态;当燃烧室压力超出预设值后,紧急停车。
与现有技术相比,本发明具有如下有益效果:
(1)本发明采用分布式的控制架构,各控制子系统功能独立,通过顶层的总控指挥调度系统协调串联各控制子系统,解决了燃气流超音速风洞各组成部分配合关系复杂、接口协调的难题,实现了各组成部分的时序控制和协同配合,保证各组成部分之间的时序动作逻辑精确可靠。
(2)本发明将燃气流超音速风洞运行阶段具体阀门设备的控制功能分散到各个控制子系统中,有效降低了总控指挥调度系统的控制压力,提高了控制效率。
(3)各控制子系统均是基于独立的实时控制器(PLC控制单元或NI cRIO控制单元)运行,提高了控制动作执行的可靠性和准确性。
(4)实现风洞系统各组成部分设备的就近实时控制,减少了信号的长距离传输,降低了布线成本,同时提高了控制的可靠性。
附图说明
图1为本发明系统组成框图;
图2为总控指挥调度子系统预先设计的调度流程图;
图3为总控指挥调度子系统预先设计的时序图。
具体实施方式
本发明基于分布式架构的风洞运行控制系统组成如图1所示,包括总控指挥调度子系统、燃气主加热器工况调节子系统、燃气主加热器时序控制子系统、喷淋冷凝抽真空控制子系统、主试验台控制子系统、常温水供应控制子系统和气源供应控制子系统。
燃气主加热器工况调节子系统:在试验准备阶段接收总控指挥调度子系统的调度指令,完成主加热器燃料路、氧路和高压冷却水路的管路压力调节,并向总控指挥调度子系统反馈完成状态。
燃气主加热器工况调节系统包括主加热器上位机单元和主加热器PLC控制单元,主加热器PLC控制单元通过工业以太网实现与主加热器上位机单元之间的网络连接。
主加热器上位机单元以工控机为载体,采用LabVIEW软件实现人机交互界面的设计,并通过OPC通信协议实现与主加热器PLC控制单元的数据交互。主加热器上位机单元接收总控指挥调度子系统的调度指令,并将其分解成一系列气动阀阀门动作指令和减压阀阀门动作指令,下发至主加热器PLC控制单元;接收主加热器PLC控制单元反馈的管路压力、流量和温度,以及阀门开关到位状态,当所述管路压力达到预设值后,向总控指挥调度子系统反馈完成状态。
主加热器PLC控制单元由主程序模块、气动阀控制功能模块、减压阀控制功能模块、传感器信息采集功能模块组成,主程序模块以一定的扫描周期循环执行,并调用其他功能模块。气动阀控制功能模块通过驱动数字量输出模块和输入模块,实现对燃气主加热器燃料路、氧路、高压冷却水路气动阀单元的开关控制和阀门开关到位状态的反馈采集,并将阀门开关状态反馈给主加热器上位机单元。减压阀控制功能模块通过驱动模拟量输出模块实现对主加热器燃料路、氧路、高压冷却水路电子比例减压阀单元的减压后压力控制。传感器信息采集功能模块通过驱动模拟量输入模块实现对管路压力、流量和温度的实时采集和报警指示,并将采集值反馈给主加热器上位机单元。
燃气主加热器时序控制子系统在试验运行阶段接收总控指挥调度子系统的时序触发信号,按照预先设定的时序控制主加热器燃料路、氧路和高压冷却水路中各个阀门的开关,并根据阀门动作完成情况向总控指挥调度子系统反馈时序动作状态(主加热器点火成功信号和运行结束信号)。
燃气主加热器时序控制子系统包括主加热器时序上位机单元、NI cRIO控制单元。
主加热器时序上位机单元以工控机为载体,采用LabVIEW软件进行开发,与NIcRIO控制单元之间通过工业以太网进行连接,具有时序参数配置、时序实时显示等功能模块,时序参数配置模块主要用于实现燃气主加热器时序流程参数的设置、配置文件的生成与下载到cRIO控制单元中,时序实时显示模块主要用于实现时序运行状态的实时显示(主加热器燃料路、氧路和高压冷却水路中各个气动阀阀门动作情况以及燃烧室压力),便于人员了解时序的进行程度。
NI cRIO控制单元以美国NI公司的CompactRIO为载体,采用LabVIEW RT和LabVIEWFPGA分别对实时控制器和FPGA背板进行程序设计,包括时序控制模块和异常状况判断处理模块,其中时序控制模块在接收到总控指挥调度子系统时序触发信号以后在背板的FPGA芯片中按照设置的时序和时序参数驱动主加热器燃料路、氧路和高压冷却水路时序阀门进行开关动作。异常状况判断处理模块通过传感器单元实现对燃烧室压力等关键传感器数据的采集,发送给主加热器时序上位机单元;当燃烧室压力达到预设值后,向总控指挥调度子系统反馈时序动作完成状态,当燃烧室压力超出预设值后,按照设定的紧急停车流程驱动对应时序阀门进行开关动作。
喷淋冷凝抽真空控制子系统:在试验准备阶段接收总控指挥调度子系统的调度指令,完成柴油机水环泵启动、柴油机水泵启动和阀门开启工作,向总控指挥调度子系统反馈完成状态;在试验运行阶段,接收总控指挥调度子系统的时序触发信号,按照预先设定的时序控制各个阀门的开关,依次实现冷凝水供应、喷淋水供应和大流量真空切换,根据阀门完成状态和压力、流量等传感器数据综合判断时序动作完成状态,并将时序动作完成状态反馈给总控指挥调度子系统。
喷淋冷凝抽真空控制子系统包括喷淋冷凝上位机单元、喷淋冷凝PLC主站单元、喷淋冷凝PLC从站单元。
喷淋冷凝上位机单元以工控机为载体,采用LabVIEW软件实现人机交互界面的设计,并通过OPC通信协议实现与喷淋冷凝PLC主站单元的数据交互。喷淋冷凝上位机单元主要实现现场设备的远程控制与操作、数据的显示和存储,以及接收上层总控指挥调度系统的指令进行相应的动作,并向其反馈动作完成情况。
喷淋冷凝PLC主站单元通过工业以太网实现与喷淋冷凝上位机单元之间的网络连接通信,通过DP总线实现与喷淋冷凝PLC从站单元之间的连接通信。试验准备阶段和运行阶段直接驱动管路阀门进行开关动作,并通过给喷淋冷凝PLC从站单元下达控制指令间接控制柴油机运行,同时实时采集管路压力、流量等传感器数据,据此判断动作完成状态,并将动作完成状态反馈给总控指挥调度子系统。
每个柴油机水环泵单元和柴油机水泵单元都相应配有一个喷淋冷凝PLC从站单元,通过Profibus总线协议与喷淋冷凝PLC主站单元进行通信,接收喷淋冷凝PLC主站单元的指令,在试验准备阶段对柴油机进行控制,完成柴油机水环泵启动和柴油机水泵启动工作,同时向喷淋冷凝PLC主站单元反馈柴油机的工作状态。
主试验台控制子系统:在试验运行阶段接收总控指挥调度子系统的时序触发信号,按照预先设定的时序控制试验舱和扩压器夹套冷却水路中各个时序阀门的开关,并根据阀门动作完成情况和管路压力、流量等传感器数据综合判断将时序动作状态反馈给总控指挥调度子系统。
主试验台控制子系统包括主试验台上位机单元和主试验台PLC控制单元。
主试验台上位机单元以工控机为载体,采用LabVIEW软件实现人机交互界面的设计,并通过OPC通信协议实现与主试验台PLC控制单元的数据交互。主试验台上位机单元主要实现现场设备的远程控制与操作、数据的显示和存储,以及接收上层总控指挥调度系统的指令进行相应的动作,并向其反馈动作完成情况。
主试验台PLC控制单元通过工业以太网实现与主试验台上位机单元之间的网络连接,控制程序主要由主程序模块、气动阀控制功能模块、时序阀门联动功能模块、传感器信息采集功能模块组成,通过主程序模块调用气动阀控制功能模块和时序阀门联动功能模块实现对试验舱和扩压器夹套冷却水路中各个时序阀门的单点控制和时序联动控制,并且通过传感器信息采集功能模块实现对管路压力、流量、温度等数据的实时采集和存储。
常温水供应控制子系统主要是在试验准备阶段接收总控指挥调度子系统的调度指令,通过控制三台电力水泵连续抽取常温水罐内的水源,为下游主试验台等水冷设备提供一定压力和流量的水量,并向总控指挥调度子系统反馈完成状态。
气源供应控制子系统主要是在试验准备阶段接收总控指挥调度子系统的调度指令,为风洞中的燃气主加热器提供氧气和氮气,向总控指挥调度子系统反馈完成状态。
总控指挥调度子系统:在试验准备阶段,根据预先设计的调度流程向常温水供应控制子系统、气源供应控制子系统、喷淋冷凝抽真空控制子系统、燃气主加热器工况调节子系统发送调度指令,接收各个子系统反馈的完成状态;在试验运行阶段,根据预先设计的时序向喷淋冷凝抽真空控制子系统、主试验台控制子系统、燃气主加热器时序控制子系统发送时序触发信号,并接收各个子系统反馈的时序动作状态。向气源供应控制子系统发送的调度指令包括氮气供应调度指令和氧气供应调度指令;总控指挥调度子系统向燃气主加热器工况调节子系统发送的调度指令包括氮气管路调节调度指令和氧气管路调节调度指令。
总控指挥调度子系统主要由总控上位机单元和主控PLC控制单元组成。
总控上位机单元以工控机为载体,采用LabVIEW软件实现人机交互界面的设计,并通过OPC方式实现与主控PLC控制单元的数据交互。存储预先设计的调度流程,在试验准备阶段,根据所述调度流程发送调度指令,并接收各个子系统反馈的完成状态;提供人机交互界面,供操作人员修改时序配置参数,并下发至主控PLC控制单元;访问主控PLC控制单元向其他控制分系统发出的时序触发信号的状态,在人机交互界面上进行时序流程触发进程显示;
主控PLC控制单元存储预先设计的时序,在试验运行阶段,根据所述时序发送时序触发信号,接收各个子系统反馈的时序动作完成状态。
如图2所示,风洞系统准备阶段,预先设计的调度流程如下:
(4.1)向气源供应控制子系统发送氮气供应调度指令;
(4.2)当接收到气源供应控制子系统反馈的完成状态后,向喷淋冷凝抽真空控制子系统发送调度指令,向燃气主加热器工况调节子系统发送氮气管路调节调度指令;
(4.3)当接收到喷淋冷凝抽真空控制子系统、燃气主加热器工况调节子系统反馈的完成状态后,向常温水供应控制子系统发送调度指令;
(4.4)当接收到常温水供应控制子系统反馈的完成状态后,向气源供应控制子系统发送氧气供应调度指令;
(4.5)当接收到气源供应控制子系统反馈的完成状态后,向燃气主加热器工况调节子系统发送氧气管路调节调度指令。
如图3所示,预先设计的时序如下:
(5.1)向喷淋冷凝抽真空控制子系统发送冷凝水供应开启的时序触发信号;
(5.2)向主试验台控制子系统发送试验舱和扩压器夹套冷却水路开启的时序触发信号;
(5.3)向喷淋冷凝抽真空控制子系统发送喷淋水供应开启的时序触发信号;
(5.4)当接收到喷淋冷凝抽真空控制子系统和主试验台控制子系统反馈的上述时序动作完成状态后,向燃气主加热器时序控制子系统发送点火启动时序触发信号;
(5.5)当接收到燃气主加热器时序控制子系统反馈的时序动作完成状态后,认为点火成功,否则点火不成功,进入步骤(5.6);点火成功后向喷淋冷凝抽真空控制子系统发送大流量真空切换时序触发信号,进入步骤(5.6);
(5.6)当到达预先设定的试验时间后,依次向燃气主加热器时序控制子系统发送熄火关闭时序触发信号、喷淋冷凝抽真空控制子系统发送喷淋水供应关闭的时序触发信号、向主试验台控制子系统发送试验舱和扩压器夹套冷却水路关闭的时序触发信号、向喷淋冷凝抽真空控制子系统发送冷凝水供应关闭的时序触发信号。
本发明中时序触发信号传递是通过相应的数字量输出模块+固态继电器的驱动方式,通过硬线连接传递触发信号,触发各子系统相应功能模块工作,自动控制相应时序阀门动作。
本发明说明书中未作详细描述的内容属本领域技术人员的公知技术。

Claims (9)

1.一种基于分布式架构的风洞运行控制系统,其特征在于:包括总控指挥调度子系统、燃气主加热器时序控制子系统、喷淋冷凝抽真空控制子系统和主试验台控制子系统;
在试验运行阶段,总控指挥调度子系统根据预先设计的时序向喷淋冷凝抽真空控制子系统、主试验台控制子系统、燃气主加热器时序控制子系统发送时序触发信号,并接收各个子系统反馈的时序动作状态;
燃气主加热器时序控制子系统接收总控指挥调度子系统的时序触发信号,按照预先设定的时序控制主加热器燃料路、氧路和高压冷却水路中各个阀门的开关,并根据阀门动作完成情况向总控指挥调度子系统反馈时序动作状态;
喷淋冷凝抽真空控制子系统接收总控指挥调度子系统的时序触发信号,按照预先设定的时序控制各个阀门的开关,依次实现冷凝水供应、喷淋水供应和大流量真空切换,并将时序动作完成状态反馈给总控指挥调度子系统;
主试验台控制子系统接收总控指挥调度子系统的时序触发信号,按照预先设定的时序控制试验舱和扩压器夹套冷却水路中各个时序阀门的开关,并将时序动作状态反馈给总控指挥调度子系统。
2.根据权利要求1所述的一种基于分布式架构的风洞运行控制系统,其特征在于:还包括燃气主加热器工况调节子系统、常温水供应控制子系统和气源供应控制子系统;
在试验准备阶段,总控指挥调度子系统根据预先设计的调度流程向常温水供应控制子系统、气源供应控制子系统、喷淋冷凝抽真空控制子系统、燃气主加热器工况调节子系统发送调度指令,接收各个子系统反馈的完成状态;
燃气主加热器工况调节子系统接收总控指挥调度子系统的调度指令,完成主加热器燃料路、氧路和高压冷却水路的管路压力调节,并向总控指挥调度子系统反馈完成状态;
喷淋冷凝抽真空控制子系统接收总控指挥调度子系统的调度指令,完成柴油机水环泵启动、柴油机水泵启动和阀门开启工作,向总控指挥调度子系统反馈完成状态;
常温水供应控制子系统接收总控指挥调度子系统的调度指令,控制电力水泵连续抽取常温水罐内的水源提供给风洞中的水冷设备,并向总控指挥调度子系统反馈完成状态;
气源供应控制子系统接收总控指挥调度子系统的调度指令,为风洞中的燃气主加热器提供氧气和氮气,向总控指挥调度子系统反馈完成状态。
3.根据权利要求2所述的一种基于分布式架构的风洞运行控制系统,其特征在于:所述总控指挥调度子系统向气源供应控制子系统发送的调度指令包括氮气供应调度指令和氧气供应调度指令;所述总控指挥调度子系统向燃气主加热器工况调节子系统发送的调度指令包括氮气管路调节调度指令和氧气管路调节调度指令。
4.根据权利要求3所述的一种基于分布式架构的风洞运行控制系统,其特征在于:所述总控指挥调度子系统预先设计的调度流程如下:
(4.1)向气源供应控制子系统发送氮气供应调度指令;
(4.2)当接收到气源供应控制子系统反馈的完成状态后,向喷淋冷凝抽真空控制子系统发送调度指令,向燃气主加热器工况调节子系统发送氮气管路调节调度指令;
(4.3)当接收到喷淋冷凝抽真空控制子系统、燃气主加热器工况调节子系统反馈的完成状态后,向常温水供应控制子系统发送调度指令;
(4.4)当接收到常温水供应控制子系统反馈的完成状态后,向气源供应控制子系统发送氧气供应调度指令;
(4.5)当接收到气源供应控制子系统反馈的完成状态后,向燃气主加热器工况调节子系统发送氧气管路调节调度指令。
5.根据权利要求1所述的一种基于分布式架构的风洞运行控制系统,其特征在于:所述总控指挥调度子系统预先设计的时序如下:
(5.1)向喷淋冷凝抽真空控制子系统发送冷凝水供应开启的时序触发信号;
(5.2)向主试验台控制子系统发送试验舱和扩压器夹套冷却水路开启的时序触发信号;
(5.3)向喷淋冷凝抽真空控制子系统发送喷淋水供应开启的时序触发信号;
(5.4)当接收到喷淋冷凝抽真空控制子系统和主试验台控制子系统反馈的上述时序动作完成状态后,向燃气主加热器时序控制子系统发送点火启动时序触发信号;
(5.5)当接收到燃气主加热器时序控制子系统反馈的时序动作完成状态后,认为点火成功,否则点火不成功,进入步骤(5.6);点火成功后向喷淋冷凝抽真空控制子系统发送大流量真空切换时序触发信号,进入步骤(5.6);
(5.6)当到达预先设定的试验时间后,依次向燃气主加热器时序控制子系统发送熄火关闭时序触发信号、喷淋冷凝抽真空控制子系统发送喷淋水供应关闭的时序触发信号、向主试验台控制子系统发送试验舱和扩压器夹套冷却水路关闭的时序触发信号、向喷淋冷凝抽真空控制子系统发送冷凝水供应关闭的时序触发信号。
6.根据权利要求2所述的一种基于分布式架构的风洞运行控制系统,其特征在于:所述总控指挥调度子系统包括总控上位机单元和主控PLC控制单元,总控上位机单元和主控PLC控制单元通过OPC方式实现数据交互;
总控上位机单元:存储预先设计的调度流程,在试验准备阶段,根据所述调度流程发送调度指令,并接收各个子系统反馈的完成状态;提供人机交互界面,供操作人员修改时序配置参数,并下发至PLC控制单元;访问PLC控制单元向其他控制分系统发出的时序触发信号的状态,在人机交互界面上进行时序流程触发进程显示;
主控PLC控制单元:存储预先设计的时序,在试验运行阶段,根据所述时序发送时序触发信号,接收各个子系统反馈的时序动作完成状态。
7.根据权利要求2所述的一种基于分布式架构的风洞运行控制系统,其特征在于:所述燃气主加热器工况调节系统包括主加热器上位机单元和主加热器PLC控制单元,主加热器PLC控制单元通过工业以太网实现与主加热器上位机单元之间的网络连接;
主加热器上位机单元:接收总控指挥调度子系统的调度指令,并将其分解成一系列气动阀阀门动作指令和减压阀阀门动作指令,下发至主加热器PLC控制单元;接收主加热器PLC控制单元反馈的管路压力、流量和温度,当所述管路压力达到预设值后,向总控指挥调度子系统反馈完成状态;
主加热器PLC控制单元:根据气动阀阀门动作指令,实现对燃气主加热器燃料路、氧路、高压冷却水路气动阀单元的开关控制;根据减压阀阀门动作指令,实现对主加热器燃料路、氧路、高压冷却水路电子比例减压阀单元的减压后压力调节;对管路压力、流量和温度进行实时采集,并反馈给主加热器上位机单元。
8.根据权利要求7所述的一种基于分布式架构的风洞运行控制系统,其特征在于:所述主加热器PLC控制单元包括主程序模块、气动阀控制功能模块、减压阀控制功能模块和传感器信息采集功能模块;
主程序模块:以一定的扫描周期循环执行,在接收到主加热器上位机单元下发的气动阀阀门动作指令时,调用气动阀控制功能模块;接收到主加热器上位机单元下发的减压阀阀门动作指令时,调用减压阀控制功能模块;
气动阀控制功能模块:根据气动阀阀门动作指令,通过驱动数字量输出模块和继电器,实现对燃气主加热器燃料路、氧路、高压冷却水路气动阀单元的开关控制;
减压阀控制功能模块:根据减压阀阀门动作指令,通过驱动模拟量输出模块,实现对主加热器燃料路、氧路、高压冷却水路电子比例减压阀单元的减压后压力调节;
传感器信息采集功能模块:通过驱动模拟量输入模块实现对管路压力、流量和温度的实时采集,并反馈给主加热器上位机单元。
9.根据权利要求1所述的一种基于分布式架构的风洞运行控制系统,其特征在于:所述燃气主加热器时序控制系统包括主加热器时序上位机单元和NI cRIO控制单元,主加热器时序上位机单元和NI cRIO控制单元通过工业以太网进行连接;
主加热器时序上位机单元:提供人机交互界面,操作人员通过人机交互界面能够进行时序参数配置,并将配置好的时序参数下发至NI cRIO控制单元;实时显示主加热器燃料路、氧路和高压冷却水路中各个气动阀阀门动作情况以及燃烧室压力;
NI cRIO控制单元:接收总控指挥调度子系统的时序触发信号,按照预先设定的时序以及主加热器时序上位机单元发送的时序参数,控制主加热器燃料路、氧路和高压冷却水路中各个气动阀阀门动作,并采集燃烧室压力,发送给主加热器时序上位机单元;当燃烧室压力达到预设值后,向总控指挥调度子系统反馈时序动作完成状态;当燃烧室压力超出预设值后,紧急停车。
CN201810398630.7A 2018-04-28 2018-04-28 一种基于分布式架构的风洞运行控制系统 Active CN108760217B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810398630.7A CN108760217B (zh) 2018-04-28 2018-04-28 一种基于分布式架构的风洞运行控制系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810398630.7A CN108760217B (zh) 2018-04-28 2018-04-28 一种基于分布式架构的风洞运行控制系统

Publications (2)

Publication Number Publication Date
CN108760217A true CN108760217A (zh) 2018-11-06
CN108760217B CN108760217B (zh) 2020-03-24

Family

ID=64012287

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810398630.7A Active CN108760217B (zh) 2018-04-28 2018-04-28 一种基于分布式架构的风洞运行控制系统

Country Status (1)

Country Link
CN (1) CN108760217B (zh)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109870985A (zh) * 2019-01-29 2019-06-11 迈克医疗电子有限公司 一种调度系统及其控制方法
CN111056193A (zh) * 2019-11-27 2020-04-24 山西航天清华装备有限责任公司 一种引导搬运运输车车箱的垃圾收集方法及其控制系统
CN111158302A (zh) * 2019-12-30 2020-05-15 中国航天空气动力技术研究院 一种控制风洞运行的控制系统、方法及装置
CN111737886A (zh) * 2020-08-07 2020-10-02 中国空气动力研究与发展中心低速空气动力研究所 一种风洞试验调度方法及系统
CN111738627A (zh) * 2020-08-07 2020-10-02 中国空气动力研究与发展中心低速空气动力研究所 一种基于深度强化学习的风洞试验调度方法及系统
CN112067227A (zh) * 2020-07-30 2020-12-11 中国航天空气动力技术研究院 一种汽车环境风洞怠速模拟控制系统
CN112069446A (zh) * 2020-08-28 2020-12-11 中国空气动力研究与发展中心计算空气动力研究所 一种风洞群高压空气资源调度方法及系统
CN112326726A (zh) * 2020-10-30 2021-02-05 北京临近空间飞行器系统工程研究所 一种树脂基复合材料热解引射因子测试装置及方法
CN112484953A (zh) * 2019-09-12 2021-03-12 恒菱机电科技(苏州)有限公司 一种电弧风洞流量调节控制系统
CN112578760A (zh) * 2020-12-30 2021-03-30 中国航天空气动力技术研究院 一种汽车环境风洞试验运行控制系统
CN112729750A (zh) * 2020-12-22 2021-04-30 中国空气动力研究与发展中心超高速空气动力研究所 一种三支路串联式高超声速风洞总体结构
CN114509231A (zh) * 2021-12-30 2022-05-17 北京航天益森风洞工程技术有限公司 风洞运行系统以及基于风洞运行系统的风洞运行方法
CN116067606A (zh) * 2023-03-31 2023-05-05 中国空气动力研究与发展中心超高速空气动力研究所 一种高超声速高温风洞总体布局方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000093836A (ja) * 1998-09-25 2000-04-04 Seisui:Kk 空気清浄化装置及び空気清浄化方法
JP2010065873A (ja) * 2008-09-09 2010-03-25 Panasonic Corp 熱交換器
CN202362128U (zh) * 2011-12-02 2012-08-01 河南科技大学 一种分布式风洞
CN104317240A (zh) * 2014-10-25 2015-01-28 中国航空工业集团公司哈尔滨空气动力研究所 基于分布式io控制的风洞调压窗控制系统
CN106840582A (zh) * 2016-12-23 2017-06-13 中国航天空气动力技术研究院 一种脉冲风洞运行控制系统及脉冲风洞运行控制方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000093836A (ja) * 1998-09-25 2000-04-04 Seisui:Kk 空気清浄化装置及び空気清浄化方法
JP2010065873A (ja) * 2008-09-09 2010-03-25 Panasonic Corp 熱交換器
CN202362128U (zh) * 2011-12-02 2012-08-01 河南科技大学 一种分布式风洞
CN104317240A (zh) * 2014-10-25 2015-01-28 中国航空工业集团公司哈尔滨空气动力研究所 基于分布式io控制的风洞调压窗控制系统
CN106840582A (zh) * 2016-12-23 2017-06-13 中国航天空气动力技术研究院 一种脉冲风洞运行控制系统及脉冲风洞运行控制方法

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109870985B (zh) * 2019-01-29 2021-10-26 迈克医疗电子有限公司 一种调度系统及其控制方法
CN109870985A (zh) * 2019-01-29 2019-06-11 迈克医疗电子有限公司 一种调度系统及其控制方法
CN112484953A (zh) * 2019-09-12 2021-03-12 恒菱机电科技(苏州)有限公司 一种电弧风洞流量调节控制系统
CN111056193A (zh) * 2019-11-27 2020-04-24 山西航天清华装备有限责任公司 一种引导搬运运输车车箱的垃圾收集方法及其控制系统
CN111158302A (zh) * 2019-12-30 2020-05-15 中国航天空气动力技术研究院 一种控制风洞运行的控制系统、方法及装置
CN111158302B (zh) * 2019-12-30 2021-08-10 中国航天空气动力技术研究院 一种控制风洞运行的控制系统、方法及装置
CN112067227A (zh) * 2020-07-30 2020-12-11 中国航天空气动力技术研究院 一种汽车环境风洞怠速模拟控制系统
CN111738627A (zh) * 2020-08-07 2020-10-02 中国空气动力研究与发展中心低速空气动力研究所 一种基于深度强化学习的风洞试验调度方法及系统
CN111738627B (zh) * 2020-08-07 2020-11-27 中国空气动力研究与发展中心低速空气动力研究所 一种基于深度强化学习的风洞试验调度方法及系统
CN111737886A (zh) * 2020-08-07 2020-10-02 中国空气动力研究与发展中心低速空气动力研究所 一种风洞试验调度方法及系统
CN112069446A (zh) * 2020-08-28 2020-12-11 中国空气动力研究与发展中心计算空气动力研究所 一种风洞群高压空气资源调度方法及系统
CN112069446B (zh) * 2020-08-28 2022-04-01 中国空气动力研究与发展中心计算空气动力研究所 一种风洞群高压空气资源调度方法及系统
CN112326726A (zh) * 2020-10-30 2021-02-05 北京临近空间飞行器系统工程研究所 一种树脂基复合材料热解引射因子测试装置及方法
CN112326726B (zh) * 2020-10-30 2023-12-29 北京临近空间飞行器系统工程研究所 一种树脂基复合材料热解引射因子测试装置及方法
CN112729750A (zh) * 2020-12-22 2021-04-30 中国空气动力研究与发展中心超高速空气动力研究所 一种三支路串联式高超声速风洞总体结构
CN112729750B (zh) * 2020-12-22 2022-04-22 中国空气动力研究与发展中心超高速空气动力研究所 一种三支路串联式高超声速风洞总体结构
CN112578760A (zh) * 2020-12-30 2021-03-30 中国航天空气动力技术研究院 一种汽车环境风洞试验运行控制系统
CN112578760B (zh) * 2020-12-30 2022-04-22 中国航天空气动力技术研究院 一种汽车环境风洞试验运行控制系统
CN114509231A (zh) * 2021-12-30 2022-05-17 北京航天益森风洞工程技术有限公司 风洞运行系统以及基于风洞运行系统的风洞运行方法
CN116067606A (zh) * 2023-03-31 2023-05-05 中国空气动力研究与发展中心超高速空气动力研究所 一种高超声速高温风洞总体布局方法
CN116067606B (zh) * 2023-03-31 2023-06-02 中国空气动力研究与发展中心超高速空气动力研究所 一种高超声速高温风洞总体布局方法

Also Published As

Publication number Publication date
CN108760217B (zh) 2020-03-24

Similar Documents

Publication Publication Date Title
CN108760217A (zh) 一种基于分布式架构的风洞运行控制系统
CN106647606A (zh) 一种基于plc的高超声速推进风洞控制系统
CN103192042B (zh) 基于plc的铸坯切割控制装置、切割系统及切割方法
US20160090915A1 (en) Inlet door control for startup of gas turbine engine
CN107762661A (zh) 一种脉冲爆震引射超燃冲压组合发动机
CN110907123B (zh) 一种高焓推进风洞空气加热方法及装置
CN203025015U (zh) 固定式全自动移动信息煤粉取样系统
CN103114914B (zh) 微型燃气轮机的控制方法
CN105700387A (zh) 一种发动机起动时序控制装置
CN114427975A (zh) 一种串联式组合动力模态转换验证方法
CN201306719Y (zh) 火化炉用环保节能微电脑控制器
CN201992686U (zh) 热处理炉脉冲烧嘴的集成式燃烧控制器
CN206692607U (zh) 一种气化炉四通道点火系统
CN202350049U (zh) 一种燃油、气两用燃烧器的燃烧控制系统
CN214952162U (zh) 一种航空发动机引气试验设备
CN206470051U (zh) 车用排气辅助制动阀的性能检测设备
CN113551914B (zh) 一种燃油喷嘴试验件防积碳结构及方法
CN114687867A (zh) 一种微型涡喷发动机控制系统及起动控制方法
CN103194733B (zh) 一种原子层沉积设备
CN113074948A (zh) 一种航空发动机引气试验设备及试验方法
CN201386678Y (zh) 煤矿局部通风机自动切换兼变频调速装置
CN210802089U (zh) 一种双燃气烧嘴控制器
CN208669440U (zh) 一种发动机转速控制系统
CN102393019A (zh) 燃油、气两用燃烧器的燃烧控制系统
CN103914053A (zh) 带有现场总线的配气引发柜控制装置及方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant