CN108760109A - The soil pressure measuring device and method of changeable fluid based on bragg grating - Google Patents

The soil pressure measuring device and method of changeable fluid based on bragg grating Download PDF

Info

Publication number
CN108760109A
CN108760109A CN201810240527.XA CN201810240527A CN108760109A CN 108760109 A CN108760109 A CN 108760109A CN 201810240527 A CN201810240527 A CN 201810240527A CN 108760109 A CN108760109 A CN 108760109A
Authority
CN
China
Prior art keywords
cantilever beam
fiber
film
optical
bragg
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810240527.XA
Other languages
Chinese (zh)
Other versions
CN108760109B (en
Inventor
周乐木
殷源
李伟业
谢超
孙开武
徐东升
周方圆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HUBEI PROVINCIAL ROAD & BRIDGE Co Ltd
Huazhong University of Science and Technology
Original Assignee
HUBEI PROVINCIAL ROAD & BRIDGE Co Ltd
Huazhong University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HUBEI PROVINCIAL ROAD & BRIDGE Co Ltd, Huazhong University of Science and Technology filed Critical HUBEI PROVINCIAL ROAD & BRIDGE Co Ltd
Priority to CN201810240527.XA priority Critical patent/CN108760109B/en
Publication of CN108760109A publication Critical patent/CN108760109A/en
Application granted granted Critical
Publication of CN108760109B publication Critical patent/CN108760109B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/24Measuring force or stress, in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infrared, visible light, ultraviolet
    • G01L1/242Measuring force or stress, in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infrared, visible light, ultraviolet the material being an optical fibre
    • G01L1/246Measuring force or stress, in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infrared, visible light, ultraviolet the material being an optical fibre using integrated gratings, e.g. Bragg gratings

Abstract

The invention belongs to inside soil body pressure measurement method fields, and disclose the soil pressure measurement method of the changeable fluid based on bragg grating, include the following steps:(1) according to the size of measurand and measurement request, the material and size of cantilever beam and film are selected;(2) on a cantilever beam by Bragg optical-fiber grating sensor installation, and the two is made to combine closely, the free end of cantilever beam is linked together by rigid transmission rod with film again, Bragg optical-fiber grating sensor is connected with fiber-optic signal analyzing processing equipment by optical fiber;(3) fixing end of cantilever beam is fixed on sensor cavity, and entire soil pressure sensor is placed in measurand;(4) strain value of test constantly Bragg optical-fiber grating sensor calculates the local pressure of measurand.The present invention can solve the problems, such as the accurate measurement of inside soil body difference range soil pressure, meet the measurement demand of large span range, sensor accuracy class is high, safe.

Description

The soil pressure measuring device and method of changeable fluid based on bragg grating
Technical field
The invention belongs to inside soil body pressure measurement method fields, more particularly, to based on bragg grating The soil pressure measuring device and method of changeable fluid.
Background technology
Existing soil body surface local pressure, which measures, uses electromagnetism displacement meter, can measure measurand two surfaces up and down Between displacement, but be difficult high-precision both sides measurand among part strain and deformation.However, the thin tail sheep meeting of part The mechanical property for influencing measurand calculates, and causes to face as the mechanical characteristic of the local small strain of the soil body is related to excavation of foundation pit The deformation of nearly building calculates, while can also influence settlement calculation caused by tunnel excavation.
Invention content
For the disadvantages described above or Improvement requirement of the prior art, the present invention provides variable based on bragg grating The soil pressure measuring device and method of range can accurately measure the mechanical characteristic in the case of soil small strain, be set for engineering Meter and deformation, which calculate, provides important parameter.
To achieve the above object, it is proposed, according to the invention, provide a kind of changeable fluid soil pressure force measuring device, feature exists In, including at cantilever beam, Bragg optical-fiber grating sensor, rigid transmission rod, film, sensor cavity and fiber-optic signal analysis Manage equipment, wherein
The Bragg optical-fiber grating sensor is mounted at the central axes of cantilever beam surface along its length, and the two It combines closely;
The rigidity transmission rod links together the free end of cantilever beam with film;
The open at one end of the sensor cavity, the film are covered in the open end of the sensor cavity;
The fixing end of the cantilever beam is fixed on the inner wall of sensor cavity;
The fiber-optic signal analyzing processing equipment is connect by optical fiber with the Bragg optical-fiber grating sensor, for Obtain the strain of Bragg optical-fiber grating sensor.
Preferably, the fiber-optic signal analyzing processing equipment include wideband light source, light source coupler, optical signal analyzer and Signal acquisition process device, the wideband light source are sequentially connected the light source coupler, optical signal analyzer and signal acquisition process Device, the light source coupler are also connected with the optical fiber.
Other side according to the invention additionally provides the soil pressure of the changeable fluid based on bragg grating Measurement method, which is characterized in that include the following steps:
(1) according to the size of measurand and measurement request, the material and size of cantilever beam and film are selected, wherein institute It states cantilever beam to be made of the elastic sheet metal of cuboid or rectangular patch, film is made of the elastic sheet metal of disc-shaped;
(2) Bragg optical-fiber grating sensor is mounted at the central axes of cantilever beam surface along its length, and makes two Person combines closely, then the free end of cantilever beam is linked together with film by a rigid transmission rod, and film is covered in One end of the sensor cavity opening, then Bragg optical-fiber grating sensor, cantilever beam, rigid transmission rod and the common structure of film At union body, then Bragg optical-fiber grating sensor is connected with fiber-optic signal analyzing processing equipment by optical fiber;
(3) fixing end of the cantilever beam of union body is fixed on by fixed component on sensor cavity, then union body with Sensor cavity collectively forms soil pressure sensor, and entire soil pressure sensor is placed in measurand, Prague is write down Fiber-optic grating sensor strains initial value;
(4) it by the strain value of fiber-optic signal analyzing processing equipment test constantly Bragg optical-fiber grating sensor, calculates The local pressure of measurand:
Wherein, εBFor the difference of the strain value and strain initial value of Bragg optical-fiber grating sensor, E and EcIt is respectively described The elasticity modulus of film and cantilever beam, x are the Bragg optical-fiber grating sensor on a cantilever beam at a distance from fixing end, L For the length of the cantilever beam, tcFor the thickness of the cantilever beam, IcFor the moment of inertia of the cantilever beam, μ is the pool of the film Loose ratio, R are the diameter of the film, and t is film thickness.
Preferably, the Bragg optical-fiber grating sensor is mounted at fixing end, that is, x=0 of the cantilever beam, to Union body is set to form local pressure test component, local pressure test component calculates the monitoring position of measurand according to the following formula Local pressure,
Preferably, the material parameter and structure size of adjusting cantilever beam and film, setting measurement range and spirit can be passed through Sensitivity.
Preferably, the fiber-optic signal analyzing processing equipment include wideband light source, light source coupler, optical signal analyzer and Signal acquisition process device, the wideband light source are sequentially connected the light source coupler, optical signal analyzer and signal acquisition process Device, the light source coupler are also connected with the optical fiber.
In general, through the invention it is contemplated above technical scheme is compared with the prior art, can obtain down and show Beneficial effect:
1) the wide range accurate measurement that can solve the problems, such as inside soil body soil pressure meets the measurement need of inside soil body pressure It asks.
2) present invention obtains the computational methods that fiber grating measures soil pressure, control can be reached by adjustment parameter The measurement range of FBG-LDT and sensitivity.
3) sensor accuracy class is high, safe, simple in structure.
4) there is electromagnetism interference and corrosion-resistant, and there is no problems short-circuit in water.
Description of the drawings
Fig. 1 is the distorted pattern of the local pressure measurement method based on Bragg optical-fiber grating sensor of the present invention;
Fig. 2 a and Fig. 2 b are the structure of the local pressure measurement method based on Bragg optical-fiber grating sensor of the present invention Schematic diagram;
Wherein:1- wideband light sources, 2- laser, 3- light source couplers, 4- optical signal analyzers, 5- signal acquisition process devices, 6- optical fiber, 7- rigidity transmission rod, 8- films, 9- cantilever beams, 10- Bragg optical-fiber grating sensors, 11- fixed components, 12- are passed Sensor cavity.
Specific implementation mode
In order to make the purpose , technical scheme and advantage of the present invention be clearer, with reference to the accompanying drawings and embodiments, right The present invention is further elaborated.It should be appreciated that the specific embodiments described herein are merely illustrative of the present invention, and It is not used in the restriction present invention.As long as in addition, technical characteristic involved in the various embodiments of the present invention described below It does not constitute a conflict with each other and can be combined with each other.
Referring to Fig.1, a kind of changeable fluid soil pressure force measuring device, including cantilever beam 9, Bragg optical-fiber grating sensor 10, rigid transmission rod 7, film 8, sensor cavity and fiber-optic signal analyzing processing equipment, wherein
The Bragg optical-fiber grating sensor 10 is mounted at the central axes of 9 surface of cantilever beam along its length, and The two is combined closely;
The rigidity transmission rod 7 links together the free end of cantilever beam 9 and film 8;
The open at one end of the sensor cavity, the film 8 are covered in the open end of the sensor cavity;
The fixing end of the cantilever beam 9 is fixed on the inner wall of sensor cavity;
The fiber-optic signal analyzing processing equipment is connect by optical fiber 6 with the Bragg optical-fiber grating sensor 10, with Strain for obtaining Bragg optical-fiber grating sensor 10.
The present invention is to utilize Bragg optical-fiber grating sensor 10, and Bragg optical-fiber grating sensor 10 is installed on cantilever The surface of beam 9 is connected with film 8 by rigid transmission rod 7, is fixed on the surface of measurand, when measurand is by outer lotus When load, deformation can cause the deformation of film 8, the axial deformation δ at 8 center of filmdiaConsist of two parts:Local well-distributed pressure p Act on film 8;Since the concentrated force Δ p that cantilever beam 9 deforms and generates acts on 8 center of film:
Wherein, D=Et3/12(1-μ2), p is the pressure for acting on 8 surface of film, and E and μ are the springform of film 8 respectively Amount and Poisson's ratio, t and R are the thickness and radius of film 8 respectively, and Δ p is due to the constant anti-work that cantilever beam 9 deforms and generates Firmly, it is set as unknown.Due to the presence of rigid transmission rod 7 so that it is maximum to be equal to cantilever beam 9 for axial displacement at 8 center of film Amount of deflection Δ dmax
Further, the reaction force acts of above-mentioned Δ p are in the cantilever beam 9 equipped with Bragg optical-fiber grating sensor 10 Free end, the bending strain on cantilever beam 9 are:
Wherein, x is that Bragg optical-fiber grating sensor 10 (is with 9 fixing end of cantilever beam in the position that local x coordinate is fastened Coordinate axis origin), M (x) is the moment at x on cantilever beam 9, and L is the length of cantilever beam 9, EcFor the springform of cantilever beam 9 Amount, IcFor the cross sectional moment of inertia (b of cantilever beam 9cFor cross-sectional width, tcFor section thickness).
According to Euler's beam theory (Euler-Bernoulli), maximum amount of deflection Δ that cantilever beam 9 is generated by concentrated force Δ p dmaxFor:
Formula (4), which is substituted into formula (3), to be obtained:
According to 8 central axial deformation δ of filmdiaEqual to 9 maximum amount of deflection Δ d of cantilever beammax, can acquire concentrated force Δ p is:
Composite type (4), formula (5) and formula (6), can the strain that is measured by Bragg optical-fiber grating sensor 10 and table to be measured The relationship of surface pressure is as follows:
Wherein, bending strain can pass through two (i.e. Bragg optical-fiber grating sensor A of Bragg optical-fiber grating sensor 10 With Bragg optical-fiber grating sensor B) it measures.When cantilever beam 9 is in flexuosity, the axial strain at beam section upper and lower two Equal in magnitude, direction is on the contrary, therefore, maximum bending strain can be obtained by following formula at x:
Wherein εFBG_AAnd εFBG_BIt is the measuring strain of two Bragg optical-fiber grating sensors 10 above and below cantilever beam respectively, The error that temperature effect brings strain measurement can be eliminated in this way.
According to formula (7), the pressure that can must act on measurand surface is:
P=C2εB (9)
WhereinC2It is sensed with bragg grating to act on union body surface pressing Device 10 surveys the coefficient between strain.
This formula is the key equation of the present invention, and formula is shown is answered by what Bragg optical-fiber grating sensor 10 obtained Become has unique correspondence with the external load p applied.The material parameter and structure of this relationship and cantilever beam 9 and film 8 Size is related.If Bragg optical-fiber grating sensor is installed on the fixing end namely x=0 of cantilever beam 9, therefore formula (7) can To be reduced to:
This formula shows Bragg optical-fiber grating sensor and is installed in the case of the position fixed ends of cantilever beam 9, Bradley The strain that lattice fiber-optic grating sensor 10 obtains and the unique corresponding relation for acting on union body surface pressing p.And from formula As can be seen that material parameter and structure size by controlling cantilever beam 9 and film 8, can adjust range and the spirit of measurement Sensitivity.
Based on above-mentioned derivation, the present invention provides the surveys of the soil pressure of the changeable fluid based on bragg grating Amount method, which is characterized in that include the following steps:
(1) according to the size of measurand and measurement request, the material and size of cantilever beam 9 and film 8 are selected, wherein The cantilever beam 9 is made of the elastic sheet metal of cuboid or rectangular patch, and film 8 is made of the elastic sheet metal of disc-shaped;
(2) Bragg optical-fiber grating sensor 10 is mounted at the central axes of 9 surface of cantilever beam along its length, and made The two is combined closely, then the free end of cantilever beam 9 and film 8 are linked together by a rigid transmission rod 7, by film 8 It is covered in the open one end of the sensor cavity 12, then Bragg optical-fiber grating sensor 10, cantilever beam 9, rigid transmission rod Union body is collectively formed with film 8, then by optical fiber 6 by Bragg optical-fiber grating sensor 10 and fiber-optic signal analyzing processing Equipment is connected;
(3) being fixed on the cantilever beam of union body 9 on sensor cavity 12, then union body and sensor cavity 12 are common Soil pressure sensor is constituted, entire soil pressure sensor is placed in measurand, Bragg optical-fiber grating sensor is write down Strain initial value;
(4) it by the strain value of fiber-optic signal analyzing processing equipment test constantly Bragg optical-fiber grating sensor, calculates The local pressure p of measurand:
Wherein, εBFor the difference of the strain value and strain initial value of Bragg optical-fiber grating sensor 10, E and EcRespectively institute State the elasticity modulus of film 8 and cantilever beam 9, x be the Bragg optical-fiber grating sensor 10 on cantilever beam 9 with fixing end Distance, L are the length of the cantilever beam 9, tcFor the thickness of the cantilever beam 9, IcFor the moment of inertia of the cantilever beam 9, μ is institute The Poisson's ratio of film 8 is stated, R is the diameter of the film 8, and t is 8 thickness of film.
The fiber-optic signal analyzing processing equipment includes wideband light source 1, light source coupler 3, optical signal analyzer 4 and signal Acquisition Processor 5, the wideband light source 1 are sequentially connected the light source coupler 3, optical signal analyzer 4 and signal acquisition process Device 5, the light source coupler 3 are also connected with the optical fiber 6, and wideband light source 1 is sent out on laser 2 to light source coupler 3.
Further, the Bragg optical-fiber grating sensor 10 is mounted at fixing end, that is, x=0 of the cantilever beam 9, from And union body is made to form local pressure test component, local pressure test component calculates the monitoring position of measurand according to the following formula Local pressure,
Further, the material parameter and structure size of adjusting cantilever beam 9 and film 8, setting measurement range can be passed through.
Further, measurement sensitivity can be adjusted by the material parameter and structure size of adjusting cantilever beam 9 and film 8.
Under working condition, when soil body sample is by external load, deformation can cause the deformation of film 8, and then cause to hang The deformation of arm beam 9 generates strain and the drift of wavelength so as to cause the fiber grating on cantilever beam 9, and then can be tested The pressure of object realizes the accurate measurement of measurand pressure.
The present invention is made of such method:It is preferred that using Prague Bragg optical-fiber grating sensor 10, differentiate Rate is 1.0 μ ε, and two Bragg optical-fiber grating sensors 10 are separately mounted in 9 upper and lower surface of cantilever beam, is used in the present invention The cantilever beam 9 arrived is copper material, and size is 40mm long, and 15mm wide, 1mm are thick, and film 8 is copper material, size 0.6mm Thickness, 90mm diameters, entire union body size are 30mm thick, then 100mm diameters are used Bragg optical-fiber grating sensor 10 Epoxy encapsulation, Prague Bragg optical-fiber grating sensor 10 are connected to fiber grating Acquisition Instrument by optical fiber 6, show, It acquires and stores data.When experiment, fixed component 11 is fixed on measurand outer surface, component 11 to be fixed with epoxy resin After being completely fixed, between the cantilever beam 9 of the present invention, rigid transmission rod 7 etc. are installed on two fixed components 11, pass through optical fiber 6 are connected to the test data that grating Acquisition Instrument can be obtained by the local pressure measuring device of the acquisition present invention, according to above-mentioned The selection of material parameter and structure design, Measurement Resolution are 0.105kPa/ μ ε.
Test method designed by the present invention, is not involved with electric signal, so short circuit problem is not present in water environment, This method applies also for the local pressure test of rock, concrete.
As it will be easily appreciated by one skilled in the art that the foregoing is merely illustrative of the preferred embodiments of the present invention, not to The limitation present invention, all within the spirits and principles of the present invention made by all any modification, equivalent and improvement etc., should all include Within protection scope of the present invention.

Claims (6)

1. a kind of changeable fluid soil pressure force measuring device, which is characterized in that including cantilever beam, Bragg optical-fiber grating sensor, Rigid transmission rod, film, sensor cavity and fiber-optic signal analyzing processing equipment, wherein
The Bragg optical-fiber grating sensor is mounted at the central axes of cantilever beam surface along its length, and the two is close In conjunction with;
The rigidity transmission rod links together the free end of cantilever beam with film;
The open at one end of the sensor cavity, the film are covered in the open end of the sensor cavity;
The fixing end of the cantilever beam is fixed on the inner wall of sensor cavity;
The fiber-optic signal analyzing processing equipment is connect by optical fiber with the Bragg optical-fiber grating sensor, for obtaining The strain of Bragg optical-fiber grating sensor.
2. a kind of changeable fluid soil pressure force measuring device according to claim 1, which is characterized in that the fiber-optic signal point Analysis processing equipment includes wideband light source, light source coupler, optical signal analyzer and signal acquisition process device, the wideband light source according to The secondary light source coupler, optical signal analyzer and signal acquisition process device, the light source coupler of connecting is also connected with the light It is fine.
3. the soil pressure measurement method of the changeable fluid based on bragg grating, which is characterized in that include the following steps:
(1) according to the size of measurand and measurement request, the material and size of cantilever beam and film are selected, wherein described outstanding Arm beam is made of the elastic sheet metal of cuboid or rectangular patch, and film is made of the elastic sheet metal of disc-shaped;
(2) Bragg optical-fiber grating sensor is mounted at the central axes of cantilever beam surface along its length, and keeps the two tight Close combination, then the free end of cantilever beam is linked together with film by a rigid transmission rod, film is covered in described One end of sensor cavity opening, then Bragg optical-fiber grating sensor, cantilever beam, rigid transmission rod and film collectively form connection Then Bragg optical-fiber grating sensor is connected by knot body by optical fiber with fiber-optic signal analyzing processing equipment;
(3) fixing end of the cantilever beam of union body is fixed on by fixed component on sensor cavity, then union body and sensing Device cavity collectively forms soil pressure sensor, and entire soil pressure sensor is placed in measurand, bragg fiber is write down Grating sensor strains initial value;
(4) it by the strain value of fiber-optic signal analyzing processing equipment test constantly Bragg optical-fiber grating sensor, calculates tested The local pressure of object:
Wherein, εBFor the difference of the strain value and strain initial value of Bragg optical-fiber grating sensor, E and EcThe respectively described film With the elasticity modulus of cantilever beam, x is the Bragg optical-fiber grating sensor on a cantilever beam at a distance from fixing end, and L is institute State the length of cantilever beam, tcFor the thickness of the cantilever beam, IcFor the moment of inertia of the cantilever beam, μ is the Poisson of the film Than R is the diameter of the film, and t is film thickness.
4. the soil pressure measurement method of the changeable fluid according to claim 3 based on bragg grating, special Sign is that the Bragg optical-fiber grating sensor is mounted at fixing end, that is, x=0 of the cantilever beam, to make union body Local pressure test component is formed, local pressure test component calculates the part pressure at the monitoring position of measurand according to the following formula Power,
5. the soil pressure measurement method of the changeable fluid according to claim 3 or 4 based on bragg grating, It is characterized in that, the material parameter and structure size of adjusting cantilever beam and film, setting measurement range and sensitivity can be passed through.
6. the soil body of the changeable fluid based on bragg grating according to any claim in claim 3~5 Pressure measurement method, which is characterized in that the fiber-optic signal analyzing processing equipment includes wideband light source, light source coupler, light letter Number analyzer and signal acquisition process device, the wideband light source are sequentially connected the light source coupler, optical signal analyzer and letter Number Acquisition Processor, the light source coupler are also connected with the optical fiber.
CN201810240527.XA 2018-03-22 2018-03-22 Variable-range soil pressure measuring device and method based on Bragg fiber grating Active CN108760109B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810240527.XA CN108760109B (en) 2018-03-22 2018-03-22 Variable-range soil pressure measuring device and method based on Bragg fiber grating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810240527.XA CN108760109B (en) 2018-03-22 2018-03-22 Variable-range soil pressure measuring device and method based on Bragg fiber grating

Publications (2)

Publication Number Publication Date
CN108760109A true CN108760109A (en) 2018-11-06
CN108760109B CN108760109B (en) 2020-11-24

Family

ID=63980190

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810240527.XA Active CN108760109B (en) 2018-03-22 2018-03-22 Variable-range soil pressure measuring device and method based on Bragg fiber grating

Country Status (1)

Country Link
CN (1) CN108760109B (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110672240A (en) * 2019-10-23 2020-01-10 云南师范大学 Static friction force measuring device based on optical fiber
CN111855043A (en) * 2020-07-31 2020-10-30 长飞光纤光缆股份有限公司 Fiber grating soil pressure sensor
CN112014011A (en) * 2020-07-20 2020-12-01 武汉理工大学 Internal stress measuring device and preparation method thereof
CN112304469A (en) * 2019-12-10 2021-02-02 中国科学院合肥物质科学研究院 FBG temperature sensor based on bimetal cantilever beam and application thereof
RU204013U1 (en) * 2020-12-15 2021-05-04 Федеральное государственное бюджетное образовательное учреждение высшего образования "Казанский национальный исследовательский технический университет им. А.Н. Туполева - КАИ" FIBER OPTICAL PRESSURE MEASURING DEVICE
RU204010U1 (en) * 2020-12-15 2021-05-04 Федеральное государственное бюджетное образовательное учреждение высшего образования "Казанский национальный исследовательский технический университет им. А.Н. Туполева - КАИ" FIBER OPTICAL PRESSURE MEASURING DEVICE
CN113008424A (en) * 2021-02-26 2021-06-22 武汉理工大学 Variable-range fiber grating pressure sensor based on fused deposition technology
CN113340487A (en) * 2021-07-12 2021-09-03 西南交通大学 Earth pressure cell
CN114353867A (en) * 2021-12-23 2022-04-15 石家庄铁道大学 Multifunctional soil state monitoring device
CN114963028A (en) * 2022-06-08 2022-08-30 国家石油天然气管网集团有限公司 Fiber grating infrasound sensor for pressure-variable light transducing piece and pipeline leakage detection

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1858548A (en) * 2006-06-08 2006-11-08 昆明理工大学 Method for measuring sedimentation size by optical fiber Bragg grating sensor
CN101285846A (en) * 2007-04-11 2008-10-15 中国科学院半导体研究所 Optical fibre grating accelerometer based on cantilever beam deflection
CN201348549Y (en) * 2008-12-02 2009-11-18 中国石油大学(北京) Fiber grating pressure sensor
CN101852815A (en) * 2010-05-13 2010-10-06 北京交通大学 Temperature self-compensating cantilever beam type fiber grating accelerometer
CN201772960U (en) * 2010-07-05 2011-03-23 宁波杉工结构监测与控制工程中心有限公司 Constant strength beam-based fiber bragg grating pressure sensor
CN104062363A (en) * 2014-06-20 2014-09-24 山东大学 Double fiber bragg grating sensor for rock bolt anchoring quality test
CN105136041A (en) * 2015-08-19 2015-12-09 华中科技大学 Local displacement measuring device based on FBG sensor
CN108519175A (en) * 2018-03-22 2018-09-11 湖北省路桥集团有限公司 The soil pressure measurement method of changeable fluid based on bragg grating
CN208060051U (en) * 2018-02-06 2018-11-06 上海光栅信息技术有限公司 A kind of fiber grating earth pressure sensor

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1858548A (en) * 2006-06-08 2006-11-08 昆明理工大学 Method for measuring sedimentation size by optical fiber Bragg grating sensor
CN101285846A (en) * 2007-04-11 2008-10-15 中国科学院半导体研究所 Optical fibre grating accelerometer based on cantilever beam deflection
CN201348549Y (en) * 2008-12-02 2009-11-18 中国石油大学(北京) Fiber grating pressure sensor
CN101852815A (en) * 2010-05-13 2010-10-06 北京交通大学 Temperature self-compensating cantilever beam type fiber grating accelerometer
CN201772960U (en) * 2010-07-05 2011-03-23 宁波杉工结构监测与控制工程中心有限公司 Constant strength beam-based fiber bragg grating pressure sensor
CN104062363A (en) * 2014-06-20 2014-09-24 山东大学 Double fiber bragg grating sensor for rock bolt anchoring quality test
CN105136041A (en) * 2015-08-19 2015-12-09 华中科技大学 Local displacement measuring device based on FBG sensor
CN208060051U (en) * 2018-02-06 2018-11-06 上海光栅信息技术有限公司 A kind of fiber grating earth pressure sensor
CN108519175A (en) * 2018-03-22 2018-09-11 湖北省路桥集团有限公司 The soil pressure measurement method of changeable fluid based on bragg grating

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110672240A (en) * 2019-10-23 2020-01-10 云南师范大学 Static friction force measuring device based on optical fiber
CN112304469A (en) * 2019-12-10 2021-02-02 中国科学院合肥物质科学研究院 FBG temperature sensor based on bimetal cantilever beam and application thereof
CN112014011A (en) * 2020-07-20 2020-12-01 武汉理工大学 Internal stress measuring device and preparation method thereof
CN111855043A (en) * 2020-07-31 2020-10-30 长飞光纤光缆股份有限公司 Fiber grating soil pressure sensor
CN111855043B (en) * 2020-07-31 2022-03-22 长飞光纤光缆股份有限公司 Fiber grating soil pressure sensor
RU204013U1 (en) * 2020-12-15 2021-05-04 Федеральное государственное бюджетное образовательное учреждение высшего образования "Казанский национальный исследовательский технический университет им. А.Н. Туполева - КАИ" FIBER OPTICAL PRESSURE MEASURING DEVICE
RU204010U1 (en) * 2020-12-15 2021-05-04 Федеральное государственное бюджетное образовательное учреждение высшего образования "Казанский национальный исследовательский технический университет им. А.Н. Туполева - КАИ" FIBER OPTICAL PRESSURE MEASURING DEVICE
CN113008424A (en) * 2021-02-26 2021-06-22 武汉理工大学 Variable-range fiber grating pressure sensor based on fused deposition technology
CN113340487A (en) * 2021-07-12 2021-09-03 西南交通大学 Earth pressure cell
CN114353867A (en) * 2021-12-23 2022-04-15 石家庄铁道大学 Multifunctional soil state monitoring device
CN114353867B (en) * 2021-12-23 2023-09-19 石家庄铁道大学 Multifunctional soil body state monitoring device
CN114963028A (en) * 2022-06-08 2022-08-30 国家石油天然气管网集团有限公司 Fiber grating infrasound sensor for pressure-variable light transducing piece and pipeline leakage detection

Also Published As

Publication number Publication date
CN108760109B (en) 2020-11-24

Similar Documents

Publication Publication Date Title
CN108519175A (en) The soil pressure measurement method of changeable fluid based on bragg grating
CN108760109A (en) The soil pressure measuring device and method of changeable fluid based on bragg grating
Wang et al. A novel long period fiber grating sensor measuring curvature and determining bend-direction simultaneously
CN108895978B (en) A kind of fibre optic strain sensor Sensitivity Calibration method based on bare fibre
EP1124112A2 (en) Optical fiber sensor
CN103105138A (en) Fiber bragg grating strain sensitivity calibration device and method
CN106501165B (en) Temperature self-compensating fiber grating steel bar corrosion sensor and temperature compensating method thereof
Di Sante et al. Temperature-compensated fibre Bragg grating‐based sensor with variable sensitivity
GB2421075A (en) Optical-fibre interstice displacement sensor
CN109196394A (en) Utilize the displacement detector of fiber-optic grating sensor and its adjusting method of sensitivity, durability
Luo et al. Added advantages in using a fiber Bragg grating sensor in the determination of early age setting time for cement pastes
Li et al. Design of an enhanced sensitivity FBG strain sensor and application in highway bridge engineering
Woschitz et al. Design and calibration of a fiber-optic monitoring system for the determination of segment joint movements inside a hydro power dam
Ma et al. Strain transfer characteristics of surface-attached FBGs in aircraft wing distributed deformation measurement
Marković et al. Application of fiber-optic curvature sensor in deformation measurement process
Zheng et al. Theoretical and experimental study on fiber-optic displacement sensor with bowknot bending modulation
US20180172536A1 (en) FIBER OPTIC PRESSURE APPARATUS, METHODS, and APPLICATIONS
CN110608675B (en) Multi-point displacement testing method based on fiber grating sensing technology
Wang et al. An optical fiber sensor for the simultaneous measurement of pressure and position based on a pair of fiber Bragg gratings
Choquet et al. New generation of Fabry-Perot fiber optic sensors for monitoring of structures
Guru Prasad et al. Fiber Bragg grating sensor package for submicron level displacement measurements
Bernini et al. Distributed strain measurement along a concrete beam via stimulated Brillouin scattering in optical fibers
CN110424362B (en) Optical fiber type temperature self-compensating static sounding sensor
Vallan et al. Static characterization of curvature sensors based on plastic optical fibers
RU135119U1 (en) FIBER OPTICAL DEFORMATION CONVERTER

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant