CN108750018A - 智能浮标的多模式控制方法及系统 - Google Patents

智能浮标的多模式控制方法及系统 Download PDF

Info

Publication number
CN108750018A
CN108750018A CN201810403934.8A CN201810403934A CN108750018A CN 108750018 A CN108750018 A CN 108750018A CN 201810403934 A CN201810403934 A CN 201810403934A CN 108750018 A CN108750018 A CN 108750018A
Authority
CN
China
Prior art keywords
buoy
observation
mode
judging result
need
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810403934.8A
Other languages
English (en)
Other versions
CN108750018B (zh
Inventor
黄琰
乔佳楠
俞建成
谭智铎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenyang Institute of Automation of CAS
Original Assignee
Shenyang Institute of Automation of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenyang Institute of Automation of CAS filed Critical Shenyang Institute of Automation of CAS
Priority to CN201810403934.8A priority Critical patent/CN108750018B/zh
Publication of CN108750018A publication Critical patent/CN108750018A/zh
Application granted granted Critical
Publication of CN108750018B publication Critical patent/CN108750018B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B22/00Buoys
    • B63B22/18Buoys having means to control attitude or position, e.g. reaction surfaces or tether
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B22/00Buoys
    • B63B2022/006Buoys specially adapted for measuring or watch purposes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Testing Or Calibration Of Command Recording Devices (AREA)

Abstract

本发明提供了一种智能浮标的多模式控制方法及系统,包括:判定智能浮标是否需要水平方向位移运行观测,若判断结果为需要,则进行Glider运行模式进行观测;若判断结果为不需要,则判定智能浮标是否需要垂直方向位移运行观测,若判断结果为需要,则进行Argo运行模式进行观测;若判断结果为不需要,则判定智能浮标是否需要原位不动,若判断结果为需要,则进行原位不动模式进行观测;若判断结果为不需要,则进入休眠模式。本发明可灵活选择的运行模式进行观测并在完成观测任务的同时最大程度提高智能浮标的续航能力。

Description

智能浮标的多模式控制方法及系统
技术领域
本发明涉及分析及测量控制技术领域,具体地,涉及一种智能浮标的多模式控制方法及系统。
背景技术
以往海洋观测平台多采用单模式工作方式,如技术发展较为成熟的Argo和Glider。针对复杂的、大尺度的、多样化的海洋观测需求,单模式工作方式无法根据需求进行灵活的模式变化。
智能浮标是一种新型的海洋参数观测平台,智能浮标的多模式控制要求其可根据海洋观测需求的变化自主选择Glider运行模式、Argo运行模式、休眠模式或原位测量模式等工作模式。如何根据各种因素变化灵活选择运行模式,以及提高智能浮标的续航能力是目前智能浮标的多模式控制的两个主要技术难题。
发明内容
针对现有技术中的缺陷,本发明的目的是提供一种智能浮标的多模式控制方法及系统。
根据本发明提供的一种智能浮标的多模式控制方法,包括:
步骤1:判定智能浮标是否需要水平方向位移运行观测,若判断结果为需要,则进行Glider运行模式进行观测;若判断结果为不需要,则进入步骤2;
步骤2:判定智能浮标是否需要垂直方向位移运行观测,若判断结果为需要,则进行Argo运行模式进行观测;若判断结果为不需要,则进入步骤3;
步骤3:判定智能浮标是否需要原位不动,若判断结果为需要,则进行原位不动模式进行观测;若判断结果为不需要,则进入步骤4;
步骤4:智能浮标进入休眠模式。
较佳的,步骤1中判定智能浮标载体实时大地坐标位置与目标观测大地坐标位置是否存在偏差,若偏差大于预设偏差容忍阈值,则智能浮标进行水平方向位移运行观测。
较佳的,步骤2中判定智能浮标载体实时深度与目标观测深度是否存在偏差,若偏差大于预设偏差容忍阈值,则智能浮标进行垂直方向位移进行观测。
较佳的,步骤3中判断智能浮标任务模式是否为定深观测任务,若为定深观测任务,则智能浮标进入原位不动模式。
较佳的,所述观测因素包括观测环境、观测区域权重。
根据本发明提供的一种智能浮标的多模式控制系统,包括:
Glider模式判断模块:判定智能浮标是否需要水平方向位移运行观测,若判断结果为需要,则进行Glider运行模式进行观测;
Argo模式判断模块:在所述Glider模式判断模块的判断结果为不需要的状态下,判定智能浮标是否需要垂直方向位移运行观测,若判断结果为需要,则进行Argo运行模式进行观测;
原位模式判断模块:在所述Argo模式判断模块的判断结果为不需要的状态下,判定智能浮标是否需要原位不动,若判断结果为需要,则进行原位不动模式进行观测;在所述原位模式判断模块的判断结果为不需要的状态下,控制智能浮标进入休眠模式。
较佳的,所述Glider模式判断模块根据智能浮标载体实时大地坐标位置与目标观测大地坐标位置是否存在偏差判定智能浮标是否需要水平方向位移运行观测。
较佳的,所述Argo模式判断模块根据智能浮标载体实时深度与目标观测深度是否存在偏差判定智能浮标是否需要垂直方向位移运行观测。
较佳的,所述原位模式判断模块根据智能浮标任务模式是否为定深观测任务判定智能浮标是否需要原位不动。
较佳的,所述观测因素包括观测环境、观测区域权重。
与现有技术相比,本发明具有如下的有益效果:
1、使智能浮标具备Glider运行模式、Argo运行模式、休眠模式以及原位测量模式等多种工作模式,根据观测环境、观测区域权重等因素变化,其可灵活选择的运行模式进行观测;
2、根据现场观测需求,在每种模式下智能管理智能浮标在观测过程中的信息流和能源流,在完成观测任务的同时最大程度提高智能浮标的续航能力。
附图说明
通过阅读参照以下附图对非限制性实施例所作的详细描述,本发明的其它特征、目的和优点将会变得更明显:
图1为本发明的工作流程图。
具体实施方式
下面结合具体实施例对本发明进行详细说明。以下实施例将有助于本领域的技术人员进一步理解本发明,但不以任何形式限制本发明。应当指出的是,对本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变化和改进。这些都属于本发明的保护范围。
如图1所示,本发明提供的一种智能浮标的多模式控制方法,包括:
步骤1:根据智能浮标载体实时大地坐标位置与目标观测大地坐标位置是否存在偏差判定智能浮标是否需要水平方向位移运行观测,若判断结果为需要,则进行Glider运行模式进行观测;若判断结果为不需要,则进入步骤2,观测因素包括观测环境、观测区域权重等。
步骤2:根据智能浮标载体实时深度与目标观测深度是否存在偏差判定智能浮标是否需要垂直方向位移运行观测,若判断结果为需要,则进行Argo运行模式进行观测;若判断结果为不需要,则进入步骤3,观测因素包括观测环境、观测区域权重等因素。
步骤3:根据智能浮标任务模式是否为定深观测任务判定智能浮标是否需要原位不动,若判断结果为需要,则进行原位不动模式进行观测;若判断结果为不需要,则进入步骤4,观测因素包括观测环境、观测区域权重等因素。
步骤4:智能浮标进入休眠模式。
基于上述智能浮标的多模式控制方法,本发明还提供一种智能浮标的多模式控制系统,包括:
Glider运行模块:根据智能浮标载体实时大地坐标位置与目标观测大地坐标位置是否存在偏差判定智能浮标是否需要水平方向位移运行观测,若判断结果为需要,则进行Glider运行模式进行观测,观测因素包括观测环境、观测区域权重等因素。
Argo运行模块:在所述Glider运行模块的判断结果为不需要的状态下,根据智能浮标载体实时深度与目标观测深度是否存在偏差判定智能浮标是否需要垂直方向位移运行观测,若判断结果为需要,则进行Argo运行模式进行观测,观测因素包括观测环境、观测区域权重等因素。
原位运行模块:在所述Argo运行模块的判断结果为不需要的状态下,根据智能浮标任务模式是否为定深观测任务判定智能浮标是否需要原位不动,若判断结果为需要,则进行原位不动模式进行观测,观测因素包括观测环境、观测区域权重等因素。
休眠模块:在所述原位运行模块的判断结果为不需要的状态下,控制智能浮标进入休眠模式。
本领域技术人员知道,除了以纯计算机可读程序代码方式实现本发明提供的系统及其各个装置、模块、单元以外,完全可以通过将方法步骤进行逻辑编程来使得本发明提供的系统及其各个装置、模块、单元以逻辑门、开关、专用集成电路、可编程逻辑控制器以及嵌入式微控制器等的形式来实现相同功能。所以,本发明提供的系统及其各项装置、模块、单元可以被认为是一种硬件部件,而对其内包括的用于实现各种功能的装置、模块、单元也可以视为硬件部件内的结构;也可以将用于实现各种功能的装置、模块、单元视为既可以是实现方法的软件模块又可以是硬件部件内的结构。
以上对本发明的具体实施例进行了描述。需要理解的是,本发明并不局限于上述特定实施方式,本领域技术人员可以在权利要求的范围内做出各种变化或修改,这并不影响本发明的实质内容。在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。

Claims (10)

1.一种智能浮标的多模式控制方法,其特征在于,包括:
步骤1:判定智能浮标是否需要水平方向位移运行观测,若判断结果为需要,则进行Glider运行模式进行观测;若判断结果为不需要,则进入步骤2;
步骤2:判定智能浮标是否需要垂直方向位移运行观测,若判断结果为需要,则进行Argo运行模式进行观测;若判断结果为不需要,则进入步骤3;
步骤3:判定智能浮标是否需要原位不动,若判断结果为需要,则进行原位不动模式进行观测;若判断结果为不需要,则进入步骤4;
步骤4:智能浮标进入休眠模式。
2.根据权利要求1所述的智能浮标的多模式控制方法,其特征在于,步骤1中判定智能浮标载体实时大地坐标位置与目标观测大地坐标位置是否存在偏差,若偏差大于预设偏差容忍阈值,则智能浮标进行水平方向位移运行观测。
3.根据权利要求1所述的智能浮标的多模式控制方法,其特征在于,步骤2中判定智能浮标载体实时深度与目标观测深度是否存在偏差,若偏差大于预设偏差容忍阈值,则智能浮标进行垂直方向位移进行观测。
4.根据权利要求1所述的智能浮标的多模式控制方法,其特征在于,步骤3中判断智能浮标任务模式是否为定深观测任务,若为定深观测任务,则智能浮标进入原位不动模式。
5.根据权利要求2至4中任一项所述的智能浮标的多模式控制方法,其特征在于,所述观测因素包括观测环境、观测区域权重。
6.一种智能浮标的多模式控制系统,其特征在于,包括:
Glider模式判断模块:判定智能浮标是否需要水平方向位移运行观测,若判断结果为需要,则进行Glider运行模式进行观测;
Argo模式判断模块:在所述Glider模式判断模块的判断结果为不需要的状态下,判定智能浮标是否需要垂直方向位移运行观测,若判断结果为需要,则进行Argo运行模式进行观测;
原位模式判断模块:在所述Argo模式判断模块的判断结果为不需要的状态下,判定智能浮标是否需要原位不动,若判断结果为需要,则进行原位不动模式进行观测;在所述原位模式判断模块的判断结果为不需要的状态下,控制智能浮标进入休眠模式。
7.根据权利要求6所述的智能浮标的多模式控制系统,其特征在于,所述Glider模式判断模块根据智能浮标载体实时大地坐标位置与目标观测大地坐标位置是否存在偏差判定智能浮标是否需要水平方向位移运行观测。
8.根据权利要求6所述的智能浮标的多模式控制系统,其特征在于,所述Argo模式判断模块根据智能浮标载体实时深度与目标观测深度是否存在偏差判定智能浮标是否需要垂直方向位移运行观测。
9.根据权利要求6所述的智能浮标的多模式控制系统,其特征在于,所述原位模式判断模块根据智能浮标任务模式是否为定深观测任务判定智能浮标是否需要原位不动。
10.根据权利要求6至9中任一项所述的智能浮标的多模式控制系统,其特征在于,所述观测因素包括观测环境、观测区域权重。
CN201810403934.8A 2018-04-28 2018-04-28 智能浮标的多模式控制方法及系统 Active CN108750018B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810403934.8A CN108750018B (zh) 2018-04-28 2018-04-28 智能浮标的多模式控制方法及系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810403934.8A CN108750018B (zh) 2018-04-28 2018-04-28 智能浮标的多模式控制方法及系统

Publications (2)

Publication Number Publication Date
CN108750018A true CN108750018A (zh) 2018-11-06
CN108750018B CN108750018B (zh) 2020-02-21

Family

ID=64008826

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810403934.8A Active CN108750018B (zh) 2018-04-28 2018-04-28 智能浮标的多模式控制方法及系统

Country Status (1)

Country Link
CN (1) CN108750018B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2761520Y (zh) * 2004-03-19 2006-03-01 吴允平 航标遥测遥控的省电装置
CN102079373A (zh) * 2009-11-27 2011-06-01 中国科学院沈阳自动化研究所 一种水下滑翔机用低功耗控制系统及其控制方法
CN103552679A (zh) * 2013-11-18 2014-02-05 北京理工大学 一种基于矢量推进的小型四轴自治水下机器人
CN203434675U (zh) * 2013-08-15 2014-02-12 中国船舶重工集团公司第七一五研究所 一种浮标低功耗电源管理电路

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2761520Y (zh) * 2004-03-19 2006-03-01 吴允平 航标遥测遥控的省电装置
CN102079373A (zh) * 2009-11-27 2011-06-01 中国科学院沈阳自动化研究所 一种水下滑翔机用低功耗控制系统及其控制方法
CN203434675U (zh) * 2013-08-15 2014-02-12 中国船舶重工集团公司第七一五研究所 一种浮标低功耗电源管理电路
CN103552679A (zh) * 2013-11-18 2014-02-05 北京理工大学 一种基于矢量推进的小型四轴自治水下机器人

Also Published As

Publication number Publication date
CN108750018B (zh) 2020-02-21

Similar Documents

Publication Publication Date Title
CN107103164B (zh) 无人机执行多任务的分配方法及装置
US20170335662A1 (en) Computer implemented method for generating a field development plan (fdp) for the exploitation of oil and gas reservoirs
CN109344959A (zh) 神经网络训练方法、神经网络系统和计算机系统
CN109724606A (zh) 基于改进的a*算法的矿井突水避灾路径规划方法和装置
CN105930942A (zh) 一种大数据背景下的能源技术预见智能系统
EP3164835A1 (en) A method
CN113236271B (zh) 盾构智能控制系统及方法
CN110244716A (zh) 一种基于波前算法的机器人探索的方法
Guida et al. An Integrated BIM-IoT approach to support energy monitoring
Philpott et al. Optimising yacht routes under uncertainty
CN116596483A (zh) 一种基于三维数字技术的桥梁施工组织方法
CN109063891A (zh) 一种无人机调度路线规划方法
WO2023104557A1 (en) Machine-learning for safety rule violation determination
Pedersen et al. Evolution of safety in marine systems: From system-theoretic process analysis to automated test scenario generation
CN108750018A (zh) 智能浮标的多模式控制方法及系统
CN105184807A (zh) 一种提高海图水深自动选取效率的方法
CN114139604A (zh) 基于在线学习的电力工控攻击监测方法和装置
JP5744785B2 (ja) 物品点検方法および携帯端末装置ならびに携帯端末装置の制御プログラム、物品検索システム
CN106547695A (zh) 一种规模软件的测试系统及方法
CN106600038A (zh) 一种基于马尔科夫模型的负荷区间预测方法
CN115200540B (zh) 一种矿井巷道形变监测与预警方法及系统
Pérez Fernández et al. Data management for smart ship or how to reduce machine learning cost in IoS applications
KR20190120903A (ko) 교통관리 모니터링 방법 및 장치
Holm et al. Concept of shield-data-based horizon control for longwall coal mining automation
Kapotoglu et al. Robots avoid potential failures through experience-based probabilistic planning

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant