CN108745381A - 以mof为基底制备硫化钴催化剂的方法 - Google Patents

以mof为基底制备硫化钴催化剂的方法 Download PDF

Info

Publication number
CN108745381A
CN108745381A CN201810577273.0A CN201810577273A CN108745381A CN 108745381 A CN108745381 A CN 108745381A CN 201810577273 A CN201810577273 A CN 201810577273A CN 108745381 A CN108745381 A CN 108745381A
Authority
CN
China
Prior art keywords
mof
catalysts
cos
vulcanization
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810577273.0A
Other languages
English (en)
Other versions
CN108745381B (zh
Inventor
胡同亮
孙小雯
常泽
卜显和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nankai University
Original Assignee
Nankai University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nankai University filed Critical Nankai University
Priority to CN201810577273.0A priority Critical patent/CN108745381B/zh
Publication of CN108745381A publication Critical patent/CN108745381A/zh
Application granted granted Critical
Publication of CN108745381B publication Critical patent/CN108745381B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/02Sulfur, selenium or tellurium; Compounds thereof
    • B01J27/04Sulfides
    • B01J27/043Sulfides with iron group metals or platinum group metals
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/02Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Electrochemistry (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了以MOF为基底制备硫化钴催化剂的方法,通过调节不同煅烧时间和气氛以及原位硫化法制备的四种以MOF为前驱体的硫化钴催化剂,Co‑MOF自身含有硫和氮元素,可以不在外加硫源的条件下原位硫化,并且通过调节不同煅烧时间和气氛,利用硫在高温下升华的特点,制备出四种硫化钴,分别为CoS1.097,Co9S8,Co9S8&CoS1.097和Co9S8&CoS1.097/rGO。其中复合相Co9S8&CoS1.097/rGO具有很好的酸性条件下电催化产氢的性质。本发明提供的制备方法安全并且简单易行,是理想的电催化产氢催化剂。

Description

以MOF为基底制备硫化钴催化剂的方法
技术领域
本发明涉及电解水产氢催化剂技术领域,具体涉及通过调节不同煅烧时间和气氛以及原位硫化法制备的四种以MOF为前驱体的CoxSy催化剂,分别为CoS1.097,Co9S8,Co9S8&CoS1.097和Co9S8&CoS1.097/rGO
背景技术
金属-有机框架(Metal-Organic Framework,MOFs),又称为多孔配位聚合物(Porous CoordinationPolymers,PCPs),是由金属离子或金属簇与有机配体通过配位键形成的一类具有周期性网络结构的晶态多孔框架材料,因其高比表面积、多孔、结构可调等特性,在气体的吸附分离、催化、传感和质子传导等方面具有潜在的应用前景。参见:Nandasiri,M.I.;Jambovane,S.R.;McGrail,B.P.;Schaef,H.T.;Nune,S.K.Coord.Chem.Rev.2016,311,38-52;H.Furukawa,N.Ko,Y.B.Go,N.Aratani,S.B.Choi,E.Choi,A.Yazaydin,R.Q.Snurr,M.O'Keeffe,J.Kim,O.M.Yaghi,Science 2010,329,424.随着社会发展,对化石燃料的需求不断增加,随之而来的环境污染也不断加剧,如何在发展经济的同时保护自然环境成为亟待解决的问题。氢能因其环境友好性和高的能量密度成为未来有潜力替代化石能源的重要清洁能源。近年来,科研人员致力于探索将地球丰度高的过渡金属化合物发展成活性高的电催化分解水产氢催化剂以替代贵金属催化剂。金属有机框架材料(MOFs)的结构具有可调整、可修饰和易功能化等特点,使其在磁性、储存、分离、催化和识别等方面表现出广阔的应用前景。其次,以它们作为前驱体构筑碳基催化材料,在杂原子掺杂、粒子限域以及孔道设计方面具有独特的优势。参见:Yu,M.H.;Zhang,P.;Feng,R.;Yao,Z.Q.;Yu,Y.C.;Hu,T.L.;Bu,X.H.ACS Appl.Mater.Interfaces,2017,9:26177;Chang,Z.;Yang,D.H.;Xu,J;Hu,T.L.;Bu,X.H.Adv.Mater.,2015,27,5432;Zhong,M.;Yang,D.H.;Xie,C.C.;Zhang,Z.;Zhou,Z.;Bu,X.H.Small,2016,12,5564.
发明内容
本发明的目的在于探索以MOF为基底制备硫化钴催化剂的方法,同时也提供了一种通过改变煅烧时间和煅烧气氛制备不同复合物的方法。制得的四种硫化钴分别为CoS1.097,Co9S8,Co9S8&CoS1.097和Co9S8&CoS1.097/rGO。
本发明的技术方案:
以MOF为基底制备硫化钴催化剂的方法,通过MOF原位硫化法制备硫化钴电解水产氢催化剂,通过调节不同煅烧时间和气氛以及通过MOF原位硫化法制备硫化钴催化剂。
四种CoxSy的制备方法,包括以下步骤:
Co-MOF:硫氰酸钴溶于去离子水,4,4-联吡啶溶于乙醇溶液,室温下搅拌下,将4,4-联吡啶乙醇溶液滴加到硫氰酸钴水溶液中,即可得到。
CoS1.097:Co-MOF氩气气氛下700℃煅烧一小时。
Co9S8&CoS1.097:Co-MOF氩气气氛下700℃煅烧两个小时。
Co9S8:Co-MOF氩氢混合气气氛下700℃煅烧两个小时。
Co9S8&CoS1.097/rGO:Co-MOF与氧化石墨烯结合后,氩气气氛下700℃煅烧两个小时。
有益效果:
1.本发明在MOF的选择上,选择一个自身含有S和N的Co-MOF,通过煅烧可以通过原位硫化法直接生成硫化钴,不需要外加硫源。
2.本发明可以通过调节煅烧时间和煅烧气氛,利用高温下硫的升华使得S含量不同,从而得到不同的硫化钴复合物。
3.通过加入石墨烯,提高材料导电性,防止煅烧过程中MOF的团聚从而使得电催化性能进一步提高复合相其电催化性能达到起始电位50mV,当电流密度达到10mA cm-2时过电位为188mV。
附图说明
图1为制备流程图。
图2为Co9S8&CoS1.097/rGO的扫描电镜、透射电镜、高分辨透射电镜图。
图3为Co-MOF、CoS1.097,Co9S8,Co9S8&CoS1.097和Co9S8&CoS1.097/rGO的粉末衍射图以及Co9S8&CoS1.097/rGO的X射线光电子能谱。
图4为CoS1.097,Co9S8,Co9S8&CoS1.097和Co9S8&CoS1.097/rGO的孔径分布图。
图5为CoS1.097,Co9S8,Co9S8&CoS1.097和Co9S8&CoS1.097/rGO电催化性能图。
具体实施方式
本发明具体涉及通过调节不同煅烧时间和气氛以及原位硫化法制备的四种以MOF为前驱体的硫化钴催化剂,分别为CoS1.097,Co9S8,Co9S8&CoS1.097和Co9S8&CoS1.097/rGO,制备流程参见附图1。下面结合附图与实施例对本发明做进一步说明。
1.0.326g Co(SCN)2溶于20mL去离子水,0.63g 4’4-联吡啶溶于30mL乙醇溶液室温下边搅拌边将4’4-联吡啶乙醇溶液逐滴加入到Co(SCN)2水溶液中,离心得到粉晶Co-MOF,所得Co-MOF的粉末衍射图见附图3(a)。
2.0.2g Co-MOF放入管式炉中氩气气氛下700℃煅烧一小时得到CoS1.097;氩气气氛下700℃煅烧两个小时,得到Co9S8&CoS1.097;氩氢混合气气氛下700℃煅烧2h得到Co9S8
3.20mL去离子水中加入100mg氧化石墨烯超声30min,搅拌30min至均匀分散,边搅拌边滴加Co(SCN)2水溶液(0.326g,2mL)。搅拌1h后,边搅拌边滴加4’4-联吡啶乙醇溶液(0.63g,30mL)。搅拌10min,得到Co-MOF/GO,其粉末衍射图见附图3(a)。取0.2g放入管式炉中,氩气气氛下700℃煅烧2h得到Co9S8&CoS1.097/rGO。
参见附图2,a为扫描电镜图,b为a的区域放大扫描电镜图,从扫描电镜图中可以看出Co-MOF生成的复合相Co9S8&CoS1.097均匀的附着在石墨烯表面。c、d为透射电镜图。从透射电镜图中可以观察到许多小于10nm纳米颗粒附着在石墨烯上。e为块状Co9S8&CoS1.097高分辨透射电镜图,从晶格条纹可以进一步证明块状为复合相Co9S8&CoS1.097,f为纳米颗粒高分辨电镜图,从晶格条纹可以证明,该纳米颗粒为Co9S8
参见图3,Co-MOF以及所得四种催化剂CoS1.097,Co9S8,Co9S8&CoS1.097和Co9S8&CoS1.097/rGO的粉末衍射图见附图3(a)(b)与标准卡片都可以很好的对应上;证明合成的相纯度高。Co9S8&CoS1.097/rGO的X射线光电子能谱参见,(c)-(f)。从图中可以看出,该材料的碳层有许多S、N杂原子掺杂,并且N元素主要以石墨N和吡啶N的形式存在,进一步提高了其电催化性能。S元素xps图中有两组S元素的P峰,进一步证明其由两相组成。
参见附图4,从孔径分布图中可以看出,石墨烯的加入防止了Co-MOF在煅烧过程中的团聚,从而增大了比表面积和孔径。
参见附图5,a为在0.5MH2SO4水溶液中以5mV s-1扫速得到的产氢极化曲线,从图中可以看出与石墨烯的复合相Co9S8&CoS1.097/rGO性能最好,当电流达到10mA cm-2时,电位仅为381mV。b图为tafel曲线图,从图中可以看出复合相Co9S8&CoS1.097/rGO的tafel斜率虽然比CoS1.097大,但是和其他相相比较小,说明其电催化产氢反应动力学较快。c图为循环1000全之后极化曲线,可以看出该材料稳定性很好,极化曲线偏移很小。d图为电流密度差-扫速曲线,从中可以看出复合相的双电层电容最大,证明其电化学活性面积最大。综合以上测试可以证明与石墨烯复合相Co9S8&CoS1.097/rGO的电催化产氢性能最好。

Claims (9)

1.以MOF为基底制备硫化钴催化剂的方法,其特征在于:通过MOF原位硫化法制备硫化钴电解水产氢催化剂,通过调节不同煅烧时间和气氛以及通过MOF原位硫化法制备硫化钴催化剂。
2.根据权利要求1所述的以MOF为基底制备硫化钴催化剂的方法,其特征在于:所述的硫化钴催化剂为四种以MOF为前驱体的硫化钴催化剂,分别为CoS1.097,Co9S8,Co9S8&CoS1.097和Co9S8&CoS1.097/rGO。
3.根据权利要求2所述的以MOF为基底制备硫化钴催化剂的方法,其特征在于:CoS1.097是由Co-MOF氩气气氛下700℃煅烧一小时得到。
4.根据权利要求2所述的以MOF为基底制备硫化钴催化剂的方法,其特征在于:Co9S8&CoS1.097是由Co-MOF氩气气氛下700℃煅烧两个小时得到。
5.根据权利要求2所述的以MOF为基底制备硫化钴催化剂的方法,其特征在于:Co9S8是由Co-MOF氩氢混合气气氛下700℃煅烧两个小时得到。
6.根据权利要求2所述的以MOF为基底制备硫化钴催化剂的方法,其特征在于:Co9S8&CoS1.097/rGO是由Co-MOF与氧化石墨烯结合后得到Co-MOF/GO,氩气气氛下700℃煅烧两个小时得到。
7.根据权利要求3-6任一项所述的以MOF为基底制备硫化钴催化剂的方法,其特征在于:Co-MOF制备步骤是:硫氰酸钴溶于去离子水,4,4-联吡啶溶于乙醇溶液,室温下搅拌下,将4,4-联吡啶乙醇溶液滴加到硫氰酸钴水溶液中,即可得到。
8.根据权利要求2-6任一项所述的以MOF为基底制备硫化钴催化剂的方法,其特征在于:所得产品起始电位50mV,当电流密度达到10mA cm-2时过电位为188mV,并且具有很好的稳定性。
9.根据权利要求6所述的以MOF为基底制备硫化钴催化剂的方法,其特征在于:Co-MOF/GO是在去离子水中加入氧化石墨烯超声30min,搅拌30min至均匀分散,边搅拌边滴加Co(SCN)2水溶液,搅拌1h后,边搅拌边滴加4’4-联吡啶乙醇溶液,搅拌10min得到Co-MOF/GO。
CN201810577273.0A 2018-06-07 2018-06-07 以mof为基底制备硫化钴催化剂的方法 Active CN108745381B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810577273.0A CN108745381B (zh) 2018-06-07 2018-06-07 以mof为基底制备硫化钴催化剂的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810577273.0A CN108745381B (zh) 2018-06-07 2018-06-07 以mof为基底制备硫化钴催化剂的方法

Publications (2)

Publication Number Publication Date
CN108745381A true CN108745381A (zh) 2018-11-06
CN108745381B CN108745381B (zh) 2020-10-09

Family

ID=63999238

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810577273.0A Active CN108745381B (zh) 2018-06-07 2018-06-07 以mof为基底制备硫化钴催化剂的方法

Country Status (1)

Country Link
CN (1) CN108745381B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109759115A (zh) * 2019-02-11 2019-05-17 郑州大学 纳米钴/硫化钴负载于杂原子掺杂的多孔碳复合型催化剂及其制备方法和应用
CN111450898A (zh) * 2020-05-18 2020-07-28 安徽工业大学 光催化降解有机染料的无定形CoSx/MOF复合催化剂及制备方法
CN111468164A (zh) * 2020-05-22 2020-07-31 青岛品泰新材料技术有限责任公司 一种氮掺杂纳米ZnS/石墨烯光催化材料的制备方法及应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106450200A (zh) * 2016-10-25 2017-02-22 福建师范大学 一种CoS@碳纳米笼及其制备方法和应用
CN106531999A (zh) * 2016-11-25 2017-03-22 武汉理工大学 嵌入式硫化钴与多孔碳纳米棒复合电极材料及其制备方法和应用
KR20170043138A (ko) * 2015-10-12 2017-04-21 한양대학교 에리카산학협력단 MOF(Metal Organic Framework) 기반의 코발트 황화물의 제조 방법, 및 이를 이용한 염료감응형 태양전지
CN107321372A (zh) * 2017-06-06 2017-11-07 江苏大学 CoS纳米颗粒/N掺杂RGO析氢复合材料的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170043138A (ko) * 2015-10-12 2017-04-21 한양대학교 에리카산학협력단 MOF(Metal Organic Framework) 기반의 코발트 황화물의 제조 방법, 및 이를 이용한 염료감응형 태양전지
CN106450200A (zh) * 2016-10-25 2017-02-22 福建师范大学 一种CoS@碳纳米笼及其制备方法和应用
CN106531999A (zh) * 2016-11-25 2017-03-22 武汉理工大学 嵌入式硫化钴与多孔碳纳米棒复合电极材料及其制备方法和应用
CN107321372A (zh) * 2017-06-06 2017-11-07 江苏大学 CoS纳米颗粒/N掺杂RGO析氢复合材料的制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
JIAN LU ET AL.: "Coordination Polymers of Co(NCS)2 with Pyrazine and 4,4’-Bipyridine: Syntheses and Structures", 《INORG. CHEM.》 *
MING ZHONG ET AL.: "Zeolitic imidazole framework derived composites of nitrogen-doped porous carbon and reduced graphene oxide as high-efficiency cathode catalysts for Li–O2 batteries", 《INORGANIC CHEMISTRY FRONTIERS》 *
SHENGWEN LIU ET AL.: "S,N-Containing Co-MOF derived Co9S8@S,N-doped carbon materials as efficient oxygen electrocatalysts and supercapacitor electrode materials", 《INORGANIC CHEMISTRY FRONTIERS》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109759115A (zh) * 2019-02-11 2019-05-17 郑州大学 纳米钴/硫化钴负载于杂原子掺杂的多孔碳复合型催化剂及其制备方法和应用
CN111450898A (zh) * 2020-05-18 2020-07-28 安徽工业大学 光催化降解有机染料的无定形CoSx/MOF复合催化剂及制备方法
CN111450898B (zh) * 2020-05-18 2021-12-21 安徽工业大学 光催化降解有机染料的无定形CoSx/MOF复合催化剂及制备方法
CN111468164A (zh) * 2020-05-22 2020-07-31 青岛品泰新材料技术有限责任公司 一种氮掺杂纳米ZnS/石墨烯光催化材料的制备方法及应用

Also Published As

Publication number Publication date
CN108745381B (zh) 2020-10-09

Similar Documents

Publication Publication Date Title
Chen et al. Design of dual-modified MoS2 with nanoporous Ni and graphene as efficient catalysts for the hydrogen evolution reaction
Ahsan et al. Controlling the interfacial charge polarization of MOF-derived 0D–2D vdW architectures as a unique strategy for bifunctional oxygen electrocatalysis
Samanta et al. Doping of Ni in α-Fe2O3 nanoclews to boost oxygen evolution electrocatalysis
Mariano et al. Thousand-fold increase in O2 electroreduction rates with conductive MOFs
Zhang et al. Interfacial charge transfer in a hierarchical Ni2P/FeOOH heterojunction facilitates electrocatalytic oxygen evolution
Pi et al. All-inorganic SrSnO3 perovskite nanowires for efficient CO2 electroreduction
Cui et al. Promotion of the electrocatalytic oxygen evolution reaction by chemical coupling of CoOOH particles to 3D branched γ-MnOOH rods
Fan et al. Phosphorus-doped FeNi alloys/NiFe2O4 imbedded in carbon network hollow bipyramid as efficient electrocatalysts for oxygen evolution reaction
Shi et al. Ce-substituted spinel CuCo2O4 quantum dots with high oxygen vacancies and greatly improved electrocatalytic activity for oxygen evolution reaction
Chang et al. Research progress in improving the oxygen evolution reaction by adjusting the 3d electronic structure of transition metal catalysts
Nagappan et al. 2D CoFe-LDH nanosheet-incorporated 1D microfibers as a high-performance OER electrocatalyst in neutral and alkaline media
Kumar et al. A superior and stable electrocatalytic oxygen evolution reaction by one-dimensional FeCoP colloidal nanostructures
Peng et al. Nitrogen-doped carbon nanoflowers with in situ generated Fe3C embedded carbon nanotubes for efficient oxygen reduction electrocatalysts
CN108745381A (zh) 以mof为基底制备硫化钴催化剂的方法
Fang et al. Bimetallic NiFe 2 O 4 synthesized via confined carburization in NiFe-MOFs for efficient oxygen evolution reaction
Wang et al. Nanoflower-like MoS2 grown on porous TiO2 with enhanced hydrogen evolution activity
Li et al. Recent advances of modified Ni (Co, Fe)-based LDH 2D materials for water splitting
Sun et al. Assembly of a Highly Active Iridium-Based Oxide Oxygen Evolution Reaction Catalyst by Using Metal–Organic Framework Self-Dissolution
Jiang et al. Interfacial electronic modulation on nickel cobaltite/black phosphorus heterostructures for boosting the electrocatalytic oxygen evolution reaction
Huang et al. A facile reaction strategy for the synthesis of MOF-based pine-needle-like nanocluster hierarchical structure for efficient overall water splitting
Nie et al. Engineering phase stability of semimetallic MoS2 monolayers for sustainable electrocatalytic hydrogen production
Yuan et al. Prediction of dual-doped integrated CsPbBr3–CsPbCl3 perovskite heterostructure for practical photocatalytic water splitting with a new descriptor
Yu et al. Improving oxygen reduction reaction performance via central ions enhanced crystal-field splitting of MnO6 octahedron
Zhang et al. Hexagonal single-crystal CoS nanosheets: Controllable synthesis and tunable oxygen evolution performance
Guo et al. Cobalt Sulfide Nanoparticles Encapsulated in Carbon Nanotube-Grafted Carbon Nanofibers as Catalysts for Oxygen Evolution

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
EE01 Entry into force of recordation of patent licensing contract

Application publication date: 20181106

Assignee: TIANJIN QUANHECHENG TECHNOLOGY Co.,Ltd.

Assignor: NANKAI University

Contract record no.: X2024980002700

Denomination of invention: A Method for Preparing Cobalt Sulfide Catalysts Based on MOFs

Granted publication date: 20201009

License type: Common License

Record date: 20240312

EE01 Entry into force of recordation of patent licensing contract