CN108737267B - A Routing Algorithm Based on SDN and ICN Satellite Network Architecture - Google Patents
A Routing Algorithm Based on SDN and ICN Satellite Network Architecture Download PDFInfo
- Publication number
- CN108737267B CN108737267B CN201810501234.2A CN201810501234A CN108737267B CN 108737267 B CN108737267 B CN 108737267B CN 201810501234 A CN201810501234 A CN 201810501234A CN 108737267 B CN108737267 B CN 108737267B
- Authority
- CN
- China
- Prior art keywords
- node
- virtual
- request
- satellite
- controller
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000007246 mechanism Effects 0.000 claims abstract description 13
- 239000000284 extract Substances 0.000 claims abstract description 4
- 239000011159 matrix material Substances 0.000 claims description 39
- 230000005540 biological transmission Effects 0.000 claims description 22
- 238000000034 method Methods 0.000 claims description 11
- 230000001174 ascending effect Effects 0.000 claims description 10
- 238000013461 design Methods 0.000 claims description 9
- 230000008569 process Effects 0.000 claims description 6
- 230000009471 action Effects 0.000 claims description 3
- 230000008859 change Effects 0.000 claims description 3
- 238000012545 processing Methods 0.000 claims description 3
- 230000006978 adaptation Effects 0.000 claims description 2
- 230000002776 aggregation Effects 0.000 abstract description 3
- 238000004220 aggregation Methods 0.000 abstract description 3
- 238000004891 communication Methods 0.000 description 8
- 238000010586 diagram Methods 0.000 description 8
- 238000004364 calculation method Methods 0.000 description 7
- 238000005516 engineering process Methods 0.000 description 5
- 230000003044 adaptive effect Effects 0.000 description 3
- 238000012544 monitoring process Methods 0.000 description 3
- 238000011161 development Methods 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- PCTMTFRHKVHKIS-BMFZQQSSSA-N (1s,3r,4e,6e,8e,10e,12e,14e,16e,18s,19r,20r,21s,25r,27r,30r,31r,33s,35r,37s,38r)-3-[(2r,3s,4s,5s,6r)-4-amino-3,5-dihydroxy-6-methyloxan-2-yl]oxy-19,25,27,30,31,33,35,37-octahydroxy-18,20,21-trimethyl-23-oxo-22,39-dioxabicyclo[33.3.1]nonatriaconta-4,6,8,10 Chemical compound C1C=C2C[C@@H](OS(O)(=O)=O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CCCC(C)C)[C@@]1(C)CC2.O[C@H]1[C@@H](N)[C@H](O)[C@@H](C)O[C@H]1O[C@H]1/C=C/C=C/C=C/C=C/C=C/C=C/C=C/[C@H](C)[C@@H](O)[C@@H](C)[C@H](C)OC(=O)C[C@H](O)C[C@H](O)CC[C@@H](O)[C@H](O)C[C@H](O)C[C@](O)(C[C@H](O)[C@H]2C(O)=O)O[C@H]2C1 PCTMTFRHKVHKIS-BMFZQQSSSA-N 0.000 description 1
- 241000282414 Homo sapiens Species 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000013467 fragmentation Methods 0.000 description 1
- 238000006062 fragmentation reaction Methods 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L45/00—Routing or path finding of packets in data switching networks
- H04L45/38—Flow based routing
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/14—Relay systems
- H04B7/15—Active relay systems
- H04B7/185—Space-based or airborne stations; Stations for satellite systems
- H04B7/1851—Systems using a satellite or space-based relay
- H04B7/18517—Transmission equipment in earth stations
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L45/00—Routing or path finding of packets in data switching networks
- H04L45/02—Topology update or discovery
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L45/00—Routing or path finding of packets in data switching networks
- H04L45/12—Shortest path evaluation
- H04L45/124—Shortest path evaluation using a combination of metrics
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Physics & Mathematics (AREA)
- Astronomy & Astrophysics (AREA)
- Aviation & Aerospace Engineering (AREA)
- General Physics & Mathematics (AREA)
- Data Exchanges In Wide-Area Networks (AREA)
- Radio Relay Systems (AREA)
Abstract
本发明公开一种基于SDN与ICN卫星网络架构的路由算法,包括如下具体步骤:步骤一,划分虚拟节点;步骤二,基于虚拟节点设计FIB与PIT表;步骤三,更新FIB表机制;步骤四,当地面节点向低轨交换机节点发起请求时,交换机节点根据流表匹配请求,如果匹配成功则直接转发请求;否则节点根据流表匹配请求类型并根据请求类型提取源、目的IP地址或者虚拟节点信息,控制器执行基于虚拟节点的路由算法。该算法的路由效率和控制器对请求的聚合性能具有明显优越性。
The invention discloses a routing algorithm based on SDN and ICN satellite network architecture, comprising the following specific steps: step 1, dividing virtual nodes; step 2, designing FIB and PIT tables based on virtual nodes; step 3, updating FIB table mechanism; step 4 , when the ground node initiates a request to the low-orbit switch node, the switch node matches the request according to the flow table, and if the match is successful, it forwards the request directly; otherwise, the node matches the request type according to the flow table and extracts the source, destination IP address or virtual node according to the request type information, the controller executes a virtual node-based routing algorithm. The routing efficiency of the algorithm and the aggregation performance of the controller to the request have obvious advantages.
Description
技术领域technical field
本发明涉及卫星通信网络领域,具体说是一种基于SDN与ICN卫星网络架构的路由算法。The invention relates to the field of satellite communication networks, in particular to a routing algorithm based on SDN and ICN satellite network architecture.
背景技术Background technique
当前人类进入信息时代,信息称为当前社会经济发展的核心驱动力。传统的陆地信息设备和传输体制已满足不了复杂的信息需求。空间信息传输相比于陆地信息传输,在覆盖面积、接入速度、效率、实时性、精度方面都具有明显的优势。充分利用空间信息传输和陆地信息传输优势的一体化网络,能够满足日益纷杂的信息需求。At present, human beings have entered the information age, and information is called the core driving force of current social and economic development. The traditional terrestrial information equipment and transmission system can no longer meet the complex information needs. Compared with terrestrial information transmission, spatial information transmission has obvious advantages in coverage area, access speed, efficiency, real-time performance, and accuracy. An integrated network that makes full use of the advantages of space information transmission and terrestrial information transmission can meet the increasingly complex information needs.
随着天地一体化网络的发展,多层卫星网络路由技术成为亟需解决的问题,而卫星节点的高运转速度使得传统的静态路由算法不能很好的应用于卫星网络上,单纯的软件定义卫星网络不能满足大数据时间传输的需求,单纯的信息中心卫星网络无法实现数据返回或者需要转发节点具有较强的路由能力。With the development of the space-earth integrated network, the multi-layer satellite network routing technology has become an urgent problem to be solved, and the high operating speed of the satellite nodes makes the traditional static routing algorithm not well applied to the satellite network. The network cannot meet the needs of time transmission of big data, and the simple information center satellite network cannot realize data return or requires forwarding nodes with strong routing capabilities.
发明内容SUMMARY OF THE INVENTION
针对现有技术的局限性,本发明设计了基于虚拟节点的虚拟路由算法,该算法基于SDN与ICN技术的卫星网络架构(以下简称SDICSN架构)将信息中心的思想引入到软件定义的卫星网络架构中,通过SDN转控分离的特点简化卫星网络管理,利用ICN缓存的特性提高网络请求的响应速度,同时以GEO卫星节点作为SDN控制器,通过高轨控制器的全局性实现ICN请求与数据返回的动态路由。In view of the limitations of the prior art, the present invention designs a virtual routing algorithm based on virtual nodes. The algorithm is based on the satellite network architecture of SDN and ICN technology (hereinafter referred to as SDICSN architecture) and introduces the idea of information center into the software-defined satellite network architecture. , the satellite network management is simplified through the separation of SDN control and control, and the response speed of network requests is improved by using the characteristics of ICN cache. At the same time, the GEO satellite node is used as the SDN controller to realize the ICN request and data return through the global high-orbit controller. dynamic routing.
SDICSN架构由地面网络和卫星网络组成。地面网络根据区域等特点划分为若干个自治区域(Autonomous Systems,AS),每个AS由一个名字路由系统(Name Routing System,NRS)控制器管理,控制器之间通过北向接口交换网络状态信息。地面网络中对于ICN请求,当内容请求的兴趣包到达OpenFlow交换机节点时,如果交换机可以识别该兴趣包,则根据交换机的流表转发该请求;否则转发路径由NRS控制器根据PIT和FIB来生成并下发到相应的交换机。而对于传统基于IP的请求则由NRS控制根据源和目的IP地址生成转发路径。The SDICSN architecture consists of a terrestrial network and a satellite network. The ground network is divided into several Autonomous Systems (AS) according to the characteristics of the area. Each AS is managed by a Name Routing System (NRS) controller, and the controllers exchange network status information through the northbound interface. For the ICN request in the ground network, when the Interest packet of the content request reaches the OpenFlow switch node, if the switch can identify the Interest packet, the request is forwarded according to the flow table of the switch; otherwise, the forwarding path is generated by the NRS controller according to the PIT and FIB. and deliver it to the corresponding switch. For traditional IP-based requests, the NRS controls the generation of forwarding paths based on source and destination IP addresses.
为实现上述目的,本申请的技术方案是:一种基于SDN与ICN卫星网络架构的路由算法,其特征在于,包括如下具体步骤:In order to achieve the above object, the technical solution of the present application is: a routing algorithm based on SDN and ICN satellite network architecture, characterized in that it includes the following specific steps:
步骤一,划分虚拟节点;
步骤二,基于虚拟节点设计FIB与PIT表;
步骤三,更新FIB表机制;
步骤四,当地面节点向低轨交换机节点发起请求时,交换机节点根据流表匹配请求,如果匹配成功则直接转发请求;否则节点根据流表匹配请求类型并根据请求类型提取源、目的IP地址或者虚拟节点信息,控制器执行基于虚拟节点的路由算法。Step 4: When the ground node initiates a request to the low-orbit switch node, the switch node matches the request according to the flow table, and directly forwards the request if the match is successful; otherwise, the node matches the request type according to the flow table and extracts the source, destination IP address or Virtual node information, the controller executes the routing algorithm based on the virtual node.
进一步的,步骤一中划分虚拟节点具体的方式为:Further, the specific way of dividing virtual nodes in
R1:选择以本初子午线为起始线,以从南到北,自西向东为正方向;R1: Select the prime meridian as the starting line, and take the positive direction from south to north and from west to east;
R2:根据轨道面个数N和每个轨道面内卫星个数M,将地球球面划分为2*N*M的逻辑网格,每个网格即为一个虚拟节点;R2: According to the number of orbital planes N and the number of satellites M in each orbital plane, divide the earth sphere into 2*N*M logical grids, each grid is a virtual node;
R3:每个虚拟节点由左下角顶点的编号<n,m>唯一确定;R3: Each virtual node is uniquely determined by the number <n,m> of the vertex in the lower left corner;
R4:虚拟节点网络确定后,每个虚拟节点的标记唯一对应一组<经度,纬度>值,即 R4: After the virtual node network is determined, the label of each virtual node uniquely corresponds to a set of <longitude, latitude> values, namely
进一步的,在倾斜轨道星座中,从北极上空俯视,N个轨道面的升交点赤经在赤道所在平面内的2π的圆内均匀分布;对于参数为i:T/N/F的Walker星座,假设第一个轨道面初始时刻的升交点赤经为Ω1,第一个轨道面内编号为1的卫星节点初始相位角为ω1,1,则该星座下所有卫星节点的升交点赤经和相位角由下列公式计算:Further, in an inclined orbit constellation, looking down from above the North Pole, the right ascension of the ascending nodes of the N orbital planes is evenly distributed in a circle of 2π in the plane where the equator is located; for the Walker constellation with the parameter i:T/N/F, Assuming that the ascending node right ascension at the initial moment of the first orbital plane is Ω 1 , and the initial phase angle of the satellite node numbered 1 in the first orbital plane is ω 1,1 , then the ascending node right ascension of all satellite nodes in the constellation is and the phase angle are calculated by the following formulas:
式中,T为Walker星座上的卫星总数;F为相位因子。In the formula, T is the total number of satellites on the Walker constellation; F is the phase factor.
进一步的,步骤二中基于虚拟节点设计FIB与PIT表具体为:根据虚拟节点拓扑策略,将卫星网络抽象为一个大的交换节点,则地面请求的源、目的节点相对卫星网络是固定的。Further, the design of FIB and PIT tables based on virtual nodes in
进一步的,在FIB表内容与存储节点的关系记录增加CS节点所在的虚拟节点标记,PIT表在内容与转发端口的关系记录中增加端口所在的虚拟节点标记;同时FIB和PIT表由高轨控制器管理,PIT表的更新随着请求的到达与数据的返回而动态更新。Further, the virtual node mark where the CS node is located is added to the relationship record between the content of the FIB table and the storage node, and the virtual node mark where the port is located is added to the PIT table in the relationship record between the content and the forwarding port; at the same time, the FIB and PIT tables are controlled by the high rail. Server management, the update of the PIT table is dynamically updated with the arrival of the request and the return of the data.
更进一步的,本申请还包括:步骤5:生成转发路径后,控制器将其下发到相关的交换机节点,交换机节点执行转发动作;当数据返回时,控制器根据PIT表生成数据对象的返回路径,并根据缓存替换策略执行内容的缓存同时向FIB表中添加记录。Further, the present application also includes: Step 5: after generating the forwarding path, the controller sends it to the relevant switch node, and the switch node performs the forwarding action; when the data is returned, the controller generates the return of the data object according to the PIT table. path, and perform content caching according to the cache replacement policy while adding records to the FIB table.
更进一步的,步骤三中采用事件驱动与轮询相结合的机制更新FIB表机制,具体是:在事件驱动机制中,当请求数据返回到卫星节点时,控制器主动更新FIB表;当交换机因为执行缓存替换操作替换掉某一内容时,交换机主动通告这一变化,控制器更新FIB表;控制器通过轮询的方式来采集交换机节点的资源,在这一过程中,如果控制器对某一节点发起轮询请求后,定时器超时后并且没有收到ACK,控制器认为该节点失效,控制器更新FIB表,将与之相关的内容名称记录标记为失效;在FIB表出现记录替换的时候会优先替换被标记的记录。Further, in
作为更进一步的,基于虚拟节点的路由算法具体为:假设所有卫星节点的初始处理能力相同,每个卫星节点在四领域的方向上链路保持连接,则有:As a further step, the routing algorithm based on virtual nodes is as follows: Assuming that the initial processing capabilities of all satellite nodes are the same, and each satellite node keeps links in the directions of the four domains, there are:
S1:计算虚拟节点的最大通信量D<n,m>:S1: Calculate the maximum traffic D <n,m> of the virtual node:
S2:计算虚拟节点负载率γ<n,m>;S2: Calculate the virtual node load rate γ <n,m> ;
其中data(j)表示卫星节点j单位时间内的数据传输量;where data(j) represents the data transmission volume of satellite node j per unit time;
S3:计算链路权重w<n,m>,链路权重反映了轨内和轨间星际链路传输数据的能力;S3: Calculate the link weight w <n,m> , the link weight reflects the ability of intra-orbital and inter-orbital interplanetary links to transmit data;
S4:定义路由矩阵。S4: Define the routing matrix.
作为更进一步的,S3:计算链路权重w<n,m>具体为:As a further step, S3: Calculate the link weight w <n,m> specifically:
其中第一部分为1bit数据端到端的传输时间的倒数,L<n,m>为星际链路<n,m>的长度,C为数据在真空中传输的光速;第二部分为星际链路<n,m>带宽的可用率,s<n,m>为星际链路<n,m>带宽的剩余量,B为星际链路<n,m>带宽的最大值;α为链路权重自适应因子,其取值范围在(0,1)之间,控制器根据链路带宽利用率来自动调整α的值。The first part is the reciprocal of the end-to-end transmission time of 1bit data, L <n,m> is the length of the interstellar link <n,m>, C is the speed of light transmitted in the vacuum; the second part is the interstellar link <n,m> bandwidth availability, s <n,m> is the remaining bandwidth of the interstellar link <n,m>, B is the maximum bandwidth of the interstellar link <n,m>; α is the link weight self Adaptation factor, whose value range is between (0, 1), the controller automatically adjusts the value of α according to the link bandwidth utilization.
作为更进一步的,S4:定义路由矩阵:As a further step, S4: Define the routing matrix:
1)如果v=v1,o=o1,则传输路径在以虚拟节点坐标<n1,m1>和<n2,m2>为对角顶点的矩阵内产生;1) If v=v 1 , o=o 1 , the transmission path is generated in a matrix with virtual node coordinates <n 1 , m 1 > and <n 2 , m 2 > as diagonal vertices;
2)如果v=v2,o=o1,此时由于轨道内链路成环的特点,则在逻辑网络中,路由矩阵在垂直方向上环向传输,传输路径仍在虚拟节点坐标<n1,m1>和<n2,m2>为对角顶点的矩阵内产生;2) If v=v 2 , o=o 1 , at this time, due to the characteristic that the links in the track form a loop, in the logical network, the routing matrix is transmitted in the vertical direction, and the transmission path is still in the virtual node coordinate <n 1 , m 1 > and <n 2 , m 2 > are generated in the matrix of diagonal vertices;
3)如果v=v1,o=o2,此时路由矩阵在水平方向上环向传输;3) If v=v 1 , o=o 2 , at this time, the routing matrix is transmitted in the horizontal direction;
4)如果v=v2,o=o2,此时路由矩阵在垂直方向和水平方向上均环向传输。4) If v=v 2 , o=o 2 , at this time, the routing matrix is transmitted in a circular direction in both the vertical direction and the horizontal direction.
本发明与现有技术相比有益效果在于:该算法通过源、目的节点在卫星网络中的相对方位来生成路由矩阵,从而降低路由计算的复杂度。该算法的路由效率和控制器对请求的聚合性能具有明显优越性。Compared with the prior art, the present invention has the beneficial effect that the algorithm generates a routing matrix through the relative orientation of the source and destination nodes in the satellite network, thereby reducing the complexity of routing calculation. The routing efficiency of the algorithm and the aggregation performance of the controller to the request have obvious advantages.
附图说明Description of drawings
图1为虚拟节点划分示意图;Fig. 1 is a schematic diagram of virtual node division;
图2为基于事件驱动与轮询机制的FIB表的动态更新示意图;Fig. 2 is the dynamic update schematic diagram of FIB table based on event-driven and polling mechanism;
图3为自适应ICN与IP请求的虚拟节点路由状态图;Fig. 3 is the virtual node routing state diagram of adaptive ICN and IP request;
图4为路由矩阵逻辑图;Fig. 4 is a routing matrix logic diagram;
图5为请求延时与请求次数的关系图;Figure 5 is a diagram showing the relationship between the request delay and the number of requests;
图6为请求聚合度说明图;FIG. 6 is an explanatory diagram of a request aggregation degree;
图7为请求命中率与请求次数关系图;FIG. 7 is a graph showing the relationship between the request hit rate and the number of requests;
图8为FIB表更新速度说明图。FIG. 8 is an explanatory diagram of the update speed of the FIB table.
具体实施方式Detailed ways
下面将结合说明书附图,对本发明作进一步说明。以下实施例仅用于更加清楚地说明本发明的技术方案,而不能以此来限制本发明的保护范围。The present invention will be further described below with reference to the accompanying drawings. The following examples are only used to illustrate the technical solutions of the present invention more clearly, and cannot be used to limit the protection scope of the present invention.
实施例1Example 1
本实施例提供一种基于SDN与ICN技术的卫星网络架构,包括:应用层、控制层、转发层;所述应用层实现内容缓存、名字解析、消息路由和安全等业务;该应用层与控制层之间的北向接口实现业务的部署;所述控制层为分层分布式,其内部的控制器间通过东西向接口实现通信,同时各个控制器提供开放接口实现应用层对控制器的可编程功能;所述转发层,包括低轨基于OpenFlow的卫星节点和地面OpenFlow交换机,该层根据控制下发的流表实现消息的转发,同时增加了对返回内容的缓存功能。每个控制器,均包括:网络拓扑管理模块、路由管理模块、内容管理模块;所述网络拓扑管理模块,包括:链路状态监控模块和网络拓扑管理模块;所述路由管理模块,包括:网络流量管理监测模块、基于名称的路由计算模块、转发信息库FIB管理模块和待处理请求表PIT管理模块;所述内容管理模块,包括内容分片管理模块、名字解析器和内容缓存管理模块;控制器通过OpenFlow交换机的安全通道,使用OpenFlow协议实现对转发设备的控制。在本架构中,地面网络的控制器采用分层分布式控制方式,根据区域特点划分为若干个自治区域(AS),每个自治区域由一个名字路由系统(Name Routing System,NRS)控制器管理,控制器之间通过北向接口交换网络状态信息,该架构中的卫星网络采用双层轨道设计,其中3颗同步卫星作为控制器实现全球实时监测,低轨采用Walker星座实现全球覆盖。This embodiment provides a satellite network architecture based on SDN and ICN technologies, including: an application layer, a control layer, and a forwarding layer; the application layer implements services such as content caching, name resolution, message routing, and security; the application layer and control layer The northbound interface between the layers realizes the deployment of services; the control layer is layered and distributed, and the internal controllers communicate through the east-west interface, and each controller provides an open interface to realize the application layer to the controller. Programmability Function; the forwarding layer includes low-orbit OpenFlow-based satellite nodes and terrestrial OpenFlow switches, this layer realizes message forwarding according to the flow table issued by the control, and at the same time adds the function of caching the returned content. Each controller includes: a network topology management module, a routing management module, and a content management module; the network topology management module includes: a link state monitoring module and a network topology management module; the routing management module includes: a network Traffic management monitoring module, name-based routing calculation module, forwarding information base FIB management module and pending request table PIT management module; the content management module includes a content fragmentation management module, a name resolver and a content cache management module; control The controller uses the OpenFlow protocol to control the forwarding device through the secure channel of the OpenFlow switch. In this architecture, the controller of the ground network adopts a hierarchical distributed control method, which is divided into several autonomous areas (AS) according to the regional characteristics, and each autonomous area is managed by a Name Routing System (NRS) controller , the controllers exchange network status information through the northbound interface. The satellite network in this architecture adopts a double-layer orbit design, in which three synchronous satellites are used as controllers to realize global real-time monitoring, and the low orbit adopts the Walker constellation to achieve global coverage.
优选的,本架构采用覆盖IP协议的方式来识别ICN请求,用IF(ICN-Flag)值来区分请求类型;对于ICN请求,使用IP协议的Options字段携带内容名称信息。Preferably, the architecture adopts the method of covering the IP protocol to identify the ICN request, and uses the IF (ICN-Flag) value to distinguish the request type; for the ICN request, the Options field of the IP protocol is used to carry the content name information.
优选的,将整个卫星运行周期划分为若干个时间片;卫星控制器周期性检测卫星网络拓扑变化情况;从而提前预测是否需要改变数据传输的路径,继而保证了数据包返回时不会因卫星网络的动态性而中断。Preferably, the entire satellite operation cycle is divided into several time slices; the satellite controller periodically detects changes in the satellite network topology; thereby predicting in advance whether the data transmission path needs to be changed, thereby ensuring that the data packet returns will not be affected by the satellite network. interrupted by the dynamics.
当ICN客户端发起请求时,根据控制器中请求内容状态信息判断是否需要通过卫星网络转发内容,从而通过地面或者高轨控制器来跟踪请求的转发过程;当内容返回时,返回路径上的OpenFlow节点根据缓存替换策略来缓存内容。当数据返回路径上某一卫星节点发生故障造成数据中断时,其直接前驱卫星节点在ACK超时后向控制器报告错误信息,控制器重新生成数据返回路径并避开故障节点。When the ICN client initiates a request, it determines whether the content needs to be forwarded through the satellite network according to the status information of the requested content in the controller, so as to track the forwarding process of the request through the ground or high-orbit controller; when the content returns, the OpenFlow on the return path Nodes cache content according to a cache replacement policy. When a satellite node on the data return path fails and data is interrupted, its direct predecessor satellite node reports error information to the controller after the ACK times out, and the controller regenerates the data return path and avoids the faulty node.
本实施例针对传统天地一体化网络中视频等大数据传输延时大,卫星网络控制及新业务部署复杂等问题,提出了SDICSN架构。通过引入SDN与ICN技术,一方面利用SDN框架简化天地一体化网络的控制同时提高网络业务部署的效率;另一方面利用网络中转发节点固有的请求聚合与数据分发的能力,以及转发节点对内容具有高敏感性和可选择性缓存的特点,从而实现天地一体化网络整体性能的提升。In this embodiment, the SDICSN architecture is proposed to solve the problems of large transmission delay of video and other big data, and complex satellite network control and new service deployment in the traditional space-ground integrated network. By introducing SDN and ICN technologies, on the one hand, the SDN framework is used to simplify the control of the integrated space-earth network and improve the efficiency of network service deployment; It has the characteristics of high sensitivity and selective caching, so as to improve the overall performance of the integrated network of heaven and earth.
实施例2Example 2
本实施例提供一种基于SDN与ICN卫星网络架构的路由算法,对于低轨星座的设计而言,其星座的两个基本参数为轨道数N和同轨道内卫星节点的个数M,据此可以划分虚拟节点。由于卫星网络的参数都是提前设计好的,因此当星座参数确定后,则每一个虚拟节点的地理位置信息随之确定,即每一个虚拟节点的经纬度范围是可知的。如图1所示,当星座的部分参数为(5,12)时,将地球球面划分为2*5*12的逻辑网格。This embodiment provides a routing algorithm based on the SDN and ICN satellite network architecture. For the design of a low-orbit constellation, the two basic parameters of the constellation are the number of orbits N and the number of satellite nodes in the same orbit M, accordingly Virtual nodes can be divided. Since the parameters of the satellite network are designed in advance, after the constellation parameters are determined, the geographic location information of each virtual node is determined accordingly, that is, the latitude and longitude range of each virtual node is known. As shown in Figure 1, when the partial parameters of the constellation are (5,12), the earth sphere is divided into a logical grid of 2*5*12.
规则1:选择以本初子午线为起始线,以从南到北,自西向东为正方向。Rule 1: Choose the prime meridian as the starting line, and take the positive direction from south to north and from west to east.
规则2:根据轨道面个数N和每个轨道面内卫星个数M,将地球球面划分为2*N*M的逻辑网格,每个网格即为一个虚拟节点。Rule 2: According to the number N of orbital planes and the number of satellites M in each orbital plane, divide the earth sphere into 2*N*M logical grids, each grid is a virtual node.
规则3:每个虚拟节点由左下角顶点的编号<n,m>唯一确定。例如图中多边形ABCD区域所确定的虚拟节点由C点的编号<n,m>=<1,3>唯一标记。Rule 3: Each virtual node is uniquely determined by the number <n,m> of the lower left corner vertex. For example, the virtual node determined by the polygon ABCD area in the figure is uniquely marked by the number of point C <n,m>=<1,3>.
规则4:虚拟节点网络确定后,每个虚拟节点的标记唯一对应一组<经度,纬度>值,即 Rule 4: After the virtual node network is determined, the mark of each virtual node uniquely corresponds to a set of <longitude, latitude> values, namely
在倾斜轨道星座中,从北极上空俯视,N个轨道面的升交点赤经在赤道所在平面内的2π的圆内均匀分布。对于参数为i:T/N/F的Walker星座,假设第一个轨道面初始时刻的升交点赤经为Ω1,第一个轨道面内编号为1的卫星节点初始相位角为ω1,1,则该星座下所有卫星节点的升交点赤经和相位角可由公式(1)计算。In an inclined orbit constellation, looking down from above the North Pole, the right ascension points of the ascending nodes of the N orbital planes are evenly distributed within a 2π circle in the plane where the equator is located. For the Walker constellation with parameter i:T/N/F, assuming that the ascending node right ascension at the initial moment of the first orbital plane is Ω 1 , and the initial phase angle of the satellite node numbered 1 in the first orbital plane is ω 1 , 1 , then the ascending node right ascension and phase angle of all satellite nodes in the constellation can be calculated by formula (1).
卫星节点的升交点赤经和相位角确定之后,根据卫星节点的半长轴、偏心率、轨道倾角和近地点幅角等轨道参数可计算任意时刻卫星节点的在赤道惯性坐标系下的位置及其对应到地面上的经纬度。则由规则4中虚拟节点的经纬度和卫星节点的经纬可以很容易确定由哪一颗卫星负责该虚拟节点区域下的通信任务。After the ascending node right ascension and phase angle of the satellite node are determined, the position of the satellite node in the equatorial inertial coordinate system at any time and its Corresponds to the latitude and longitude on the ground. Then, from the longitude and latitude of the virtual node and the longitude and latitude of the satellite node in
根据虚拟节点拓扑策略,将卫星网络抽象为一个大的交换节点,则可以认为地面请求的源、目的节点相对卫星网络是固定的。引入虚拟节点后,如表1和表2所示,在FIB表内容与存储节点的关系记录增加CS节点所在的虚拟节点标记,PIT表在内容与转发端口的关系记录中增加端口所在的虚拟节点标记。同时FIB和PIT表由高轨控制器管理,PIT表的更新随着请求的到达与数据的返回而动态更新;According to the virtual node topology strategy, if the satellite network is abstracted into a large switching node, it can be considered that the source and destination nodes of the ground request are fixed relative to the satellite network. After introducing the virtual node, as shown in Table 1 and Table 2, add the virtual node tag where the CS node is located in the relationship record between the content of the FIB table and the storage node, and add the virtual node where the port is located in the relationship record between the content and the forwarding port in the PIT table. mark. At the same time, the FIB and PIT table are managed by the high rail controller, and the update of the PIT table is dynamically updated with the arrival of the request and the return of the data;
表1Table 1
表2Table 2
而对于星上FIB表的更新机制描述如下:FIB表记录了网络中内容缓存与缓存节点之间的映射关系,是提高内容请求响应速度的关键技术之一。不同于地面FIB表的创建与维护,本发明将星上FIB分为卫星节点缓存记录和地面节点缓存记录。前者在FIB表中虚拟节点编号为NULL,后者为缓存内容所在的虚拟节点编号。而对于卫星节点缓存映射的维护,本发明采用事件驱动与轮询相结合的机制实现,其更新过程如图2。在事件驱动机制中,当请求数据返回到卫星节点时,则FIB中一定没有该内容名称的记录(路由设计中将说明原因),此时控制器主动更新FIB表。当交换机因为执行缓存替换操作替换掉某一内容时,交换机主动通告这一变化,控制器更新FIB表。控制器需要通过轮询的方式来采集交换机节点的资源,在这一过程中,如果控制器对某一节点发起轮询请求后,定时器超时后并且没有收到ACK,控制器认为该节点失效,控制器更新FIB表,将与之相关的内容名称记录标记为失效。在FIB表出现记录替换的时候会优先替换被标记的记录。The update mechanism of the on-board FIB table is described as follows: The FIB table records the mapping relationship between content caches and cache nodes in the network, and is one of the key technologies to improve the response speed of content requests. Different from the creation and maintenance of the ground FIB table, the present invention divides the on-satellite FIB into satellite node cache records and ground node cache records. The former is NULL in the virtual node number in the FIB table, and the latter is the virtual node number where the cached content is located. As for the maintenance of the satellite node cache map, the present invention adopts the mechanism of combining event driving and polling, and the update process is shown in FIG. 2 . In the event-driven mechanism, when the request data is returned to the satellite node, there must be no record of the content name in the FIB (the reason will be explained in the routing design). At this time, the controller actively updates the FIB table. When the switch replaces a certain content by performing a cache replacement operation, the switch actively announces the change, and the controller updates the FIB table. The controller needs to collect the resources of the switch node through polling. During this process, if the controller initiates a polling request to a node, the timer expires and no ACK is received, the controller considers the node to be invalid. , the controller updates the FIB table and marks the content name record associated with it as invalid. When record replacement occurs in the FIB table, the marked record will be replaced first.
如图3为自适应ICN与IP请求的虚拟节点路由状态图。当地面节点向低轨交换机节点发起请求时,交换机节点根据流表匹配请求,如果匹配成功则直接转发请求。否则节点根据流表匹配请求类型并根据请求类型提取源、目的IP地址或者虚拟节点信息,控制器根据这些信息执行基于虚拟节点的路由算法。生成转发路径后,控制器将其下发到相关的交换机节点,交换机节点执行转发动作。当数据返回时,控制器根据PIT表生成数据对象的返回路径,并根据缓存替换策略执行内容的缓存同时向FIB表中添加记录。需要指出的是,对于缓存在卫星节点上内容,因为高轨控制器对内容是敏感的(通过FIB表),因此缓存在星上内容的请求会控制器会直接生成返回路径并下发到交换机节点。而对于缓存在地面网络的内容,则请求经过卫星网络的时候FIB中没有改内容的记录,数据返回到卫星节点时需要重新路由,该过程由高轨控制器完成,此时控制器会更新FIB表。在请求和数据对象转发的过程中,高轨控制器会根据时间片检测链路状态,从而解决或避免链路拥塞;当某一卫星节点故障时,其前驱节点在请求超时后会重新请求控制生成新的路径,但路由不需要从源节点开始。Fig. 3 is the virtual node routing state diagram of adaptive ICN and IP request. When the ground node initiates a request to the low-orbit switch node, the switch node matches the request according to the flow table, and directly forwards the request if the match is successful. Otherwise, the node matches the request type according to the flow table and extracts the source, destination IP address or virtual node information according to the request type, and the controller executes the virtual node-based routing algorithm according to these information. After the forwarding path is generated, the controller sends it to the relevant switch node, and the switch node performs the forwarding action. When the data is returned, the controller generates the return path of the data object according to the PIT table, and executes the caching of the content according to the cache replacement strategy and adds records to the FIB table. It should be pointed out that for the content cached on the satellite node, because the high-orbit controller is sensitive to the content (through the FIB table), the controller will directly generate a return path for the content cached on the satellite and send it to the switch. node. For the content cached on the ground network, there is no record of content changes in the FIB when the request passes through the satellite network. When the data is returned to the satellite node, it needs to be re-routed. This process is completed by the high-orbit controller. At this time, the controller will update the FIB. surface. In the process of request and data object forwarding, the high-orbit controller will detect the link status according to the time slice, so as to solve or avoid link congestion; when a satellite node fails, its predecessor node will re-request control after the request times out. A new path is generated, but the route does not need to start from the source node.
当ICN请求和数据返回通过卫星网络传输时,兴趣包与数据对象的传输路径需要控制器根据路由策略计算。根据上述虚拟节点的引入,如图1,当数据在虚拟节点<2,5>和<5,3>之间传输时,因为每个虚拟节点由与之最近的卫星负责通信,则数据传输的路径可以由卫星节点路径的计算转化为虚拟节点路径的计算。而请求内容的缓存有两种可能,一种是内容缓存在地面节点上;另一种是内容缓存在卫星节点上。第一种情况下,数据返回路径由源、目的节点所在的虚拟节点计算出来;第二种情况下,根据卫星节点的运行轨迹得到该节点所在的虚拟节点,则路由计算转化为第一种情况。When ICN requests and data returns are transmitted through the satellite network, the transmission paths of Interest packets and data objects need to be calculated by the controller according to the routing policy. According to the introduction of the above virtual nodes, as shown in Figure 1, when data is transmitted between virtual nodes <2,5> and <5,3>, because each virtual node is responsible for communication with the nearest satellite, the data transmission The path can be converted from the calculation of the satellite node path to the calculation of the virtual node path. There are two possibilities for caching the requested content, one is that the content is cached on the ground node; the other is that the content is cached on the satellite node. In the first case, the data return path is calculated by the virtual node where the source and destination nodes are located; in the second case, the virtual node where the node is located is obtained according to the running trajectory of the satellite node, and the routing calculation is transformed into the first case .
虚拟路由计算的条件及定义如下:The conditions and definitions of virtual route calculation are as follows:
1、假设所有卫星节点的初始处理能力相同。1. It is assumed that the initial processing capacity of all satellite nodes is the same.
2、每个卫星节点在四领域的方向上链路保持连接,且假设不考虑反向缝。2. Each satellite node keeps the link connected in the direction of the four domains, and it is assumed that the reverse seam is not considered.
3、卫星节点最大通信量Sdmax(i):单位时间内卫星节点i传输的最大数据量。3. The maximum communication amount of the satellite node S dmax (i): the maximum amount of data transmitted by the satellite node i per unit time.
4、虚拟节点最大通信量D<n,m>:单位时间内虚拟节点传输的最大数据量,即同轨道内所有卫星节点最大通信量之和。4. The maximum communication volume of the virtual node D <n,m> : the maximum amount of data transmitted by the virtual node in unit time, that is, the sum of the maximum communication volume of all satellite nodes in the same orbit.
5、虚拟节点负载率γ<n,m>:单位时间内经过该虚拟节点的所有卫星节点所传输数据的总和与D<n,m>的比值。其中data(j)表示卫星节点j单位时间内的数据传输量。5. Virtual node load rate γ <n,m> : the ratio of the sum of data transmitted by all satellite nodes passing through the virtual node in unit time to D <n,m> . where data(j) represents the data transmission volume of satellite node j per unit time.
6、链路权重w<n,m>:链路权重反映了轨内和轨间星际链路传输数据的能力。由公式(4)定义,其中第一部分为1bit数据端到端的传输时间的倒数,L<n,m>为星际链路<n,m>的长度,假设数据在真空中以光速C传输数据(单位为bit·m/s);第二部分为星际链路<n,m>带宽的可用率,s<n,m>为星际链路<n,m>带宽的剩余量,B为星际链路<n,m>带宽的最大值;α为链路权重自适应因子,其取值范围在(0,1)之间,控制器根据链路带宽利用率来自动调整α的值。6. Link weight w <n,m> : The link weight reflects the ability of intra-orbital and inter-orbital interplanetary links to transmit data. Defined by formula (4), the first part is the reciprocal of the end-to-end transmission time of 1bit data, L <n,m> is the length of the interstellar link <n,m>, assuming that the data is transmitted in the vacuum at the speed of light C ( The unit is bit m/s); the second part is the availability of the bandwidth of the interstellar link <n,m>, s <n,m> is the remaining amount of the bandwidth of the interstellar link <n,m>, and B is the interstellar link The maximum value of the bandwidth of the road <n,m>; α is the link weight adaptive factor, and its value range is between (0, 1), and the controller automatically adjusts the value of α according to the link bandwidth utilization rate.
7、路由矩阵定义:令N=5,M=7,则虚拟节点的逻辑网络结构如图所示。假设根据PIT表查得数据返回的源、目的节点的虚拟节点坐标为<n1,m1>和<n2,m2>。7. Definition of routing matrix: let N=5, M=7, then the logical network structure of the virtual node is as shown in the figure. It is assumed that the virtual node coordinates of the source and destination nodes returned from the data searched from the PIT table are <n 1 , m 1 > and <n 2 , m 2 >.
1)如果v=v1,o=o1,则传输路径在以虚拟节点坐标<n1,m1>和<n2,m2>为对角顶点的矩阵内产生,如图4中路由矩阵为A-A3-B-B1。1) If v=v 1 , o=o 1 , the transmission path is generated in a matrix with virtual node coordinates <n 1 , m 1 > and <n 2 , m 2 > as diagonal vertices, as shown in Figure 4. The matrix is A-A3-B-B1.
2)如果v=v2,o=o1,此时由于轨道内链路成环的特点,则在逻辑网络中,路由矩阵在垂直方向上环向传输,传输路径仍在虚拟节点坐标<n1,m1>和<n2,m2>为对角顶点的矩阵内产生,如图4中当源、目的节点为A、C时,路由矩阵为半回环矩阵A-A1-C2-C1-C-C3-A2-A3。2) If v=v 2 , o=o 1 , at this time, due to the characteristics of the links in the track forming a loop, in the logical network, the routing matrix is transmitted in the vertical direction, and the transmission path is still in the virtual node coordinate <n 1 , m 1 > and <n 2 , m 2 > are generated in the matrix of diagonal vertices. As shown in Figure 4, when the source and destination nodes are A and C, the routing matrix is a semi-circular matrix A-A1-C2-C1 -C-C3-A2-A3.
3)如果v=v1,o=o2,此时路由矩阵在水平方向上环向传输,如图4中当源、目的节点为A、D时,路由矩阵为半回环矩阵A-A4-D1-D-A6-A5。3) If v=v 1 , o=o 2 , then the routing matrix is looped in the horizontal direction. As shown in Figure 4, when the source and destination nodes are A and D, the routing matrix is a half-loop matrix A-A4- D1-D-A6-A5.
4)如果v=v2,o=o2,此时路由矩阵在垂直方向和水平方向上均环向传输,如图4中当源、目的节点为F、E时,路由矩阵为回环矩阵F-E1-E-F1。4) If v=v 2 , o=o 2 , then the routing matrix is transmitted in both vertical and horizontal directions. As shown in Figure 4, when the source and destination nodes are F and E, the routing matrix is the loopback matrix F. -E1-E-F1.
假设数据从A点传输到B点,根据路由矩阵的定义得到一个无向图矩阵G=(V,Y,W),其中V为虚拟节点的集合,Y为虚拟节点负载率的集合,由公式(3)确定,W为负责虚拟节点通信的卫星节点之间的链路权重的集合,由公式(4)确定。Assuming that data is transmitted from point A to point B, an undirected graph matrix G=(V, Y, W) is obtained according to the definition of the routing matrix, where V is the set of virtual nodes, and Y is the set of virtual node load rates. The formula (3) Determine, W is a set of link weights between satellite nodes responsible for virtual node communication, determined by formula (4).
基于虚拟路由矩阵的最优路径算法具体实施步骤如下:The specific implementation steps of the optimal path algorithm based on virtual routing matrix are as follows:
S1:根据虚拟节点信息计算其最大通信量。S1: Calculate the maximum communication amount according to the virtual node information.
S2:根据节点信息计算路由矩阵。S2: Calculate the routing matrix according to the node information.
S3:根据路由矩阵和虚拟节点的通信量计算路由矩阵中虚拟节点的负载率和链路权重矩阵。S3: Calculate the load rate and link weight matrix of the virtual nodes in the routing matrix according to the routing matrix and the traffic of the virtual nodes.
S4:根据上述信息构造无向图矩阵。S4: Construct an undirected graph matrix according to the above information.
S5:根据虚拟节点负载率和链路权重矩阵计算最优路径。S5: Calculate the optimal path according to the virtual node load rate and the link weight matrix.
S6:计算当前工作节点状态下的暂时节点和永久性节点。S6: Calculate the temporary nodes and permanent nodes in the current working node state.
S7:将工作节点添加到路径集合S中,若目的节点已经找到,则结束程序,否则转到S6。S7: Add the working node to the path set S, if the destination node has been found, end the procedure, otherwise go to S6.
针对现有卫星网络路由算法的不足和SDICSN在卫星网络上所提供新的特性,本实施例SDICSN架构下提出了VDMR路由算法,利用虚拟节点拓扑的思想,设计了地面虚拟节点的划分规则,利用卫星网络星座的参数将卫星进行编号,通过虚拟节点的经纬度与卫星节点映射到地面的经纬度确定了虚拟节点与卫星节点的一一对应关系。根据卫星网络的运行规律,本文提出了虚拟路由算法,该算法通过源、目的节点在卫星网络中的相对方位来生成路由矩阵,从而降低路由计算的复杂度。Aiming at the deficiencies of the existing satellite network routing algorithms and the new features provided by SDICSN on the satellite network, the VDMR routing algorithm is proposed under the SDICSN architecture in this embodiment. The idea of virtual node topology is used to design the division rules for ground virtual nodes. The parameters of the satellite network constellation number the satellites, and the one-to-one correspondence between the virtual nodes and the satellite nodes is determined by the longitude and latitude of the virtual nodes and the longitude and latitude of the satellite nodes mapped to the ground. According to the operation law of the satellite network, this paper proposes a virtual routing algorithm, which generates a routing matrix based on the relative positions of the source and destination nodes in the satellite network, thereby reducing the complexity of routing calculation.
以上所述,仅为本发明创造较佳的具体实施方式,但本发明创造的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明创造披露的技术范围内,根据本发明创造的技术方案及其发明构思加以等同替换或改变,都应涵盖在本发明创造的保护范围之内。The above description is only a preferred embodiment of the present invention, but the protection scope of the present invention is not limited to this. The equivalent replacement or modification of the created technical solution and its inventive concept shall be included within the protection scope of the present invention.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810501234.2A CN108737267B (en) | 2018-05-23 | 2018-05-23 | A Routing Algorithm Based on SDN and ICN Satellite Network Architecture |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810501234.2A CN108737267B (en) | 2018-05-23 | 2018-05-23 | A Routing Algorithm Based on SDN and ICN Satellite Network Architecture |
Publications (2)
Publication Number | Publication Date |
---|---|
CN108737267A CN108737267A (en) | 2018-11-02 |
CN108737267B true CN108737267B (en) | 2020-11-27 |
Family
ID=63935121
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810501234.2A Active CN108737267B (en) | 2018-05-23 | 2018-05-23 | A Routing Algorithm Based on SDN and ICN Satellite Network Architecture |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108737267B (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109474464B (en) * | 2018-11-13 | 2020-06-16 | 电子科技大学 | A Fast Network Update Method Based on OpenNF Mechanism |
CN109714219B (en) * | 2019-03-13 | 2021-11-09 | 大连大学 | Virtual network function rapid mapping method based on satellite network |
CN110391983B (en) * | 2019-07-05 | 2021-08-03 | 中国人民解放军国防科技大学 | Distributed congestion avoidance routing algorithm for satellite-ground integrated network |
CN110505153B (en) * | 2019-08-12 | 2021-09-14 | 武汉大学 | Heaven and earth integrated hybrid routing method |
CN113992753B (en) * | 2021-10-17 | 2022-06-10 | 南京理工大学 | Intelligent caching strategy for heaven-earth integrated satellite network node |
CN114422423B (en) * | 2021-12-24 | 2024-02-20 | 大连大学 | Satellite network multi-constraint routing method based on SDN and NDN |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101459946A (en) * | 2008-12-12 | 2009-06-17 | 南京邮电大学 | Satellite network reliable routing method based on virtual nodes |
CN105282038A (en) * | 2015-11-04 | 2016-01-27 | 哈尔滨工业大学 | Distributed asterism networking optimization method based on stability analysis and used in mobile satellite network |
CN106100720A (en) * | 2016-06-08 | 2016-11-09 | 大连大学 | The fast route convergence optimization method of LEO/MEO satellite network |
CN107835046A (en) * | 2017-01-24 | 2018-03-23 | 大连大学 | A kind of method for routing |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10749995B2 (en) * | 2016-10-07 | 2020-08-18 | Cisco Technology, Inc. | System and method to facilitate integration of information-centric networking into internet protocol networks |
-
2018
- 2018-05-23 CN CN201810501234.2A patent/CN108737267B/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101459946A (en) * | 2008-12-12 | 2009-06-17 | 南京邮电大学 | Satellite network reliable routing method based on virtual nodes |
CN105282038A (en) * | 2015-11-04 | 2016-01-27 | 哈尔滨工业大学 | Distributed asterism networking optimization method based on stability analysis and used in mobile satellite network |
CN106100720A (en) * | 2016-06-08 | 2016-11-09 | 大连大学 | The fast route convergence optimization method of LEO/MEO satellite network |
CN107835046A (en) * | 2017-01-24 | 2018-03-23 | 大连大学 | A kind of method for routing |
Non-Patent Citations (3)
Title |
---|
"A dynamic routing concept for ATM-based satellite personal communication networks";M. Werner,et al.;《IEEE Journal on Selected Areas in Communications》;19970831;1636-1648 * |
"An anti-destroying routing method for distributed satellite networks based on standby nodes";Qingli Liu,et al.;《2017 7th IEEE International Conference on Electronics Information and Emergency Communication (ICEIEC)》;20170831;344-347 * |
"基于NDN的多层卫星网络分布式动态路由方法";刘迪,等;《电子学报》;20171130;2769-2778 * |
Also Published As
Publication number | Publication date |
---|---|
CN108737267A (en) | 2018-11-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108737267B (en) | A Routing Algorithm Based on SDN and ICN Satellite Network Architecture | |
CN108768854B (en) | A Routing Algorithm Based on Virtual Node Matrix | |
CN111953399B (en) | An inter-satellite routing method in a low-orbit satellite communication network | |
Liu et al. | Routing algorithm design of satellite network architecture based on SDN and ICN | |
CN101459946B (en) | A Reliable Routing Method for Satellite Networks Based on Virtual Nodes | |
Jia et al. | Routing algorithm with virtual topology toward to huge numbers of LEO mobile satellite network based on SDN | |
CN103650427B (en) | For routeing the integrated system of Ethernet packet on Internet protocol network | |
CN106685834B (en) | Trusted Routing Method Based on Medium/Low Orbit Satellite Network | |
CN113141622B (en) | A distributed routing management method for ultra-large-scale low-orbit satellite constellations | |
CN111294108A (en) | Efficient routing method for orthogonal circular orbit configuration satellite constellation | |
CN107517077A (en) | Two-layer Satellite Network Model of Space Networking and Routing Optimization Method of Topology Control | |
CN108540211A (en) | A kind of satellite network framework based on SDN Yu ICN technologies | |
CN114158106B (en) | Distributed routing method, device and storage medium for satellite network | |
CN106209624B (en) | Earth observation satellite network minimal-overhead method for routing based on space-time diagram | |
Chen et al. | Time-varying resource graph based resource model for space-terrestrial integrated networks | |
Liu et al. | Routing for predictable multi-layered satellite networks | |
Li et al. | Load-balanced cooperative transmission in MEO-LEO satellite network | |
CN114866134B (en) | CCN-based satellite network route forwarding method | |
Yan et al. | Logic path identified hierarchical routing for large-scale LEO satellite networks | |
Bai et al. | Vector segment routing for large-scale multilayer satellite network | |
CN115483972B (en) | A communication system based on a two-layer satellite optical network architecture and its dynamic flow control method | |
CN114039903B (en) | Software-defined satellite-ground converged network inter-domain routing method based on request domain | |
CN114513241B (en) | SDN-based high-performance QoS guaranteed low-orbit satellite inter-satellite routing method | |
CN115696492A (en) | Low-overhead space vector segmented routing method for large-scale constellation network | |
CN113259250B (en) | Ephemeris-based satellite link state database updating method and device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |