CN108732648B - 一种面向山地暴雨预报的渐进决策方法 - Google Patents

一种面向山地暴雨预报的渐进决策方法 Download PDF

Info

Publication number
CN108732648B
CN108732648B CN201810384342.6A CN201810384342A CN108732648B CN 108732648 B CN108732648 B CN 108732648B CN 201810384342 A CN201810384342 A CN 201810384342A CN 108732648 B CN108732648 B CN 108732648B
Authority
CN
China
Prior art keywords
forecasting
mode
forecast
rainstorm
mountain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810384342.6A
Other languages
English (en)
Other versions
CN108732648A (zh
Inventor
程海云
熊明
杨文发
陈瑜彬
訾丽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bureau of Hydrology Changjiang Water Resources Commission
Original Assignee
Bureau of Hydrology Changjiang Water Resources Commission
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bureau of Hydrology Changjiang Water Resources Commission filed Critical Bureau of Hydrology Changjiang Water Resources Commission
Priority to CN201810384342.6A priority Critical patent/CN108732648B/zh
Publication of CN108732648A publication Critical patent/CN108732648A/zh
Application granted granted Critical
Publication of CN108732648B publication Critical patent/CN108732648B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01WMETEOROLOGY
    • G01W1/00Meteorology
    • G01W1/10Devices for predicting weather conditions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/10Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation

Landscapes

  • Environmental & Geological Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Atmospheric Sciences (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Ecology (AREA)
  • Environmental Sciences (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

本发明提供了一种面向山地暴雨预报的渐进决策方法,包括多模式嵌套山地暴雨渐进预报方法、预报模式嵌套节点控制方法和山地暴雨目标评价和反馈方法。采用数值天气预报产品、基于高空和地面大气探测资料的综合预报信息、雷达和卫星预估信息等降水预报模式,针对各模式预报时空尺度和效果的差异,按空间尺度由大至小、时间尺度由长及短渐次开展降雨预报,通过不断评估预报目标,决策模式循环频次及预报成果的方法。

Description

一种面向山地暴雨预报的渐进决策方法
技术领域
本发明涉及降水预报技术领域,尤其涉及一种面向山地暴雨预报的渐进决策方法。
背景技术
山地暴雨是诱发山洪灾害的主要因素之一。目前,山洪灾害预报预警主要基于地面雨量计和降水天气雷达结果,降水天气雷达预警时间非常有限,而采用地面雨量计开展暴雨预报时灾害可能已经发生。随着基于降水天气雷达卫星、高空和地面大气探测和数值天气模式预测降水技术的不断进步,其在各自的时间和空间尺度上已能较好的开展降水预报,如何将适合大尺度、长时段的数值天气模式、适合大中等尺度的高空和地面大气探测模式以及适合中小尺度和短历时的降水天气雷达卫星模式有机结合,多模式融合用于山地小区域暴雨预报,提高山洪灾害预报精度和延长预警时间,具有重大意义。
发明内容
本发明的目的在于针对上述现有技术的不足,提供了一种面向山地暴雨预报的渐进决策方法,能够提高山洪灾害预报精度和延长预警时间。
为实现上述目的,本发明采用了如下技术方案:
本发明提供了一种面向山地暴雨预报的渐进决策方法,包括多模式嵌套山地暴雨渐进预报方法、预报模式嵌套节点控制方法和山地暴雨目标评价和反馈方法;
所述多模式嵌套山地暴雨渐进预报方法为:采用降水预报模式,针对所述降水预报模式预报时空尺度的差异,采用多元信息融合,按空间尺度由大至小、时间尺度由长及短相互嵌套的方式渐次开展降雨预报,通过不断评估预报目标,决策模式循环频次及预报成果,从而实现逐小时甚至更短历时的暴雨无缝滚动预报;
所述预报模式嵌套节点控制方法为:根据不同所述降水预报模式的特点,将预报暴雨不确定度和预报时效双控作为预报目标的决策指标,判断不同所述降水预报模式转换的节点;
所述山地暴雨目标评价和反馈方法为:利用山地暴雨地面站网实测数据,对不同所述降水预报模式的预报目标进行误差评价,调整优化数值天气预报模式参数组合方案及雷达和卫星预估降水的算法,对降水进行偏差订正。
进一步,所述降水预报模式包括数值天气预报产品、基于高空和地面大气探测资料的综合预报信息和雷达卫星预估信息。
进一步,所述数值天气预报产品涵盖欧洲中心细网格模式、德国数值模式、日本数值模式、AREM模式、GRAPES-MESO模式以及WRF模式的产品;所述基于高空和地面大气探测资料的综合预报信息包括高空或地面天气图表分析、物理量场诊断分析;所述雷达和卫星预估信息包括Z-I关系降水率估计、雷达强对流交叉相关追踪技术、光流法追踪技术、雷达联合雨量计降水估计、云指数降水估计。
进一步,可利用不同所述降水预报模式进行暴雨预报过程中的不确定度计算,确定降水模式的转换时间点;在不确定度较接近且难判断时,可采用在24小时进行数值天气预报产品到基于高空和地面大气探测资料的综合预报信息的过渡;采用在2小时进行所述基于高空和地面大气探测资料的综合预报信息到所述雷达和卫星预估信息的过渡。
进一步,采用误差控制的方法对所述多模式嵌套山地暴雨渐进预报方法、所述预报模式嵌套节点控制方法和所述山地暴雨目标评价和反馈方法的精度进行评价,并基于实测暴雨与预报暴雨的差异进行暴雨偏差订正,对预报模式及参数进行反馈。
进一步,所述数值天气预报产品的暴雨偏差订正采用降水的频率和面积匹配方法;所述雷达和卫星预估信息的暴雨偏差订正采用单点校准法、平均校准法、空间校准法、距离加权法、变分校准法、最优插值校准法。
进一步,采用所述不确定度计算,确定降水模式的转换时间点为整点时间或非整点时间。
进一步,所述面向山地暴雨预报的渐进决策方法适用于较易发生山洪灾害的固定地区或大范围预报能发生较大降水的非固定局部地区。
本发明的有益效果为:采用数值天气预报产品(0~72小时)、基于高空和地面大气探测资料的综合预报信息(0~24小时)、雷达和卫星预估信息(0~2小时)等降水预报模式,针对各模式预报时空尺度的差异,按空间尺度由大至小、时间尺度由长及短渐次开展降雨预报,通过不断评估预报目标,决策模式循环频次及预报成果的方法;
所述预报模式嵌套节点控制方法为:根据不同降水预报模式的特点,将预报暴雨不确定度和预报时效双控作为预报目标的决策指标,判断不同降水预报模式转换的节点;
所述山地暴雨目标评价和反馈方法为:利用山地暴雨地面站网实测数据,针对不同预报模式预报目标进行误差评价,采用偏差订正和调整模式参数组合修正降水预报,用于下一阶段预报循环。
附图说明
图1为本发明一种面向山地暴雨预报的渐进决策方法的原理图;
图2为多模式嵌套山地暴雨渐进预报方法的原理图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,下面结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。
请参阅图1和图2,一种面向山地暴雨预报的渐进决策方法,包括多模式嵌套山地暴雨渐进预报方法、预报模式嵌套节点控制方法和山地暴雨目标评价和反馈方法;
所述多模式嵌套山地暴雨渐进预报方法为:采用降水预报模式,针对所述降水预报模式预报时空尺度的差异,采用多元信息融合,按空间尺度由大至小、时间尺度由长及短相互嵌套的方式渐次开展降雨预报,通过不断评估预报目标,决策模式循环频次及预报成果,从而实现逐小时甚至更短历时的暴雨无缝滚动预报;
所述预报模式嵌套节点控制方法为:根据不同所述降水预报模式的特点,将预报暴雨不确定度和预报时效双控作为预报目标的决策指标,判断不同所述降水预报模式转换的节点;
所述山地暴雨目标评价和反馈方法为:利用山地暴雨地面站网实测数据,对不同所述降水预报模式的预报目标进行误差评价,调整优化数值天气预报模式参数组合方案及雷达和卫星预估降水的算法,对降水进行偏差订正。
所述降水预报模式包括数值天气预报产品(0~72小时)、基于高空和地面大气探测资料的综合预报信息(0~24小时)或雷达和卫星预估信息(0~2小时)。
所述数值天气预报产品涵盖欧洲中心细网格模式、德国数值模式、日本数值模式、AREM模式、GRAPES-MESO模式以及WRF模式的产品;所述基于高空和地面大气探测资料的综合预报信息包括高空或地面天气图表分析、物理量场诊断分析;所述雷达和卫星预估信息包括Z-I关系降水率估计、雷达强对流交叉相关追踪技术、光流法追踪技术、雷达联合雨量计降水估计、云指数降水估计。
可利用不同所述降水预报模式进行暴雨预报过程中的不确定度计算,确定降水模式的转换时间点;
预报模式嵌套节点控制方法包括不确定度指标控制法和时间控制法等双控方法。不确定度指标控制法采用计算的数值天气预报产品、基于高空和地面大气探测资料的综合预报信息以及雷达和卫星预估信息暴雨不确定度计算成果,判断降水预报模式转换的时间节点,不确定度计算可采用前期暴雨预报值与地面实测值的标准差或A类、B类不确定度计算成果。当数值天气预报产品的不确定度大于基于高空和地面大气探测资料的综合预报信息的不确定度时,或基于高空和地面大气探测资料的综合预报信息的不确定度大于雷达和卫星预估信息的不确定度时,即由前一种模式向后一种模式转换。相同种类降水预报模式如数值天气预报产品也采取不确定度指标控制法选用最优的降水预报成果;
在不确定度较接近且难判断时,可采用在24小时进行数值天气预报产品到基于高空和地面大气探测资料的综合预报信息的过渡;采用在2小时进行所述基于高空和地面大气探测资料的综合预报信息到所述雷达和卫星预估信息的过渡。
采用误差控制的方法对所述多模式嵌套山地暴雨渐进预报方法、所述预报模式嵌套节点控制方法和所述山地暴雨目标评价和反馈方法的精度进行评价,并基于实测暴雨与预报暴雨的差异进行暴雨偏差订正,对预报模式及参数进行反馈。
山地暴雨目标评价和反馈方法包括山地预报暴雨的目标评价和基于实测暴雨对降水预报模式的反馈方法;
山地预报暴雨的目标评价可采用误差控制方法,预报暴雨目标评价可采用TS和ETS评分来描述降水落区位置预报准确度,利用探测概率(POD)、虚假警报率(FAR)、临界成功指数(CSI)评价预报效果;
所述数值天气预报产品的暴雨偏差订正可采用降水的频率和面积匹配方法;所述雷达和卫星预估信息的暴雨偏差订正可采用单点校准法、平均校准法、空间校准法、距离加权法、变分校准法、最优插值校准法。
采用所述不确定度计算,确定降水模式的转换时间点,可是整点时间、也可是非整点时间。
所述面向山地暴雨预报的渐进决策方法适用于较易发生山洪灾害的固定地区或大范围预报可能发生较大降水的非固定局部地区。
一种面向山地暴雨预报的渐进决策方法的实施步骤为:
1)设定预报目标:
根据天气雷达可探测范围,确定预报山地小区域的范围和数量。
2)预报目标的展开:
根据预报范围内各山地小区域引起灾害的临界暴雨值,按不同降水预报模式分别或统一确定阀值目标。
3)目标的实施:
开展多模式嵌套山地暴雨滚动预报,按不确定度和时间双控原则转换采用降水预报模式。当所采用降水预报模式的暴雨预报值达到或超过相应的预警要求时,则相应的发布内部警告或准备转移或立即转移。
4)目标分析:
对于各个不同模式的预报成果,利用实测的降水资料,评价暴雨预报目标值的精度,采用暴雨偏差订正方法对预报值进行订正,并对采用的预报模式参数进行调整及优化,以便开展下一循环的暴雨预报。
以上所述实施例仅表达了本发明的实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (6)

1.一种面向山地暴雨预报的渐进决策方法,其特征在于:包括多模式嵌套山地暴雨渐进预报方法、预报模式嵌套节点控制方法和山地暴雨目标评价和反馈方法;
所述多模式嵌套山地暴雨渐进预报方法为:采用降水预报模式,针对所述降水预报模式预报时空尺度的差异,采用多元信息融合,按空间尺度由大至小、时间尺度由长及短相互嵌套的方式渐次开展降雨预报,通过不断评估预报目标,决策模式循环频次及预报成果,从而实现逐小时甚至更短历时的暴雨无缝滚动预报;
所述预报模式嵌套节点控制方法为:根据不同所述降水预报模式的特点,将预报暴雨不确定度和预报时效双控作为预报目标的决策指标,判断不同所述降水预报模式转换的节点;
所述山地暴雨目标评价和反馈方法为:利用山地暴雨地面站网实测数据,对不同所述降水预报模式的预报目标进行误差评价,调整优化数值天气预报模式参数组合方案及雷达和卫星预估降水的算法,对降水进行偏差订正;
利用不同所述降水预报模式进行暴雨预报过程中的不确定度计算,确定降水模式的转换时间点;在不确定度较接近且难判断时,采用在24小时进行数值天气预报产品到基于高空和地面大气探测资料的综合预报信息的过渡;采用在2小时进行所述基于高空和地面大气探测资料的综合预报信息到所述雷达和卫星预估信息的过渡;
采用所述不确定度计算,确定降水模式的转换时间点为整点时间或非整点时间。
2.根据权利要求1所述的一种面向山地暴雨预报的渐进决策方法,其特征在于:所述降水预报模式包括数值天气预报产品、基于高空和地面大气探测资料的综合预报信息和雷达卫星预估信息。
3.根据权利要求2所述的一种面向山地暴雨预报的渐进决策方法,其特征在于:所述数值天气预报产品涵盖欧洲中心细网格模式、德国数值模式、日本数值模式、AREM模式、GRAPES-MESO模式以及WRF模式的产品;所述基于高空和地面大气探测资料的综合预报信息包括高空和地面天气图表分析、物理量场诊断分析;所述雷达和卫星预估信息包括Z-I关系降水率估计、雷达强对流交叉相关追踪技术、光流法追踪技术、雷达联合雨量计降水估计、云指数降水估计。
4.根据权利要求1所述的一种面向山地暴雨预报的渐进决策方法,其特征在于:采用误差控制的方法对所述多模式嵌套山地暴雨渐进预报方法、所述预报模式嵌套节点控制方法和所述山地暴雨目标评价和反馈方法的精度进行评价,并基于实测暴雨与预报暴雨的差异进行暴雨偏差订正,对预报模式及参数进行反馈。
5.根权利要求2所述的一种面向山地暴雨预报的渐进决策方法,其特征在于:所述数值天气预报产品的暴雨偏差订正采用降水的频率和面积匹配方法;所述雷达和卫星预估信息的暴雨偏差订正采用单点校准法、平均校准法、空间校准法、距离加权法、变分校准法、最优插值校准法。
6.根据权利要求1所述的一种面向山地暴雨预报的渐进决策方法,其特征在于:所述面向山地暴雨预报的渐进决策方法适用于较易发生山洪灾害的固定地区或大范围预报可能发生较大降水的非固定局部地区。
CN201810384342.6A 2018-04-26 2018-04-26 一种面向山地暴雨预报的渐进决策方法 Active CN108732648B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810384342.6A CN108732648B (zh) 2018-04-26 2018-04-26 一种面向山地暴雨预报的渐进决策方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810384342.6A CN108732648B (zh) 2018-04-26 2018-04-26 一种面向山地暴雨预报的渐进决策方法

Publications (2)

Publication Number Publication Date
CN108732648A CN108732648A (zh) 2018-11-02
CN108732648B true CN108732648B (zh) 2020-10-20

Family

ID=63939890

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810384342.6A Active CN108732648B (zh) 2018-04-26 2018-04-26 一种面向山地暴雨预报的渐进决策方法

Country Status (1)

Country Link
CN (1) CN108732648B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109615236A (zh) * 2018-12-13 2019-04-12 深圳市气象局 降水预报模式检验评分方法、系统、终端及存储介质
CN110703357B (zh) * 2019-04-30 2021-04-20 国家气象中心(中央气象台) 全球中期数值预报grapes_gfs方法
CN110679452B (zh) * 2019-11-13 2024-05-28 福建天成宝得智能科技有限公司 基于射频组网技术的低功耗智能灌溉系统
CN112764129B (zh) * 2021-01-22 2022-08-26 易天气(北京)科技有限公司 一种雷暴短临预报方法、系统及终端

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105334551A (zh) * 2015-12-10 2016-02-17 国网四川省电力公司电力科学研究院 基于数值天气预报模式的电网气象预测预警系统
CN105608840A (zh) * 2016-03-09 2016-05-25 长江水利委员会水文局 一种基于融合定量降雨预报算法的山洪预警平台及预警方法
CN105808948A (zh) * 2016-03-08 2016-07-27 中国水利水电科学研究院 一种自动修正的多模式数值降雨集合预报方法
CN106227706A (zh) * 2016-07-25 2016-12-14 河海大学 一种多气候模式输出数据综合校正及不确定性评估方法
JP2017122309A (ja) * 2016-01-04 2017-07-13 中国電力株式会社 流入量予測装置、流入量予測方法および流入量予測プログラム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105334551A (zh) * 2015-12-10 2016-02-17 国网四川省电力公司电力科学研究院 基于数值天气预报模式的电网气象预测预警系统
JP2017122309A (ja) * 2016-01-04 2017-07-13 中国電力株式会社 流入量予測装置、流入量予測方法および流入量予測プログラム
CN105808948A (zh) * 2016-03-08 2016-07-27 中国水利水电科学研究院 一种自动修正的多模式数值降雨集合预报方法
CN105608840A (zh) * 2016-03-09 2016-05-25 长江水利委员会水文局 一种基于融合定量降雨预报算法的山洪预警平台及预警方法
CN106227706A (zh) * 2016-07-25 2016-12-14 河海大学 一种多气候模式输出数据综合校正及不确定性评估方法

Also Published As

Publication number Publication date
CN108732648A (zh) 2018-11-02

Similar Documents

Publication Publication Date Title
CN108732648B (zh) 一种面向山地暴雨预报的渐进决策方法
CN106526708B (zh) 一种基于机器学习的气象强对流天气的智能预警分析方法
Upton et al. Microwave links: The future for urban rainfall measurement?
De Vos et al. Rainfall estimation accuracy of a nationwide instantaneously sampling commercial microwave link network: Error dependency on known characteristics
Alfieri et al. Time-dependent ZR relationships for estimating rainfall fields from radar measurements
US8818029B1 (en) Weather forecasting systems and methods
Goudenhoofdt et al. Generation and verification of rainfall estimates from 10-yr volumetric weather radar measurements
Friedrich et al. A quality control concept for radar reflectivity, polarimetric parameters, and Doppler velocity
CN111401602B (zh) 基于神经网络的卫星以及地面降水测量值同化方法
US20080097701A1 (en) Short term and long term forecasting systems with enhanced prediction accuracy
Emmanuel et al. Evaluation of the new French operational weather radar product for the field of urban hydrology
Jung et al. Radar‐based cell tracking with fuzzy logic approach
CN109100723A (zh) 基于多普勒天气雷达数据的高空风反演方法
JP2017003416A (ja) 降水予測システム
CN114397636B (zh) 一种地基雷达反射率因子均一性评估方法、系统及设备
Teschl et al. Improving weather radar estimates of rainfall using feed-forward neural networks
CN114463947B (zh) 一种基于时空网络卷积模型的对流性致灾强风预警预报方法
Kann et al. Evaluation of high-resolution precipitation analyses using a dense station network
Sokol et al. Nowcasting of precipitation–advective statistical forecast model (SAM) for the Czech Republic
CN115049013A (zh) 一种联合线性和svm的短时降雨预警模型融合方法
CN115907201A (zh) 一种基于双向lstm网络的短时降雨预测方法、装置及系统
KR101180825B1 (ko) 센서 네트워크 기반의 이동체 위치 추적 장치 및 방법
Xu et al. A validation of passive microwave rain-rate retrievals from the Chinese FengYun-3B satellite
KR102500534B1 (ko) 순환신경망 기반 수자원 정보 생성 장치 및 방법
CN115469079A (zh) 一种水土流失动态监测方法及系统

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant