CN108728484B - Vector for obtaining marker-free transgenic plant and application thereof - Google Patents

Vector for obtaining marker-free transgenic plant and application thereof Download PDF

Info

Publication number
CN108728484B
CN108728484B CN201810590138.XA CN201810590138A CN108728484B CN 108728484 B CN108728484 B CN 108728484B CN 201810590138 A CN201810590138 A CN 201810590138A CN 108728484 B CN108728484 B CN 108728484B
Authority
CN
China
Prior art keywords
gene
vector
artificial sequence
primer
marker
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810590138.XA
Other languages
Chinese (zh)
Other versions
CN108728484A (en
Inventor
王克剑
王俊杰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China National Rice Research Institute
Original Assignee
China National Rice Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China National Rice Research Institute filed Critical China National Rice Research Institute
Priority to CN201810590138.XA priority Critical patent/CN108728484B/en
Publication of CN108728484A publication Critical patent/CN108728484A/en
Application granted granted Critical
Publication of CN108728484B publication Critical patent/CN108728484B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8201Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation
    • C12N15/8202Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation by biological means, e.g. cell mediated or natural vector
    • C12N15/8205Agrobacterium mediated transformation

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Molecular Biology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Biophysics (AREA)
  • Cell Biology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

The invention discloses a vector for obtaining a marker-free transgenic plant and application thereof. The vector comprises a gene editing protein gene, sgRNA of the targeting vector and a specific space-time expression gene promoter, wherein the specific space-time expression gene promoter is not expressed in a callus period, and the gene editing protein gene is expressed after genetic transformation is completed. The technical scheme of the invention is mainly used for generating the loss of large-fragment transgenic components by shearing the vector per se aiming at crops or economic plants, especially perennial and asexual propagation plants, and has great significance.

Description

Vector for obtaining marker-free transgenic plant and application thereof
Technical Field
The invention relates to the technical field of biology, in particular to a vector for obtaining a marker-free transgenic plant and application thereof.
Background
At present, the transgenic technology is widely used for the research of gene functions, and with the continuous emergence of new varieties of commercial transgenic plants, the debate and worry about the safety problem of the transgenic plants are increased. In the process of plant gene transfer, the screening marker gene for screening transformed cells and tissues brings great convenience to transgenic work, but after a transgenic plant is obtained, the existence of the marker gene brings hidden dangers to transgenic food and environmental safety, and is not beneficial to the use of the same marker gene for multiple transformations. How to solve the safety problem of transgenic plants and foods caused by marker genes has become an important issue in the current transgenic research. In addition, with the continuous optimization of gene editing technology, the CRISPR/Cas9 technology is quite perfect for gene knockout, but the growth and development of plants are not improved after targeted knockout is generated by a Cas9 system, but the existence of Cas9 increases the probability of target miss and is an unstable factor for commercial production. There is a certain probability that the marker (marker) gene/Cas 9 encoding gene is naturally separated in the reproductive process for annual plants, but the probability of natural occurrence is quite small and cannot be applied to production, and for perennial economic crops, unmarked or transgenic component-free plants are difficult to obtain.
At present, people remove marker genes by measures such as transposition approaches, intrachromosomal homologous recombination, cotransformation of target genes and marker genes, site-specific recombination and the like. The transposition approach is widely applied to a corn Ac/Ds system, a target gene, a Ds element and a marker gene are placed in the same T-DNA, the Ac element is positioned in the other T-DNA, two lines are obtained through transgenosis, the two lines are crossed by a single copy plant of the two elements to obtain an F1 generation, the Ds element transposition in an F2 generation generated by selfing of the F1 generation is possibly separated from the target gene, and thus a non-marker transgenic plant is obtained. In-vivo recombination is to place a marker gene between repeated sequences and to excise the marker gene by homologous recombination of the repeated sequences. The co-transformation method is that the target gene and the marker gene are loaded on 2 different T-DNA respectively, and the target gene and the marker gene are integrated into the genome of the transformed plant together through agrobacterium transformation, so as to screen out the transgenic plant. Meanwhile, in the transformation process, 2T-DNAs are randomly integrated to different sites of the gene, and the target gene and the marker gene are separated in the later generations through selfing, so that a transgenic plant without the marker gene is selected. The site-specific recombination system is to eliminate the selection marker gene by using recombinase to catalyze the recombination between two short specific NDA sequences so as to obtain a transgenic plant without the selection marker. The Cre/lox P site-specific recombination system was obtained from the E.coli bacteriophage P1 and comprises 2 components, a recombinase (Cre) and a recombination site (lox P). The Cre enzyme initiates a recombination event and causes the excision of the NDA fragment between the adjacent 2 lox P sites. The method mainly comprises the following 3 steps: transforming a binary vector (GOI/lox/SMG/lox) containing a Selectable Marker Gene (SMG) and a target Gene (GOI) with loxP on both sides to obtain a transgenic plant; secondly, introducing Cre gene (connected with another marker gene) into the transgenic plant through retransformation or cross pollination; ③ excision of SMG flanked by loxP in the plant genome or separation of GOI from Cre gene by crossing.
In the existing methods for creating unmarked transgenic plants, the transposon method needs to respectively transform the transgenic plants containing Ac and Ds, and unmarked separation is carried out by a hybridization method, so the operation is complicated; the double T-DNA method has great chance and can not meet the production requirement; the application of a wide cre/lox system also needs secondary transformation and is complex to construct.
Disclosure of Invention
The invention aims to provide a vector for obtaining a marker-free transgenic plant and application thereof, so as to solve the technical problem of complicated operation of obtaining the marker-free transgenic plant in the prior art.
In order to achieve the above object, according to one aspect of the present invention, there is provided a vector for obtaining a marker-free transgenic plant. The vector comprises a gene editing protein gene, sgRNA of the targeting vector and a specific space-time expression gene promoter, wherein the specific space-time expression gene promoter is not expressed in a callus period, and the gene editing protein gene is expressed after genetic transformation is completed.
Further, the promoter has a nucleotide sequence shown as LOC _ Os07g 01820.
Further, the gene-editing protein gene is a Cas9 gene or a Cpf1 gene.
Further, the vector also comprises elements of the Cas9 gene or the Cpf1 gene as a complement.
Further, the vector is a binary expression vector, preferably Pcambia 1300.
According to another aspect of the present invention, there is provided an agrobacterium. The agrobacterium comprises any one of the vectors described above.
According to a further aspect of the present invention there is provided the use of any one of the vectors described above for obtaining marker-free transgenic plants.
Further, plants include rice, wheat, potato, sweet potato, poplar, and citrus.
The technical scheme of the invention is mainly used for generating the loss of large-fragment transgenic components by shearing the vector per se aiming at crops or economic plants, especially perennial and asexual propagation plants, and has great significance.
Drawings
The accompanying drawings, which are incorporated in and constitute a part of this application, illustrate embodiments of the invention and, together with the description, serve to explain the invention and not to limit the invention. In the drawings:
FIG. 1 shows the experimental principle and flow diagram of the present invention;
fig. 2 shows the basic elements of the carrier in an exemplary embodiment of the invention.
FIG. 3 shows the fluorescence microscopic observation image of the root tip of T1 generation plantlet in example 1;
FIG. 4 shows the result of the PCR detection in example 1; and
FIG. 5 shows a schematic diagram of the sequencing results in example 1.
Detailed Description
It should be noted that the embodiments and features of the embodiments in the present application may be combined with each other without conflict. The present invention will be described in detail below with reference to the embodiments with reference to the attached drawings.
Based on the currently widely applied CRISPR/Cas9 technology, the invention constructs an expression vector containing a target gene and a promoter of the expression gene in a specific period to drive a Cas9 system element, after agrobacterium-mediated transformation, the Cas9 protein expressed in the specific period is guided to cut the boundary of the Cas9 system element at a target site through a target marker gene and an sgRNA of the designed target vector to generate double cutting, so that a large segment including the marker gene and the Cas9 element is deleted to generate a marker-free transgenic plant.
The unmarked transgenic system of the invention can achieve the purpose of self-deletion by targeting the Cas9 element besides generating the purpose of knockout.
The unmarked/non-transgenic system reconstructed based on the Cas9 system has the advantages of convenient and quick vector construction, no need of hybridization and secondary transformation, and can obtain unmarked/non-transgenic plants by means of T0 generation plant selfing.
According to the invention, the expression of the Cas9 protein is driven by the specific promoter, so that the Cas9 is not expressed in the callus in the transfection process, the marker gene plays a screening function, and positive cells are enriched to obtain a transgenic plant. Vector structure is designed according to needs, target sites are designed at both sides of the large fragment to be deleted (the target sites are selected at both sides of the sequence to be deleted), the Cas9 protein expressed during reproductive development is targeted at both sides of the large fragment to generate DSB (double strand break), and the large fragment sequence between two gaps is lost. Non-target sequences are knocked out of the plant genome by self-replication of the DNA, binding to the nicks. Desired marker-free (mainly for gene overexpression), non-transgenic (for gene editing, mutation, etc.) plants are obtained. As shown in figure 1, the vector is transferred into a callus, a positive transformant is obtained after hygromycin screening, a large fragment is deleted by cutting Cas9 driven by a specific promoter at the later stage, so that a marker-free transgenic plant is obtained, and the filial generation of the marker-free transgenic plant is still the marker-free transgenic plant.
According to an exemplary embodiment of the present invention, a vector for obtaining a marker-free transgenic plant is provided. The vector comprises a gene editing protein gene, sgRNA of the targeting vector and a specific space-time expression gene promoter, wherein the specific space-time expression gene promoter is not expressed in a callus period, and the gene editing protein gene is expressed after genetic transformation is completed. The technical scheme of the invention is mainly used for generating the loss of large-fragment transgenic components by shearing the vector per se aiming at crops or economic plants, especially perennial and asexual propagation plants, and has great significance.
Preferably, the promoter has a nucleotide sequence as shown by LOC _ Os07g01820(SEQ ID NO: 1).
SEQ ID NO:1:
TCCGATCGAGCTAGTCCTGTGCCCGTACCATGACGGAGCCGATCCTCTCCATTCAAAGGGAATATGATGAGAGAGTAGTGGGGAATCGGTTTTTGCAATCAATTAGAGGAGGAAACGCATGGAGAGACAAATCGACGTGGCGGTGGCGCTAGGGTTCAGCCCGACGAAAAAACCACGAAAAAAATAGAGACAAAAGAAAGAAACCCGAAAACCGGTGAAAGAAAAAAAAGAGGGAACAGTGAAAAGAAAAGAAAAAAAAGGAAAACGGTGAAAAATAAAATAAAACGGAAAAAGATGGGAAAAAAGAAAAACAGGCGAAAATTATAGGTGGAAGCATATGTATTTTTTATTAGGTATAGATTTCTAGATTCTATAGCTTTTGATCCTTGTAATCTAGATGAAAAGCTTACGGGCCTCTTTGATTTAGAGGATAAACATAGGAATTTTGGAGAATTTTAATCCTATATAAAAAAATTATATAAATACATTTGAAACAAAAGATTGAATCCTATCATATCCTATCCTATTAAAGTCCTATGGAATGAACAATTCTACAGAGATTTTGGCGGAAATTTAGCAAGAGCTTCAACCTCTTGGAAATTTTCCTTTGAGTCTATCTCTCTTATCCGATTCGTACTTTTTCCTATGGTTTAATCAAATGGTTATTTCTAAGATTTCCTGTGTTTTACAATCCTCTGTTATGCACGAACTCCAAGAAGTTATGTGTTATAAGGTTCACATCCTCTGTTAGTAGTTGACTGTACTATTAAACTATACCATTAATAGCATAGCCAACTATTAACTTCACATCATCTATCAAAAACTCTCTAAAAGACAGGGCCACATACTCAGGGGGTGTTTAGATCCAGGGGTGTAAAGTTTTGGCGTGTCATATCGGATATTATATAGGGTGTCGCATGGGGTGTTTGACACTAATAAAAAAACTAATTACAGAATCCGTCAGTAAACCGCGAGACAAATTTATTAAGCCTAATTAATCAGTCATTAGCAAAGGTTTACTGTAGTACCACATTGTCAAATCATGTAGCAATTAGGCTTAAAAGATTTGTCTCGCAAATTAGTCGCAATCTGTGCAATTAGTTATTTTTTAGCCTATGTTTAATACCTCATGCATGTGTTCGATATGACGGGGTGTAAAATTTTGGGTGGGATCTAAACATGGCCTCATTAAAACCAACCATTGACAAGGTCTAGTGTGGATGTAAAGTGTGTAAACTAGAGTGCTCTGTATGTAAAGATGACTAATTTTATACTCCCTCCGTTCCAAAATAAGTGCAGTTTTAGCATTGTTCATGTCCAACGTTTGACTGTTTGTCTTATTTGAAATTTTTTTATAATTACTACTTTTATTGTTATTAGATGATAAAACATGAATAGTACTTTATGTGTGACTAATTTTTTTTAATATTTTTCATAATTTTTTCAAATAAGACGGGTGGTCAAAACAATGAACACGGATATCTATGGCTGAACTTATTTTGAGACGGAGGTAGTACAATTATTGTATTGGGTATATATATCATTTGTGCAACTACTAGTATACATACGTAGTACTCCCTCCGTCCCATAGTGTTGCAACCTAGGATGGGATGAGATACATCAAACCATCCTAGGACTACGAATTTGGACATGATTCGTAGTCCTAGGATGGGTCTCATCCCATCCTAGGTTGCAACATTATGGGACGGACGGAGTCCTATATATGTAGGCCATGCTCTCGGGGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGGGGCCAATTGGTGTTGCGATCGAGGCTAGGTCAGGTCATGACGCAATGCAAATGTTATATGGAATGGATCAGAGTGATAGAGGAGAGAGCTGTCGAGCTGGGATTGCAGCATCTCCAGCGCCAGGAGCACCAGTTGCCGTAAACAACACCACACAGTTTTTCCCACCAAATATAAAAGATCTTTCTTGGCACAGTGCGTTCAACAGTTGCAAGCAATAATATTATTGGCTAATTAGTACTGACTTTTATTAATATTCGCCTATTATACAATTGATACCACCTCCGATCCATTCCTAAATATACTGACCAATGTCATATGAAAAAAGAATAGAGAGAGTAGTAATTAATGAACTATATCAGTGAACATTGACAGACAAAAATAAAATCATACTAGCCATACTGTGCAAAAAGCACCATATATAATTTGAAAACGACCGGTATAGTTTACACTCATATATACTACTCCATCCGTTTCAGTTTATAATGCATTTTGACTTTAGTCAAAGTTAAACTGTTTTAAGTTTAACTAAGTTTGTAGACAAATATAATAATATTTATAATACTAAATTAATTAGAGTCATCAAATTAACAATTGAATATATTTTCATAATAAATTTATCTTGGATTGAAAAGTCAAAACGTAATTTGACTTTGACCAAAGTCAAAACGTCTTATTATAATGGAGTAACTTTGTAAATCACACTTGAGTGTATTGCGTGATTTCTTAGGATGCTACGCTATCTCACAAGCGACTTACGTACTATAAATTAATGCAGTGAACATACTTAGAGAGTTGAATTTTACCACGATTTAATTTCGATGGACTAATTAAAGAAAATCTCAAGGTTTCGAAAACGACATGGTACGTCGTGCGCGTATATGTAACTATTGACCATGTATTCATATGCACGAATTGGTACAAAAGGGTGCACAAATTCTGCAATAACTGTTGGAAATGTATATATATTCATACATATGTGTGTACACTGCTCTCTCCATCTCTAAAATACCTTATACTCCCTCCATTTCATATTGTAAGACTTTCTAGCATTGTTTATATTTATATAGATGTTAATGAATTTAGACACACACACACACACACACACATATATATATATATATATATATATATATATATATATATATTCATTAACATATATATGAATGTGGCCAATGCTAAAAATTCTTACATTGTGAAACGGATGAAGTAGTATTTAGCTGGTCTCAGATATATTAGTATGGTTGTGAAAAGACGAATATGCACTTCATTAAGATTATATGCTTCTATTATACTACATGTTTAGCTAGACTTTTGGCATGCCCAAGCTCTAACAAATGATTTTTGCACCTAAATCGATTTCAATTAGGTGGGCGAGAGTGGGGTTTAACCAATAGAGATAAAATAAGGACAATAAAAACAGCTAGTGGACCACATATCTCCACACGTCTCTTAAAAAAAGATTTATTTTACAACTGAATTTGAAGATAAGGTATTTTGTAATTGAGAAAGTAAATACCAATATACTCCCTCCGGTTATTTATATTTATATTTAGCGTTAGAAAAGTTAAACTTAGTTTTCCCATCTTTAAATATATATAGTGAATGGATCGTATCGTAAAAAAAAAGACAACCGGATTATAGTTAAATAATTGGCCATGTATTGATATGGTGCAAATTAACAAAATTTCGCAGTAATGATTGGCCATGTATTCATGTGTACATTTATCAATATATCAATAAAAAAGACAAGAGGATAATAATAGTAATAATAAAGAAATGGAGAAAAGGAGTCGAGGGGTTGGGAGTTCGACCGTACGAGGAGGTAGCATAGCAGCAGAATCGACCCCAAGCTTTCCTTCTCACGTAACATGCCGTTATTATATTATATATATTAAAATAATTAATCCAATTATTTTTTACCAGATTAATATTAATGTAATCCGTGTGTCAGCAGGCTTGAGAGGCTGCAGGTGGGCCCCATGATTCCGGGACCAATCACAGCTCGACAGCATACTGACACCCGTCCCCAAAAGCAAAGAGGCCTCTCTCTCTCTCTCTCGCCGATCCCTCTCCTCCTCCTCTTCTTCTTCTTCCACTAGCTAGTTCGTCTTCCTCCTTCAGCTAGCTTGTAGCAGCTAAGGTTAGGTCGGATCGAGATCGGGATCGGCCGCCGGCGAGCGGCGAGCGGCGAGG
According to an exemplary embodiment of the present invention, the gene-editing protein gene is a Cas9 gene or a Cpf1 gene, but may be other protein genes capable of achieving similar gene editing.
Preferably, the vector further comprises elements of a Cas9 gene or Cpf1 gene matched to facilitate subsequent operations. In a typical embodiment of the invention, as shown in fig. 2, the vector essential elements include a hygromycin resistance element, a gRNA element, MADS15 driving Cas9 system and a GFP reporter gene.
According to an exemplary embodiment of the invention, the vector is a binary expression vector, preferably Pcambia 1300.
According to an exemplary embodiment of the present invention, an agrobacterium is provided. The agrobacterium comprises any one of the vectors described above.
According to an exemplary embodiment of the present invention, there is provided a use of any one of the above-mentioned vectors for obtaining marker-free transgenic plants. Preferably, the plant includes rice, wheat, potato, sweet potato, poplar, citrus, and the like.
The following examples are provided to further illustrate the advantageous effects of the present invention.
Example 1
1. Vector construction
And carrying out double enzyme digestion by using pC1300-Cas9 as a vector and BamHI/NcoI to linearize the vector. Taking rice DNA as a template and primers
M15-P-F(SEQ ID NO:2):
5’-CGAGCTCGGTACCAAGGATCCGAAAAGCTTACGGGCCTCTTTGA-3’
M15-P-R(SEQ ID NO:3):
5’-TCTTCTTCTTAGGGGCCATGGTCTCTATCCGCTTCAGCTGCACC-3’
And (3) amplifying 3614bp sequence of LOC _ Os07g01820 gene promoter region, and connecting by Gibson to construct pC1300-MADS15P-Cas 9.
PmeI enzyme digestion pC1300-MADS15P-Cas9 vector and primer
cas-Hgfp-F(SEQ ID NO:4):
CGTTTCCCGCCTTCAGTTTAAACTGCCACCTGACGTGAGCTCGGTA
cas-Hgfp-R(SEQ ID NO:5):
TGTCAAACACTGATAGTTTAAACCGGTGTGAGGGAACTAGTTTTGAT
The 2X 35S-driven GFP element sequence was amplified and T4 ligated to construct pC1300-MADS15P-Cas9-GFP vector. According to the requirements of a CRISPR-Cas9 system on target sequences (PAM (Protospace Adjacent Motif) is NGG, the sequence length is 22bp), selecting specific 4 target sequences on a pC1300-MADS15P-Cas9-GFP sequence, adding enzyme digestion connecting bases at two ends of an F-direction primer and an R-direction primer according to the design principle of a gRNA primer, and naming the designed primers as G1-F/R, G2-F/R, G3-F/R and G4-F/R. The sequence is as follows:
G1-F(SEQ ID NO:6):GGCAACATGAGCGAAACCCTAT
G1-R(SEQ ID NO:7):AAACATAGGGTTTCGCTCATGT
G2-F(SEQ ID NO:8):GGCAGGCGTCGGTTTCCACTAT
G2-R(SEQ ID NO:9):AAACATAGTGGAAACCGACGCC
G3-F(SEQ ID NO:10):GGCAGCTGGCGTAATAGCGAAG
G3-R(SEQ ID NO:11):AAACCTTCGCTATTACGCCAGC
G4-F(SEQ ID NO:12):GGCAACAGTTGCGCAGCCTGAA
G4-R(SEQ ID NO:13):AAACTTCAGGCTGCGCAACTGT
annealing the designed G1-F/R, G2-F/R, G3-F/R and G4-F/R primers for 5 minutes at 100 ℃, naturally cooling, connecting the annealed product with the Sk-gRNA of the intermediate vector digested by AarI to obtain a connected product, and transferring the connected product into escherichia coli to obtain a transformant. Plasmids of transformants are extracted and verified to be correct by sequencing, and 4 intermediate vectors are obtained and named as sk-g1, sk-g2, sk-g3 and sk-g 4. Taking KpnI/BamHI enzyme cutting sk-g1 as a vector, and taking KpnI/SalI enzyme cutting sk-g 2; XhoI/NheI enzyme cutting sk-g 3; XbaI/BglII enzyme sk-g 4; 3 542bp target fragments are respectively recovered and are connected by T4 enzyme to obtain sk-g1g2g3g4-gRNA carrier. The KpnI and BglII are used for double enzyme digestion of sk-G1G2G3G4-gRNA, a 2072bp target fragment containing the gRNA is recovered and is connected with a KpnI and BamHI double enzyme digested vector pC1300-MADS15P-Cas9-GFP to obtain a final vector pC1300-G1-G2-G3-G4-MADS15P-Cas 9-GFP.
2X35S sequence SEQ ID NO 14
CCCTACTCCAAAAATGTCAAAGATACAGTCTCAGAAGACCAAAGGGCTATTGAGACTTTTCAACAAAGGGTAATTTCGGGAAACCTCCTCGGATTCCATTGCCCAGCTATCTGTCACTTCATCGAAAGGACAGTAGAAAAGGAAGGTGGCTCCTACAAATGCCATCATTGCGATAAAGGAAAGGCTATCATTCAAGATGCCTCTGCCGACAGTGGTCCCAAAGATGGACCCCCACCCACGAGGAGCATCGTGGAAAAAGAAGACGTTCCAACCACGTCTTCAAAGCAAGTGGATTGATGTGACATCTCCACTGACGTAAGGGATGACGCACAATCCCACCCCTACTCCAAAAATGTCAAAGATACAGTCTCAGAAGACCAAAGGGCTATTGAGACTTTTCAACAAAGGGTAATTTCGGGAAACCTCCTCGGATTCCATTGCCCAGCTATCTGTCACTTCATCGAAAGGACAGTAGAAAAGGAAGGTGGCTCCTACAAATGCCATCATTGCGATAAAGGAAAGGCTATCATTCAAGATGCCTCTGCCGACAGTGGTCCCAAAGATGGACCCCCACCCACGAGGAGCATCGTGGAAAAAGAAGACGTTCCAACCACGTCTTCAAAGCAAGTGGATTGATGTGACATCTCCACTGACGTAAGGGATGACGCACAATCCCACTATCCTTCGCAAGACCCTTCCTCTATATAAGGAAGTTCATTTCATTTGGAGAGGACAGCCCAAGCTTGTCGACGGATCCATGGTGAGCAAGGGCGAGGAGCTGTTCACCGGGGTGGTGCCCATCCTGGTCGAGCTGGACGGCGACGTAAACGGCCACAAGTTCAGCGTGTCCGGCGAGGGTGAGGGCGATGCCACCTACGGCAAGCTGACCCTGAAGTTCATCTGCACCACCGGCAAGCTGCCCGTGCCCTGGCCCACCCTCGTGACCACCTTCACCTACGGCGTGCAGTGCTTCAGCCGCTACCCCGACCACATGAAGCAGCACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATCTTCTTCAAGGACGACGGCAACTACAAGACCCGCGCCGAGGTGAAGTTCGAGGGCGACACCCTGGTGAACCGCATCGAGCTGAAGGGCATCGACTTCAAGGAGGACGGCAACATCCTGGGGCACAAGCTGGAGTACAACTACAACAGCCACAACGTCTATATCATGGCCGACAAGCAGAAGAACGGCATCAAGGTGAACTTCAAGATCCGCCACAACATCGAGGACGGCAGCGTGCAGCTCGCCGACCACTACCAGCAGAACACCCCCATCGGCGACGGCCCCGTGCTGCTGCCCGACAACCACTACCTGAGCACCCAGTCCGCCCTGAGCAAAGACCCCAACGAGAAGCGCGATCACATGGTCCTGCTGGAGTTCGTGACCGCCGCCGGGATCACTCACGGCATGGACGAGCTGTACAAGTAACCCG
sk-g1g2g3g4-gRNA sequence SEQ ID NO 15
ctgacgcgccctgtagcggcgcattaagcgcggcgggtgtggtggttacgcgcagcgtgaccgctacacttgccagcgccctagcgcccgctcctttcgctttcttcccttcctttctcgccacgttcgccggctttccccgtcaagctctaaatcgggggctccctttagggttccgatttagtgctttacggcacctcgaccccaaaaaacttgattagggtgatggttcacgtagtgggccatcgccctgatagacggtttttcgccctttgacgttggagtccacgttctttaatagtggactcttgttccaaactggaacaacactcaaccctatctcggtctattcttttgatttataagggattttgccgatttcggcctattggttaaaaaatgagctgatttaacaaaaatttaacgcgaattttaacaaaatattaacgcttacaatttccattcgccattcaggctgcgcaactgttgggaagggcgatcggtgcgggcctcttcgctattacgccagctggcgaaagggggatgtgctgcaaggcgattaagttgggtaacgccagggttttcccagtcacgacgttgtaaaacgacggccagtgagcgcgcgtaatacgactcactatagggcgaattgggtaccgaggatcctctagactcgaggattatgtggaaaaaaagcaccgactcggtgccactttttcaagttgataacggactagccttattttaacttgctatttctagctctaaaacttcaggctgcgcaactgttgccacggatcatctgcacaactcttttaaatcagctttgatctatgtggatagccgaggtggtactaatactagtctttgttgtcgtccaattgcgtaatgggccggcccatactgcaatacatgtcctgaaaggcttcatggcccactacgaaatgcttttctcctacagtttatcttacttcttcacatcacgtggtttccgacgtacccagtgttcccggcttccagcatttgctggtagcaccagtagaagacgcctgtcttgtgctatggtccctgactgcacatctgattcctccaagatccatgcatgcctgataactttaagttgcttcagaagaactttaagtgatctgttcgtatgtttaaagattccttaatcgtcgacgctagcagatcctctagactcgaggattatgtggaaaaaaagcaccgactcggtgccactttttcaagttgataacggactagccttattttaacttgctatttctagctctaaaaccttcgctattacgccagctgccacggatcatctgcacaactcttttaaatcagctttgatctatgtggatagccgaggtggtactaatactagtctttgttgtcgtccaattgcgtaatgggccggcccatactgcaatacatgtcctgaaaggcttcatggcccactacgaaatgcttttctcctacagtttatcttacttcttcacatcacgtggtttccgacgtacccagtgttcccggcttccagcatttgctggtagcaccagtagaagacgcctgtcttgtgctatggtccctgactgcacatctgattcctccaagatccatgcatgcctgataactttaagttgcttcagaagaactttaagtgatctgttcgtatgtttaaagattccttaatcgtcgacgctagactcgaggattatgtggaaaaaaagcaccgactcggtgccactttttcaagttgataacggactagccttattttaacttgctatttctagctctaaaacatagtggaaaccgacgcctgccacggatcatctgcacaactcttttaaatcagctttgatctatgtggatagccgaggtggtactaatactagtctttgttgtcgtccaattgcgtaatgggccggcccatactgcaatacatgtcctgaaaggcttcatggcccactacgaaatgcttttctcctacagtttatcttacttcttcacatcacgtggtttccgacgtacccagtgttcccggcttccagcatttgctggtagcaccagtagaagacgcctgtcttgtgctatggtccctgactgcacatctgattcctccaagatccatgcatgcctgataactttaagttgcttcagaagaactttaagtgatctgttcgtatgtttaaagattccttaatcgtcgaggattatgtggaaaaaaagcaccgactcggtgccactttttcaagttgataacggactagccttattttaacttgctatttctagctctaaaacatagggtttcgctcatgttgccacggatcatctgcacaactcttttaaatcagctttgatctatgtggatagccgaggtggtactaatactagtctttgttgtcgtccaattgcgtaatgggccggcccatactgcaatacatgtcctgaaaggcttcatggcccactacgaaatgcttttctcctacagtttatcttacttcttcacatcacgtggtttccgacgtacccagtgttcccggcttccagcatttgctggtagcaccagtagaagacgcctgtcttgtgctatggtccctgactgcacatctgattcctccaagatccatgcatgcctgataactttaagttgcttcagaagaactttaagtgatctgttcgtatgtttaaagattccttaatcgtcgacgctagcagatctgcggccgccaccgcggtggagctccagcttttgttccctttagtgagggttaattgcgcgcttggcgtaatcatggtcatagctgtttcctgtgtgaaattgttatccgctcacaattccacacaacatacgagccggaagcataaagtgtaaagcctggggtgcctaatgagtgagctaactcacattaattgcgttgcgctcactgcccgctttccagtcgggaaacctgtcgtgccagctgcattaatgaatcggccaacgcgcggggagaggcggtttgcgtattgggcgctcttccgcttcctcgctcactgactcgctgcgctcggtcgttcggctgcggcgagcggtatcagctcactcaaaggcggtaatacggttatccacagaatcaggggataacgcaggaaagaacatgtgagcaaaaggccagcaaaaggccaggaaccgtaaaaaggccgcgttgctggcgtttttccataggctccgcccccctgacgagcatcacaaaaatcgacgctcaagtcagaggtggcgaaacccgacaggactataaagataccaggcgtttccccctggaagctccctcgtgcgctctcctgttccgaccctgccgcttaccggatacctgtccgcctttctcccttcgggaagcgtggcgctttctcatagctcacgctgtaggtatctcagttcggtgtaggtcgttcgctccaagctgggctgtgtgcacgaaccccccgttcagcccgaccgctgcgccttatccggtaactatcgtcttgagtccaacccggtaagacacgacttatcgccactggcagcagccactggtaacaggattagcagagcgaggtatgtaggcggtgctacagagttcttgaagtggtggcctaactacggctacactagaaggacagtatttggtatctgcgctctgctgaagccagttaccttcggaaaaagagttggtagctcttgatccggcaaacaaaccaccgctggtagcggtggtttttttgtttgcaagcagcagattacgcgcagaaaaaaaggatctcaagaagatcctttgatcttttctacggggtctgacgctcagtggaacgaaaactcacgttaagggattttggtcatgagattatcaaaaaggatcttcacctagatccttttaaattaaaaatgaagttttaaatcaatctaaagtatatatgagtaaacttggtctgacagttaccaatgcttaatcagtgaggcacctatctcagcgatctgtctatttcgttcatccatagttgcctgactccccgtcgtgtagataactacgatacgggagggcttaccatctggccccagtgctgcaatgataccgcgagacccacgctcaccggctccagatttatcagcaataaaccagccagccggaagggccgagcgcagaagtggtcctgcaactttatccgcctccatccagtctattaattgttgccgggaagctagagtaagtagttcgccagttaatagtttgcgcaacgttgttgccattgctacaggcatcgtggtgtcacgctcgtcgtttggtatggcttcattcagctccggttcccaacgatcaaggcgagttacatgatcccccatgttgtgcaaaaaagcggttagctccttcggtcctccgatcgttgtcagaagtaagttggccgcagtgttatcactcatggttatggcagcactgcataattctcttactgtcatgccatccgtaagatgcttttctgtgactggtgagtactcaaccaagtcattctgagaatagtgtatgcggcgaccgagttgctcttgcccggcgtcaatacgggataataccgcgccacatagcagaactttaaaagtgctcatcattggaaaacgttcttcggggcgaaaactctcaaggatcttaccgctgttgagatccagttcgatgtaacccactcgtgcacccaactgatcttcagcatcttttactttcaccagcgtttctgggtgagcaaaaacaggaaggcaaaatgccgcaaaaaagggaataagggcgacacggaaatgttgaatactcatactcttcctttttcaatattattgaagcatttatcagggttattgtctcatgagcggatacatatttgaatgtatttagaaaaataaacaaataggggttccgcgcacatttccccgaaaagtgccac
Target site:
Figure BDA0001690397880000081
Figure BDA0001690397880000091
2. plant transformation: obtaining transgenic plants
The pC1300-G1-G2-G3-G4-MADS15P-Cas9-GFP binary vector obtained above is transferred into Agrobacterium tumefaciens EHA105 to obtain a recombinant bacterium 1. The plasmid of the recombinant bacterium 1 is extracted and sequenced, and as a result, the plasmid is pC1300-G1-G2-G3-G4-MADS15P-Cas9-GFP, and the recombinant bacterium 1 containing the plasmid is named as EHA105/pC1300-G1-G2-G3-G4-MADS15P-Cas 9-GFP.
The mature embryo is dehulled and sterilized and inoculated into a culture medium for inducing callus. After 3 weeks of culture, the more developed, pale yellow, more friable embryogenic calli were selected for use as recipients for transformation.
The recombinant strain EHA105/pC1300-G1-G2-G3-G4-MADS15P-Cas9-GFP is transferred into a callus of a receptor plant Nipponbare, cultured for 3 days at 25 ℃ in a dark place, and then a resistant transgenic plant is screened on a selective culture medium containing 50mg/L hygromycin. The resistant calli were selected and cultured on pre-differentiation medium containing 50mg/L for about 10 days. The pre-differentiated calli were transferred to differentiation medium and cultured under light conditions. Obtaining resistant transgenic plants in about one month. Planting T0 generation plants in the field, harvesting seeds after the plants are mature, and sprouting to obtain T1 generation rice.
GFP Signal detection
The root tips of T1 generation seedlings (WT is wild type, M15-11-1 is the number of a certain mutant) are observed under a fluorescence microscope, and the result shows that the green signals of the root tips of the transgenic plants are obvious (figure 3), which indicates that GFP is successfully expressed in the transgenic plants.
4. Marker-free transgenic plant detection
T1 generation plant (20 plants) DNA is extracted and detected by the following primers, as shown in figure 4, Cas9, hygromycin resistance marker and other sequences are not found in the sample DNA of 1-5, 12-16 through PCR amplification, and GFP sequences are not affected. The sequencing result is shown in FIG. 5, the excision mode of all T1 generation plant sequences is consistent, and the dotted line part represents the deletion part and is deleted.
F1(SEQ ID NO:20)ATGTACTGAATTAACGCCGAA
F2(SEQ ID NO:21)AAGACCAATGCGGAGCATATAC
F3(SEQ ID NO:22)CCTAAGAAGAAGAGAAAGGTCG
F4(SEQ ID NO:23)GCCCATCTCTTCGATGACAAGGTTATG
F5(SEQ ID NO:24)GGGTTTCGCTCATGTGTTGAGC
F6(SEQ ID NO:25)ATGGTGAGCAAGGGCGAGGA
R1(SEQ ID NO:26)TCACGTCAGGTGGCAGTTTA
R2(SEQ ID NO:27)GACGTCTGTCGAGAAGTTTC
R3(SEQ ID NO:28)GCAGATGATAGATTGTGGGGTA
R4(SEQ ID NO:29)CTTCGCAGTGGCCTTGCCAATTTC
R5(SEQ ID NO:30)CGGGTTACTTGTACAGCTCG
Actin-F(SEQ ID NO:31)TGCTATGTACGTCGCCATCCA
Actin-R(SEQ ID NO:32)AATGAGTAACCACGCTCCGTC
From the above description, it can be seen that the above-described embodiments of the present invention achieve the following technical effects:
the crops for commercial production are mostly heterozygous, segregation can be generated after selfing and breeding, the characters of offspring can be unstable, the crops cannot be used for large-scale production and shape maintenance, the method for generating the unmarked plants generally needs to be hybridized to achieve the purpose of marker segregation, the invention does not need hybridization, the selection of specific promoters can achieve the purpose of obtaining the unmarked transgenic plants in the current transgenic generation (T0), and the invention is worthy of popularization and application.
The above description is only a preferred embodiment of the present invention and is not intended to limit the present invention, and various modifications and changes may be made by those skilled in the art. Any modification, equivalent replacement, or improvement made within the spirit and principle of the present invention should be included in the protection scope of the present invention.
Sequence listing
<110> institute of Rice research in China
<120> vector for obtaining marker-free transgenic plant and use thereof
<130> PN78582SDYJS
<160> 32
<170> SIPOSequenceListing 1.0
<210> 1
<211> 3976
<212> DNA
<213> Rice (Oryza sativa)
<400> 1
tccgatcgag ctagtcctgt gcccgtacca tgacggagcc gatcctctcc attcaaaggg 60
aatatgatga gagagtagtg gggaatcggt ttttgcaatc aattagagga ggaaacgcat 120
ggagagacaa atcgacgtgg cggtggcgct agggttcagc ccgacgaaaa aaccacgaaa 180
aaaatagaga caaaagaaag aaacccgaaa accggtgaaa gaaaaaaaag agggaacagt 240
gaaaagaaaa gaaaaaaaag gaaaacggtg aaaaataaaa taaaacggaa aaagatggga 300
aaaaagaaaa acaggcgaaa attataggtg gaagcatatg tattttttat taggtataga 360
tttctagatt ctatagcttt tgatccttgt aatctagatg aaaagcttac gggcctcttt 420
gatttagagg ataaacatag gaattttgga gaattttaat cctatataaa aaaattatat 480
aaatacattt gaaacaaaag attgaatcct atcatatcct atcctattaa agtcctatgg 540
aatgaacaat tctacagaga ttttggcgga aatttagcaa gagcttcaac ctcttggaaa 600
ttttcctttg agtctatctc tcttatccga ttcgtacttt ttcctatggt ttaatcaaat 660
ggttatttct aagatttcct gtgttttaca atcctctgtt atgcacgaac tccaagaagt 720
tatgtgttat aaggttcaca tcctctgtta gtagttgact gtactattaa actataccat 780
taatagcata gccaactatt aacttcacat catctatcaa aaactctcta aaagacaggg 840
ccacatactc agggggtgtt tagatccagg ggtgtaaagt tttggcgtgt catatcggat 900
attatatagg gtgtcgcatg gggtgtttga cactaataaa aaaactaatt acagaatccg 960
tcagtaaacc gcgagacaaa tttattaagc ctaattaatc agtcattagc aaaggtttac 1020
tgtagtacca cattgtcaaa tcatgtagca attaggctta aaagatttgt ctcgcaaatt 1080
agtcgcaatc tgtgcaatta gttatttttt agcctatgtt taatacctca tgcatgtgtt 1140
cgatatgacg gggtgtaaaa ttttgggtgg gatctaaaca tggcctcatt aaaaccaacc 1200
attgacaagg tctagtgtgg atgtaaagtg tgtaaactag agtgctctgt atgtaaagat 1260
gactaatttt atactccctc cgttccaaaa taagtgcagt tttagcattg ttcatgtcca 1320
acgtttgact gtttgtctta tttgaaattt ttttataatt actactttta ttgttattag 1380
atgataaaac atgaatagta ctttatgtgt gactaatttt ttttaatatt tttcataatt 1440
ttttcaaata agacgggtgg tcaaaacaat gaacacggat atctatggct gaacttattt 1500
tgagacggag gtagtacaat tattgtattg ggtatatata tcatttgtgc aactactagt 1560
atacatacgt agtactccct ccgtcccata gtgttgcaac ctaggatggg atgagataca 1620
tcaaaccatc ctaggactac gaatttggac atgattcgta gtcctaggat gggtctcatc 1680
ccatcctagg ttgcaacatt atgggacgga cggagtccta tatatgtagg ccatgctctc 1740
ggggagagag agagagagag agagagagag agagagagag aggggccaat tggtgttgcg 1800
atcgaggcta ggtcaggtca tgacgcaatg caaatgttat atggaatgga tcagagtgat 1860
agaggagaga gctgtcgagc tgggattgca gcatctccag cgccaggagc accagttgcc 1920
gtaaacaaca ccacacagtt tttcccacca aatataaaag atctttcttg gcacagtgcg 1980
ttcaacagtt gcaagcaata atattattgg ctaattagta ctgactttta ttaatattcg 2040
cctattatac aattgatacc acctccgatc cattcctaaa tatactgacc aatgtcatat 2100
gaaaaaagaa tagagagagt agtaattaat gaactatatc agtgaacatt gacagacaaa 2160
aataaaatca tactagccat actgtgcaaa aagcaccata tataatttga aaacgaccgg 2220
tatagtttac actcatatat actactccat ccgtttcagt ttataatgca ttttgacttt 2280
agtcaaagtt aaactgtttt aagtttaact aagtttgtag acaaatataa taatatttat 2340
aatactaaat taattagagt catcaaatta acaattgaat atattttcat aataaattta 2400
tcttggattg aaaagtcaaa acgtaatttg actttgacca aagtcaaaac gtcttattat 2460
aatggagtaa ctttgtaaat cacacttgag tgtattgcgt gatttcttag gatgctacgc 2520
tatctcacaa gcgacttacg tactataaat taatgcagtg aacatactta gagagttgaa 2580
ttttaccacg atttaatttc gatggactaa ttaaagaaaa tctcaaggtt tcgaaaacga 2640
catggtacgt cgtgcgcgta tatgtaacta ttgaccatgt attcatatgc acgaattggt 2700
acaaaagggt gcacaaattc tgcaataact gttggaaatg tatatatatt catacatatg 2760
tgtgtacact gctctctcca tctctaaaat accttatact ccctccattt catattgtaa 2820
gactttctag cattgtttat atttatatag atgttaatga atttagacac acacacacac 2880
acacacacat atatatatat atatatatat atatatatat atatatattc attaacatat 2940
atatgaatgt ggccaatgct aaaaattctt acattgtgaa acggatgaag tagtatttag 3000
ctggtctcag atatattagt atggttgtga aaagacgaat atgcacttca ttaagattat 3060
atgcttctat tatactacat gtttagctag acttttggca tgcccaagct ctaacaaatg 3120
atttttgcac ctaaatcgat ttcaattagg tgggcgagag tggggtttaa ccaatagaga 3180
taaaataagg acaataaaaa cagctagtgg accacatatc tccacacgtc tcttaaaaaa 3240
agatttattt tacaactgaa tttgaagata aggtattttg taattgagaa agtaaatacc 3300
aatatactcc ctccggttat ttatatttat atttagcgtt agaaaagtta aacttagttt 3360
tcccatcttt aaatatatat agtgaatgga tcgtatcgta aaaaaaaaga caaccggatt 3420
atagttaaat aattggccat gtattgatat ggtgcaaatt aacaaaattt cgcagtaatg 3480
attggccatg tattcatgtg tacatttatc aatatatcaa taaaaaagac aagaggataa 3540
taatagtaat aataaagaaa tggagaaaag gagtcgaggg gttgggagtt cgaccgtacg 3600
aggaggtagc atagcagcag aatcgacccc aagctttcct tctcacgtaa catgccgtta 3660
ttatattata tatattaaaa taattaatcc aattattttt taccagatta atattaatgt 3720
aatccgtgtg tcagcaggct tgagaggctg caggtgggcc ccatgattcc gggaccaatc 3780
acagctcgac agcatactga cacccgtccc caaaagcaaa gaggcctctc tctctctctc 3840
tcgccgatcc ctctcctcct cctcttcttc ttcttccact agctagttcg tcttcctcct 3900
tcagctagct tgtagcagct aaggttaggt cggatcgaga tcgggatcgg ccgccggcga 3960
gcggcgagcg gcgagg 3976
<210> 2
<211> 44
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<220>
<221> primer_bind
<222> (1)..(44)
<223> primer M15-P-F
<400> 2
cgagctcggt accaaggatc cgaaaagctt acgggcctct ttga 44
<210> 3
<211> 44
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<220>
<221> primer_bind
<222> (1)..(44)
<223> primer M15-P-R
<400> 3
tcttcttctt aggggccatg gtctctatcc gcttcagctg cacc 44
<210> 4
<211> 46
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<220>
<221> primer_bind
<222> (1)..(46)
<223> primer cas-Hgfp-F
<400> 4
cgtttcccgc cttcagttta aactgccacc tgacgtgagc tcggta 46
<210> 5
<211> 47
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<220>
<221> primer_bind
<222> (1)..(47)
<223> primer cas-Hgfp-R
<400> 5
tgtcaaacac tgatagttta aaccggtgtg agggaactag ttttgat 47
<210> 6
<211> 22
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<220>
<221> primer_bind
<222> (1)..(22)
<223> primer G1-F
<400> 6
ggcaacatga gcgaaaccct at 22
<210> 7
<211> 22
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<220>
<221> primer_bind
<222> (1)..(22)
<223> primer G1-R
<400> 7
aaacataggg tttcgctcat gt 22
<210> 8
<211> 22
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<220>
<221> primer_bind
<222> (1)..(22)
<223> primer G2-F
<400> 8
ggcaggcgtc ggtttccact at 22
<210> 9
<211> 22
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<220>
<221> primer_bind
<222> (1)..(22)
<223> primer G2-R
<400> 9
aaacatagtg gaaaccgacg cc 22
<210> 10
<211> 22
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<220>
<221> primer_bind
<222> (1)..(22)
<223> primer G3-F
<400> 10
ggcagctggc gtaatagcga ag 22
<210> 11
<211> 22
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<220>
<221> primer_bind
<222> (1)..(22)
<223> primer G3-R
<400> 11
aaaccttcgc tattacgcca gc 22
<210> 12
<211> 22
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<220>
<221> primer_bind
<222> (1)..(22)
<223> primer G4-F
<400> 12
ggcaacagtt gcgcagcctg aa 22
<210> 13
<211> 22
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<220>
<221> primer_bind
<222> (1)..(22)
<223> primer G4-R
<400> 13
aaacttcagg ctgcgcaact gt 22
<210> 14
<211> 1481
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<220>
<221> promoter
<222> (1)..(1481)
<223> 2X35S sequence
<400> 14
ccctactcca aaaatgtcaa agatacagtc tcagaagacc aaagggctat tgagactttt 60
caacaaaggg taatttcggg aaacctcctc ggattccatt gcccagctat ctgtcacttc 120
atcgaaagga cagtagaaaa ggaaggtggc tcctacaaat gccatcattg cgataaagga 180
aaggctatca ttcaagatgc ctctgccgac agtggtccca aagatggacc cccacccacg 240
aggagcatcg tggaaaaaga agacgttcca accacgtctt caaagcaagt ggattgatgt 300
gacatctcca ctgacgtaag ggatgacgca caatcccacc cctactccaa aaatgtcaaa 360
gatacagtct cagaagacca aagggctatt gagacttttc aacaaagggt aatttcggga 420
aacctcctcg gattccattg cccagctatc tgtcacttca tcgaaaggac agtagaaaag 480
gaaggtggct cctacaaatg ccatcattgc gataaaggaa aggctatcat tcaagatgcc 540
tctgccgaca gtggtcccaa agatggaccc ccacccacga ggagcatcgt ggaaaaagaa 600
gacgttccaa ccacgtcttc aaagcaagtg gattgatgtg acatctccac tgacgtaagg 660
gatgacgcac aatcccacta tccttcgcaa gacccttcct ctatataagg aagttcattt 720
catttggaga ggacagccca agcttgtcga cggatccatg gtgagcaagg gcgaggagct 780
gttcaccggg gtggtgccca tcctggtcga gctggacggc gacgtaaacg gccacaagtt 840
cagcgtgtcc ggcgagggtg agggcgatgc cacctacggc aagctgaccc tgaagttcat 900
ctgcaccacc ggcaagctgc ccgtgccctg gcccaccctc gtgaccacct tcacctacgg 960
cgtgcagtgc ttcagccgct accccgacca catgaagcag cacgacttct tcaagtccgc 1020
catgcccgaa ggctacgtcc aggagcgcac catcttcttc aaggacgacg gcaactacaa 1080
gacccgcgcc gaggtgaagt tcgagggcga caccctggtg aaccgcatcg agctgaaggg 1140
catcgacttc aaggaggacg gcaacatcct ggggcacaag ctggagtaca actacaacag 1200
ccacaacgtc tatatcatgg ccgacaagca gaagaacggc atcaaggtga acttcaagat 1260
ccgccacaac atcgaggacg gcagcgtgca gctcgccgac cactaccagc agaacacccc 1320
catcggcgac ggccccgtgc tgctgcccga caaccactac ctgagcaccc agtccgccct 1380
gagcaaagac cccaacgaga agcgcgatca catggtcctg ctggagttcg tgaccgccgc 1440
cgggatcact cacggcatgg acgagctgta caagtaaccc g 1481
<210> 15
<211> 4959
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<220>
<221> misc_RNA
<222> (1)..(4959)
<223> sk-g1g2g3g4-gRNA sequence
<400> 15
ctgacgcgcc ctgtagcggc gcattaagcg cggcgggtgt ggtggttacg cgcagcgtga 60
ccgctacact tgccagcgcc ctagcgcccg ctcctttcgc tttcttccct tcctttctcg 120
ccacgttcgc cggctttccc cgtcaagctc taaatcgggg gctcccttta gggttccgat 180
ttagtgcttt acggcacctc gaccccaaaa aacttgatta gggtgatggt tcacgtagtg 240
ggccatcgcc ctgatagacg gtttttcgcc ctttgacgtt ggagtccacg ttctttaata 300
gtggactctt gttccaaact ggaacaacac tcaaccctat ctcggtctat tcttttgatt 360
tataagggat tttgccgatt tcggcctatt ggttaaaaaa tgagctgatt taacaaaaat 420
ttaacgcgaa ttttaacaaa atattaacgc ttacaatttc cattcgccat tcaggctgcg 480
caactgttgg gaagggcgat cggtgcgggc ctcttcgcta ttacgccagc tggcgaaagg 540
gggatgtgct gcaaggcgat taagttgggt aacgccaggg ttttcccagt cacgacgttg 600
taaaacgacg gccagtgagc gcgcgtaata cgactcacta tagggcgaat tgggtaccga 660
ggatcctcta gactcgagga ttatgtggaa aaaaagcacc gactcggtgc cactttttca 720
agttgataac ggactagcct tattttaact tgctatttct agctctaaaa cttcaggctg 780
cgcaactgtt gccacggatc atctgcacaa ctcttttaaa tcagctttga tctatgtgga 840
tagccgaggt ggtactaata ctagtctttg ttgtcgtcca attgcgtaat gggccggccc 900
atactgcaat acatgtcctg aaaggcttca tggcccacta cgaaatgctt ttctcctaca 960
gtttatctta cttcttcaca tcacgtggtt tccgacgtac ccagtgttcc cggcttccag 1020
catttgctgg tagcaccagt agaagacgcc tgtcttgtgc tatggtccct gactgcacat 1080
ctgattcctc caagatccat gcatgcctga taactttaag ttgcttcaga agaactttaa 1140
gtgatctgtt cgtatgttta aagattcctt aatcgtcgac gctagcagat cctctagact 1200
cgaggattat gtggaaaaaa agcaccgact cggtgccact ttttcaagtt gataacggac 1260
tagccttatt ttaacttgct atttctagct ctaaaacctt cgctattacg ccagctgcca 1320
cggatcatct gcacaactct tttaaatcag ctttgatcta tgtggatagc cgaggtggta 1380
ctaatactag tctttgttgt cgtccaattg cgtaatgggc cggcccatac tgcaatacat 1440
gtcctgaaag gcttcatggc ccactacgaa atgcttttct cctacagttt atcttacttc 1500
ttcacatcac gtggtttccg acgtacccag tgttcccggc ttccagcatt tgctggtagc 1560
accagtagaa gacgcctgtc ttgtgctatg gtccctgact gcacatctga ttcctccaag 1620
atccatgcat gcctgataac tttaagttgc ttcagaagaa ctttaagtga tctgttcgta 1680
tgtttaaaga ttccttaatc gtcgacgcta gactcgagga ttatgtggaa aaaaagcacc 1740
gactcggtgc cactttttca agttgataac ggactagcct tattttaact tgctatttct 1800
agctctaaaa catagtggaa accgacgcct gccacggatc atctgcacaa ctcttttaaa 1860
tcagctttga tctatgtgga tagccgaggt ggtactaata ctagtctttg ttgtcgtcca 1920
attgcgtaat gggccggccc atactgcaat acatgtcctg aaaggcttca tggcccacta 1980
cgaaatgctt ttctcctaca gtttatctta cttcttcaca tcacgtggtt tccgacgtac 2040
ccagtgttcc cggcttccag catttgctgg tagcaccagt agaagacgcc tgtcttgtgc 2100
tatggtccct gactgcacat ctgattcctc caagatccat gcatgcctga taactttaag 2160
ttgcttcaga agaactttaa gtgatctgtt cgtatgttta aagattcctt aatcgtcgag 2220
gattatgtgg aaaaaaagca ccgactcggt gccacttttt caagttgata acggactagc 2280
cttattttaa cttgctattt ctagctctaa aacatagggt ttcgctcatg ttgccacgga 2340
tcatctgcac aactctttta aatcagcttt gatctatgtg gatagccgag gtggtactaa 2400
tactagtctt tgttgtcgtc caattgcgta atgggccggc ccatactgca atacatgtcc 2460
tgaaaggctt catggcccac tacgaaatgc ttttctccta cagtttatct tacttcttca 2520
catcacgtgg tttccgacgt acccagtgtt cccggcttcc agcatttgct ggtagcacca 2580
gtagaagacg cctgtcttgt gctatggtcc ctgactgcac atctgattcc tccaagatcc 2640
atgcatgcct gataacttta agttgcttca gaagaacttt aagtgatctg ttcgtatgtt 2700
taaagattcc ttaatcgtcg acgctagcag atctgcggcc gccaccgcgg tggagctcca 2760
gcttttgttc cctttagtga gggttaattg cgcgcttggc gtaatcatgg tcatagctgt 2820
ttcctgtgtg aaattgttat ccgctcacaa ttccacacaa catacgagcc ggaagcataa 2880
agtgtaaagc ctggggtgcc taatgagtga gctaactcac attaattgcg ttgcgctcac 2940
tgcccgcttt ccagtcggga aacctgtcgt gccagctgca ttaatgaatc ggccaacgcg 3000
cggggagagg cggtttgcgt attgggcgct cttccgcttc ctcgctcact gactcgctgc 3060
gctcggtcgt tcggctgcgg cgagcggtat cagctcactc aaaggcggta atacggttat 3120
ccacagaatc aggggataac gcaggaaaga acatgtgagc aaaaggccag caaaaggcca 3180
ggaaccgtaa aaaggccgcg ttgctggcgt ttttccatag gctccgcccc cctgacgagc 3240
atcacaaaaa tcgacgctca agtcagaggt ggcgaaaccc gacaggacta taaagatacc 3300
aggcgtttcc ccctggaagc tccctcgtgc gctctcctgt tccgaccctg ccgcttaccg 3360
gatacctgtc cgcctttctc ccttcgggaa gcgtggcgct ttctcatagc tcacgctgta 3420
ggtatctcag ttcggtgtag gtcgttcgct ccaagctggg ctgtgtgcac gaaccccccg 3480
ttcagcccga ccgctgcgcc ttatccggta actatcgtct tgagtccaac ccggtaagac 3540
acgacttatc gccactggca gcagccactg gtaacaggat tagcagagcg aggtatgtag 3600
gcggtgctac agagttcttg aagtggtggc ctaactacgg ctacactaga aggacagtat 3660
ttggtatctg cgctctgctg aagccagtta ccttcggaaa aagagttggt agctcttgat 3720
ccggcaaaca aaccaccgct ggtagcggtg gtttttttgt ttgcaagcag cagattacgc 3780
gcagaaaaaa aggatctcaa gaagatcctt tgatcttttc tacggggtct gacgctcagt 3840
ggaacgaaaa ctcacgttaa gggattttgg tcatgagatt atcaaaaagg atcttcacct 3900
agatcctttt aaattaaaaa tgaagtttta aatcaatcta aagtatatat gagtaaactt 3960
ggtctgacag ttaccaatgc ttaatcagtg aggcacctat ctcagcgatc tgtctatttc 4020
gttcatccat agttgcctga ctccccgtcg tgtagataac tacgatacgg gagggcttac 4080
catctggccc cagtgctgca atgataccgc gagacccacg ctcaccggct ccagatttat 4140
cagcaataaa ccagccagcc ggaagggccg agcgcagaag tggtcctgca actttatccg 4200
cctccatcca gtctattaat tgttgccggg aagctagagt aagtagttcg ccagttaata 4260
gtttgcgcaa cgttgttgcc attgctacag gcatcgtggt gtcacgctcg tcgtttggta 4320
tggcttcatt cagctccggt tcccaacgat caaggcgagt tacatgatcc cccatgttgt 4380
gcaaaaaagc ggttagctcc ttcggtcctc cgatcgttgt cagaagtaag ttggccgcag 4440
tgttatcact catggttatg gcagcactgc ataattctct tactgtcatg ccatccgtaa 4500
gatgcttttc tgtgactggt gagtactcaa ccaagtcatt ctgagaatag tgtatgcggc 4560
gaccgagttg ctcttgcccg gcgtcaatac gggataatac cgcgccacat agcagaactt 4620
taaaagtgct catcattgga aaacgttctt cggggcgaaa actctcaagg atcttaccgc 4680
tgttgagatc cagttcgatg taacccactc gtgcacccaa ctgatcttca gcatctttta 4740
ctttcaccag cgtttctggg tgagcaaaaa caggaaggca aaatgccgca aaaaagggaa 4800
taagggcgac acggaaatgt tgaatactca tactcttcct ttttcaatat tattgaagca 4860
tttatcaggg ttattgtctc atgagcggat acatatttga atgtatttag aaaaataaac 4920
aaataggggt tccgcgcaca tttccccgaa aagtgccac 4959
<210> 16
<211> 21
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<220>
<221> primer_bind
<222> (1)..(21)
<223> target site G1
<400> 16
acatgagcga aaccctatag g 21
<210> 17
<211> 21
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<220>
<221> primer_bind
<222> (1)..(21)
<223> target site G2
<400> 17
ggcgtcggtt tccactatcg g 21
<210> 18
<211> 21
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<220>
<221> primer_bind
<222> (1)..(21)
<223> target site G3
<400> 18
gctggcgtaa tagcgaagag g 21
<210> 19
<211> 21
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<220>
<221> primer_bind
<222> (1)..(21)
<223> target site G4
<400> 19
acagttgcgc agcctgaatg g 21
<210> 20
<211> 21
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<220>
<221> primer_bind
<222> (1)..(21)
<223> primer F1
<400> 20
atgtactgaa ttaacgccga a 21
<210> 21
<211> 22
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<220>
<221> primer_bind
<222> (1)..(22)
<223> primer F2
<400> 21
aagaccaatg cggagcatat ac 22
<210> 22
<211> 22
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<220>
<221> primer_bind
<222> (1)..(22)
<223> primer F3
<400> 22
cctaagaaga agagaaaggt cg 22
<210> 23
<211> 27
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<220>
<221> primer_bind
<222> (1)..(27)
<223> primer F4
<400> 23
gcccatctct tcgatgacaa ggttatg 27
<210> 24
<211> 22
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<220>
<221> primer_bind
<222> (1)..(22)
<223> primer F5
<400> 24
gggtttcgct catgtgttga gc 22
<210> 25
<211> 20
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<220>
<221> primer_bind
<222> (1)..(20)
<223> primer F6
<400> 25
atggtgagca agggcgagga 20
<210> 26
<211> 20
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<220>
<221> primer_bind
<222> (1)..(20)
<223> primer R1
<400> 26
tcacgtcagg tggcagttta 20
<210> 27
<211> 20
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<220>
<221> primer_bind
<222> (1)..(20)
<223> primer R2
<400> 27
gacgtctgtc gagaagtttc 20
<210> 28
<211> 22
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<220>
<221> primer_bind
<222> (1)..(22)
<223> primer R3
<400> 28
gcagatgata gattgtgggg ta 22
<210> 29
<211> 24
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<220>
<221> primer_bind
<222> (1)..(24)
<223> primer R4
<400> 29
cttcgcagtg gccttgccaa tttc 24
<210> 30
<211> 20
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<220>
<221> primer_bind
<222> (1)..(20)
<223> primer R5
<400> 30
cgggttactt gtacagctcg 20
<210> 31
<211> 21
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<220>
<221> primer_bind
<222> (1)..(21)
<223> primer Actin-F
<400> 31
tgctatgtac gtcgccatcc a 21
<210> 32
<211> 21
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<220>
<221> primer_bind
<222> (1)..(21)
<223> primer Actin-R
<400> 32
aatgagtaac cacgctccgt c 21

Claims (3)

1. A vector for obtaining a marker-free transgenic plant, comprising a gene-editing protein gene, sgRNA targeting the vector itself, and a specific spatiotemporal expression gene promoter, which is not expressed during callus period and expresses the gene-editing protein gene after completion of genetic transformation; the promoter is SEQ ID NO: 1; the gene editing protein gene is a Cas9 gene or a Cpf1 gene; the vector further comprises elements of the Cas9 gene or the Cpf1 gene in complement; the vector is a binary expression vector; the vector is Pcambia 1300.
2. An agrobacterium comprising the vector of claim 1.
3. Use of the vector of claim 1 to obtain a marker-free transgenic plant, said plant being rice.
CN201810590138.XA 2018-06-08 2018-06-08 Vector for obtaining marker-free transgenic plant and application thereof Active CN108728484B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810590138.XA CN108728484B (en) 2018-06-08 2018-06-08 Vector for obtaining marker-free transgenic plant and application thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810590138.XA CN108728484B (en) 2018-06-08 2018-06-08 Vector for obtaining marker-free transgenic plant and application thereof

Publications (2)

Publication Number Publication Date
CN108728484A CN108728484A (en) 2018-11-02
CN108728484B true CN108728484B (en) 2021-07-23

Family

ID=63933103

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810590138.XA Active CN108728484B (en) 2018-06-08 2018-06-08 Vector for obtaining marker-free transgenic plant and application thereof

Country Status (1)

Country Link
CN (1) CN108728484B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112415081A (en) * 2019-08-23 2021-02-26 四川大学 Unmarked CRISPR-Cas9 analysis method based on stable isotope detection

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108064297A (en) * 2017-05-09 2018-05-22 未名兴旺系统作物设计前沿实验室(北京)有限公司 Wheat fertility-related gene TaMS7 and its application process

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108064297A (en) * 2017-05-09 2018-05-22 未名兴旺系统作物设计前沿实验室(北京)有限公司 Wheat fertility-related gene TaMS7 and its application process

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Excision of selectable marker gene from transgenic tobacco using the GM-gene-deletor system regulated by a heat-inducible promoter;luo keming 等;《Biotechnology Letters》;20080315;第30卷;全文 *
安全选择标记和无选择标记转基因技术研究进展;薛健 等;《华北农学报》;20081231;第23卷;第101页左栏第1段 *
水稻MADS - box 基因研究进展;苏亚丽 等;《河南农业科学》;20161231;第45卷(第9期);第2.1节 *

Also Published As

Publication number Publication date
CN108728484A (en) 2018-11-02

Similar Documents

Publication Publication Date Title
CN108753813B (en) Method for obtaining marker-free transgenic plants
CN107475267B (en) 4-hydroxyisoleucine production plasmid and strain and synthesis method of 4-hydroxyisoleucine
CN108486105B (en) Kluyveromyces marxianus promoter as well as preparation method and application thereof
CN110540989A (en) Primer and method for cloning unknown DNA sequence adjacent to known region based on PCR technology
CN111171132B (en) Snakehead antibacterial peptide
CN111304252B (en) Method for injecting virus into specific brain region of animal for gene editing based on non-therapeutic purpose of PINK1 and PARK7
CN101693901B (en) Colibacillus-corynebacterium inducible expression carrier pDXW-8 and building method thereof
CN101775410B (en) Fowlpox virus vector shuttle plasmid and application thereof
CN110734480B (en) Application of Escherichia coli molecular chaperone GroEL/ES in assisting synthesis of plant Rubisco
CN108728484B (en) Vector for obtaining marker-free transgenic plant and application thereof
WO1994026913A9 (en) Marker gene
KR101578444B1 (en) Recombinant foot-and-mouth disease virus using Korean isolated strain of FMDV A serotype and the manufacturing method
CN114438083A (en) sgRNA for identifying pig PERV gene and coding DNA and application thereof
CN108410870B (en) Kluyveromyces marxianus promoter, secretion signal peptide, preparation and application thereof
CN102241763A (en) Continuously activated growth hormone receptor gene of fishes, and preparation method and application thereof
CN110157721A (en) A kind of tracer target practice plasmid of vaccinia virus Tiantan strain and preparation method thereof
CN114317605B (en) Construction method of microglial cell potassium ion probe transgenic mouse model
CN110747216A (en) Multigene co-expression complete vector and application thereof
US20100304461A1 (en) Portable, Temperature and Chemically Inducible Expression Vector for High Cell Density Expression of Heterologous Genes in Escherichia Coli
CN110305873A (en) Editor&#39;s label ben-1sgRNA target site and its CRISPR/Cas9 are total to editing system and application altogether
CN104450768B (en) A kind of shuttle vector for targeting yeast mitochondrial and its application
CN115109791B (en) Functional gene delivery vector based on IncQ plasmid flood host, construction method and application
KR101629345B1 (en) Foot and mouth disease virus expressing P1-protective antigen of Asia1 type, IV genotype and the manufacturing method
CN113373163B (en) Codon-optimized Chlamydia trachomatis ctl0286 gene and application thereof
CN101717787A (en) Carrier and application thereof of hepatic tissue specific expression rtTA

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant