CN108717049A - 微量铜离子浓度的检测方法 - Google Patents

微量铜离子浓度的检测方法 Download PDF

Info

Publication number
CN108717049A
CN108717049A CN201810345584.4A CN201810345584A CN108717049A CN 108717049 A CN108717049 A CN 108717049A CN 201810345584 A CN201810345584 A CN 201810345584A CN 108717049 A CN108717049 A CN 108717049A
Authority
CN
China
Prior art keywords
copper ion
solution
concentration
absorbance
ion concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810345584.4A
Other languages
English (en)
Inventor
宋珍
左玉
袁雯
张彩凤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyuan Normal University
Original Assignee
Taiyuan Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyuan Normal University filed Critical Taiyuan Normal University
Priority to CN201810345584.4A priority Critical patent/CN108717049A/zh
Publication of CN108717049A publication Critical patent/CN108717049A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/314Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry with comparison of measurements at specific and non-specific wavelengths
    • G01N21/3151Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry with comparison of measurements at specific and non-specific wavelengths using two sources of radiation of different wavelengths
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/314Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry with comparison of measurements at specific and non-specific wavelengths
    • G01N2021/3155Measuring in two spectral ranges, e.g. UV and visible

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Toxicology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

一种微量铜离子浓度的检测方法,其技术要点是,包括以下步骤:步骤1,配制检测液;步骤2,绘制标准工作曲线;步骤3,检测铜离子浓度。其具有简单方便,便于实时监测微量铜离子浓度变化,无需添加屏蔽剂来屏蔽溶液中多种其他金属离子的干扰等优点。

Description

微量铜离子浓度的检测方法
技术领域
本发明涉及一种基于CPHS检测液采用紫外-可见分光光度计对微量铜离子浓度进行检测的方法。
背景技术
铜是生命所必需的微量元素,很多酶如超氧化物歧化酶、细胞色素氧化酶、酪氨酸酶等都需要铜离子作为催化辅因子,在生命活动中起着重要作用。随着社会的发展,含铜农药的大量使用,含铜废水的大量排放,使得水生动物以及植物受到严重危害。
目前,离子色谱法、原子吸收法以及电化学法等都是较为成熟的铜离子检测方法,每种方法的优点和适用范围各不相同。如申请公布号为CN 104849271 A的发明专利申请公开的“一种基于花菁的探针用于检测痕量二价铜离子的方法”该技术方案通过在待测样品中加入缓冲液和L-半胱氨酸溶液在室温下进行亲核反应,而后再加入基于花菁的探针在室温下继续进行亲核反应,通过亲核反应的变化即可定性的检测样品中二价铜离子,再将亲核反应获取反应液在785nm的紫外分光光度计的吸光度,再通过标准曲线,即定量的获得待测样品中二价铜离子的浓度。可见,现有铜离子的检测方法通常需要借助昂贵的仪器,不但操作繁琐,检测时还需要加入掩蔽剂;对水样的预处理要求高,只能在特定的pH范围内进行,且无法迅速检测。
发明内容
为了解决上述问题,本发明提供了一种操作简单方便,便于实时监测微量铜离子浓度的方法,无需添加屏蔽剂来屏蔽溶液中多种其他金属离子的干扰。
为了达到上述目的,本发明采用了以下技术方案:该微量铜离子浓度的检测方法,其技术要点是,包括以下步骤:
步骤1,配制检测液:
步骤101,取1.6mg~36mg的HS按照1mg:2ml的比例溶解于DMSO中,在室温下搅拌1h,用HEPES稀释制得浓度为1μmol/L~100μmol/L的HS溶液;
步骤102,取CP标准溶液,用HEPES缓冲溶液稀释,在室温下搅拌5min,制得浓度为1μmol/L~100μmol/L的CP溶液;
步骤103,将制得的HS溶液与CP溶液按照摩尔比1:1混合(以溶质计,在室温下搅拌20min,即得浓度为1μmol/L~100μmol/L的CPHS检测液;
步骤2,绘制标准工作曲线:
步骤201,分别将1ml步骤1)制得的CPHS检测液加入到7个5ml EP管中,然后向其中7个EP管中分别加入1ml浓度0μmol/L~100μmol/L依次递增的铜离子标准溶液;再向7个EP管中全部加入1ml HEPES缓冲溶液,得到7组混合溶液;
步骤202,用紫外-可见分光光度计在波长λ=360nm上分别检测7组混合液,得到紫外可见光谱曲线,并进一步得到特征吸收峰的吸光度,根据吸光度和相应的已知铜离子浓度,扣除空白吸光度值后得到标准工作曲线;
步骤3,检测铜离子浓度:
步骤301,将CPHS检测液滴加到待测铜离子溶液中,充分摇匀后,静置10min,用紫外-可见分光光度计检测待测反应产物溶液,得到吸光度曲线;
步骤302,从标准工作曲线上,将波长360nm处的吸光度值带入标准曲线,即可得到与相应吸光度对应的相应铜离子浓度。
待测铜离子溶液的pH为3~9。
本发明的有益效果:通过CPHS检测液与溶液中的铜离子进行络合反应,并采用紫外-可见分光光度计测定并绘制反应产物溶液的关于吸光度-浓度的标准工作曲线。通过待测铜离子钠溶液的特征吸收峰的吸光度,从标准工作曲线上即可得到待测铜离子的浓度。可在广泛的pH检测环境中进行,pH范围可达3~8。且其他金属离子对本检测方法的干扰较小,因而无需Ca2+、Mg2+、Zn2+、Pb2+、Cd2+、Ag+、Bi3+、Ni2+金属离子的屏蔽剂进行水样预处理。本检测方法具有反应速度快、准确度高、对检测环境的酸碱度要求低等优点。同时,操作方便快捷,便于实时监测铜离子浓度的方法,可应用于环境检测、化工和冶金领域对微量铜离子的实时监测。
附图说明
图1是本发明实施例1的铜离子溶液的紫外-可见光谱曲线;
图2是本发明实施例1的标准工作曲线;
图3是本发明实施例2铜离子溶液的紫外-可见光谱曲线;
图4是本发明实施例2的标准工作曲线;
图5是本发明实施例1待测铜离子溶液中其他金属离子的干扰图;
图6是Cu2+、Ca2+、Mg2+、Zn2+、Pb2+、Cd2+、Ag+、Bi3+、Ni2+离子的紫外可见光谱曲线。
具体实施方式
以下结合图1~6,通过具体实施例详细说明本发明的具体内容。
实施例1
该微量铜离子浓度的检测方法包括以下步骤:
步骤1,配制检测液:
步骤101,取2mg的HS按照1mg:2ml的比例溶解于4ml的DMSO中,在室温下搅拌1h,用pH7.4的HEPES稀释制得浓度为10μmol/L的HS溶液;
步骤102,取CP标准溶液,用HEPES缓冲溶液稀释,在室温下搅拌5min,制得浓度为10μmol/L的CP溶液;
步骤103,将等体积制得的HS溶液与CP溶液按照摩尔比1:1混合(以溶质计,在室温下搅拌20min,即得浓度为10μmol/L的CPHS检测液;
步骤2,绘制标准工作曲线:
步骤201,分别配制浓度为0μmol/L、0.6μmol/L、1.2μmol/L、1.7μmol/L、2.3μmol/L、2.7μmol/L、3.4μmol/L的铜离子标准溶液,各取1ml分别加入到编号为1号~7号的5ml EP管中,再向各EP管中加入1ml步骤1)制得的浓度为10μmol/L 的CPHS检测液,最后向各EP管中加入1ml HEPES缓冲溶液,则1号~7号管中铜离子与CPHS的摩尔比为0、0.06、0.12、0.17、0.23、0.27;
步骤202,用充分摇匀,静置10min后,分别从1号~7号EP管中取2ml混合溶液加入到1cm比色皿中,用紫外-可见分光光度计(本实施例采用安捷伦Cary-300)在波长λ=360nm上检测1号~7号EP管,得到7个检测点。共进行三组平行试验后,将所得的所有吸光度的值扣除空白吸光度的值,即1号EP管,再根据处理后的吸光度和相应的铜离子浓度绘制趋势线,即图2所示的标准工作曲线。
步骤3,检测铜离子浓度:
步骤301,将1ml CPHS检测液滴加到编号为a~d 1ml待测铜离子溶液中,充分摇匀后,静置10min,用紫外-可见分光光度计检测待测反应产物溶液,得到如图1所示的吸光度值曲线;
步骤302,将波长λ=360nm上的吸光度值带入标准工作曲线,即可得到相应的铜离子浓度。
实施例2
该微量铜离子浓度的检测方法包括以下步骤:
步骤1,配制检测液:
步骤101,取2mg的HS按照1mg:2ml的比例溶解于4ml的DMSO中,在室温下搅拌1h,用pH7.4的HEPES稀释制得浓度为10μmol/L的HS溶液;
步骤102,取CP标准溶液,用HEPES缓冲溶液稀释,在室温下搅拌5min,制得浓度为10μmol/L的CP溶液;
步骤103,将等体积制得的HS溶液与CP溶液按照摩尔比1:1混合(以溶质计,在室温下搅拌20min,即得浓度为10μmol/L的CPHS检测液;
步骤2,绘制标准工作曲线:
步骤201,分别配制浓度为0μmol/L、1μmol/L、5μmol/L、10μmol/L、40μmol/L、70μmol/L、100μmol/L的铜离子标准溶液,各取1ml分别加入到编号为1号~7号的5ml EP管中,再向各EP管中加入1ml步骤1)制得的浓度为10μmol/L 的CPHS检测液,最后向各EP管中加入1mlHEPES缓冲溶液,则1号~7号管中铜离子与CPHS的摩尔比为0、0.1、0.5、1、4、7、10;
步骤202,用充分摇匀,静置10min后,分别从1号~7号EP管中取2ml混合溶液加入到1cm比色皿中,用紫外-可见分光光度计(本实施例采用安捷伦Cary-300)在波长λ=360nm上检测1号~7号EP管,得到7个检测点。共进行三组平行试验后,将所得的所有吸光度的值扣除空白吸光度的值,即1号EP管,再根据处理后的吸光度和相应的铜离子浓度绘制趋势线,即图4所示的标准工作曲线。
步骤3,检测铜离子浓度:
步骤301,分别将1ml CPHS检测液滴加到编号为a~g 1ml待测铜离子溶液中,充分摇匀后,静置10min,用紫外-可见分光光度计检测待测反应产物溶液,得到如图3所示的吸光度值曲线;
步骤302,将波长λ=360nm的吸光度值带入标准工作曲线,即可得到相应的铜离子浓度。
检测原理:取浓度相近的Ca2+、Mg2+、Zn2+、Pb2+、Cd2+、Ag+、Bi3+、Ni2+离子溶液,通过紫外-可见分光光度计在波长λ=250~450范围内扫描得到如4所示的各离子的分光光度曲线。可见,在相近的浓度范围内,在紫外可见光谱的波长λ=360nm处,只有Cu2+出现了很强的吸收峰,而其他金属离子的吸光强度都很弱,因而在实际检测中,可以忽略这些其他金属离子对微量铜离子浓度检测结果可能造成的干扰,从而本实施例的检测方法在实际检测时无需添加Ca2+、Mg2+、Zn2+、Pb2+、Cd2+、Ag+、Bi3+、Ni2+这些其他金属离子的屏蔽剂来进行水样预处理。
文中缩写字母含义:DMSO:二甲基亚砜;CP:铜伴侣蛋白;HS:水杨醛缩氨基脲;CPHS:水杨醛缩氨基脲-铜伴侣蛋白;HEPES:羟乙基哌嗪乙磺酸。

Claims (2)

1.一种微量铜离子浓度的检测方法,其特征在于,包括以下步骤:
步骤1,配制检测液:
步骤101,取1.6mg~36mg的HS按照1mg:2ml的比例溶解于DMSO中,在室温下搅拌1h,用HEPES稀释制得浓度为1μmol/L~100μmol/L的HS溶液;
步骤102,取CP标准溶液,用HEPES缓冲溶液稀释,在室温下搅拌5min,制得浓度为1μmol/L~100μmol/L的CP溶液;
步骤103,将制得的HS溶液与CP溶液按照摩尔比1:1混合(以溶质计,在室温下搅拌20min,即得浓度为1μmol/L~100μmol/L的CPHS检测液;
步骤2,绘制标准工作曲线:
步骤201,分别将1ml步骤1)制得的CPHS检测液加入到7个5ml EP管中,然后向其中7个EP管中分别加入1ml浓度0μmol/L~100μmol/L依次递增的铜离子标准溶液;再向7个EP管中全部加入1ml HEPES缓冲溶液,得到7组混合溶液;
步骤202,用紫外-可见分光光度计在波长λ=360nm上分别检测7组混合液,得到紫外可见光谱曲线,并进一步得到特征吸收峰的吸光度,根据吸光度和相应的已知铜离子浓度,扣除空白吸光度值后得到标准工作曲线;
步骤3,检测铜离子浓度:
步骤301,将CPHS检测液滴加到待测铜离子溶液中,充分摇匀后,静置10min,用紫外-可见分光光度计检测待测反应产物溶液,得到吸光度曲线;
步骤302,从标准工作曲线上,将波长360nm处的吸光度值带入标准曲线,即可得到与相应吸光度对应的相应铜离子浓度。
2.根据权利要求1所述的微量铜离子浓度的检测方法,其特征在于:待测铜离子溶液的pH为3~9。
CN201810345584.4A 2018-04-17 2018-04-17 微量铜离子浓度的检测方法 Pending CN108717049A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810345584.4A CN108717049A (zh) 2018-04-17 2018-04-17 微量铜离子浓度的检测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810345584.4A CN108717049A (zh) 2018-04-17 2018-04-17 微量铜离子浓度的检测方法

Publications (1)

Publication Number Publication Date
CN108717049A true CN108717049A (zh) 2018-10-30

Family

ID=63899182

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810345584.4A Pending CN108717049A (zh) 2018-04-17 2018-04-17 微量铜离子浓度的检测方法

Country Status (1)

Country Link
CN (1) CN108717049A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113740282A (zh) * 2021-08-19 2021-12-03 广东有机宝生物科技股份有限公司 一种铜元素含量的测试方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102866122A (zh) * 2012-09-04 2013-01-09 浙江工商大学 食品中重金属铜的检测方法
CN103344588A (zh) * 2013-06-28 2013-10-09 上海理工大学 一种微量铜离子浓度检测方法
CN105784610A (zh) * 2016-03-02 2016-07-20 苏州汶颢芯片科技有限公司 锌试剂检测铜离子含量及消除干扰的方法及掩蔽剂
CN107655844A (zh) * 2017-10-31 2018-02-02 中国检验检疫科学研究院 用于铜离子比色法的显色剂、铜离子比色法传感器及其使用方法和用途

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102866122A (zh) * 2012-09-04 2013-01-09 浙江工商大学 食品中重金属铜的检测方法
CN103344588A (zh) * 2013-06-28 2013-10-09 上海理工大学 一种微量铜离子浓度检测方法
CN105784610A (zh) * 2016-03-02 2016-07-20 苏州汶颢芯片科技有限公司 锌试剂检测铜离子含量及消除干扰的方法及掩蔽剂
CN107655844A (zh) * 2017-10-31 2018-02-02 中国检验检疫科学研究院 用于铜离子比色法的显色剂、铜离子比色法传感器及其使用方法和用途

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZHEN SONG等: "Spectral studies on the interaction between HSSC and apoCopC", 《SPECTROCHIMICA ACTA PART A: MOLECULAR AND BIOMOLECULAR SPECTROSCOPY》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113740282A (zh) * 2021-08-19 2021-12-03 广东有机宝生物科技股份有限公司 一种铜元素含量的测试方法

Similar Documents

Publication Publication Date Title
Wang et al. A highly selective turn-on near-infrared fluorescent probe for hydrogen sulfide detection and imaging in living cells
Winterbourn The challenges of using fluorescent probes to detect and quantify specific reactive oxygen species in living cells
Pimenta et al. Application of sequential injection analysis to pharmaceutical analysis
Zhao et al. On-site monitoring of thiram via aggregation-induced emission enhancement of gold nanoclusters based on electronic-eye platform
Steinberg et al. Characterisation of an optical sensor membrane based on the metal ion indicator Pyrocatechol Violet
Zhang et al. Insight into sulfur dioxide and its derivatives metabolism in living system with visualized evidences via ultra-sensitive fluorescent probe
Economou et al. Sensitive determination of captopril by flow injection analysis with chemiluminescence detection based on the enhancement of the luminol reaction
Wang et al. H 2 O 2-mediated fluorescence quenching of double-stranded DNA templated copper nanoparticles for label-free and sensitive detection of glucose
CN107021953A (zh) 一种香豆素荧光探针和制备方法及其在检测次氯酸根离子上的应用
Dilgin et al. Fluorimetric determination of ascorbic acid in vitamin C tablets using methylene blue
Guo et al. A highly sensitive electrochemiluminescence method combined with molecularly imprinted solid phase extraction for the determination of phenolphthalein in drug, slimming food and human plasma
CN103048287A (zh) 基于纳米金模拟过氧化物酶的硫离子测定方法
CN105352920A (zh) 一种利用1,4-二羟基-9,10-蒽醌缩氨基硫脲化合物作为荧光探针检测铜离子的方法
Wang et al. In situ synthesis of fluorescent copper nanoclusters for rapid detection of ascorbic acid in biological samples
Liu et al. Two simple but effective turn-on benzothiazole-based fluorescent probes for detecting hydrogen sulfide in real water samples and HeLa cells
Mahajan et al. Chelation enhanced fluorescence of rhodamine based novel organic nanoparticles for selective detection of mercury ions in aqueous medium and intracellular cell imaging
He et al. Highly fluorescent dihydropyrimido-diindole derivative as a probe for detecting nitrite in food products and cell-imaging
Dong et al. Selective visualization of cyanide in food, living cells and zebrafish by a mitochondria targeted NIR-emitting fluorescent probe
CN101187637B (zh) 海水中酚类化合物的自动分析方法
Chen et al. Catalytic kinetic methods for photometric or fluorometric determination of heavy metal ions
Pourreza et al. Colorimetric sensing of palladium ions based on in situ generation of palladium nanoparticles as an activator for the thionine-hydrazine reaction
CN109520946A (zh) 基于纳米金模拟过氧化物酶的亚铈离子测定方法
CN108717049A (zh) 微量铜离子浓度的检测方法
Alghamdi et al. A sensitive procedure for the rapid electrochemical determination of eosin-Y dye using voltammetric techniques onto a mercury electrode surface
Torul et al. based electrochemiluminescence gas sensor

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20181030