CN108686717A - 一种配合物改性蒙脱石的制备方法 - Google Patents

一种配合物改性蒙脱石的制备方法 Download PDF

Info

Publication number
CN108686717A
CN108686717A CN201710235588.2A CN201710235588A CN108686717A CN 108686717 A CN108686717 A CN 108686717A CN 201710235588 A CN201710235588 A CN 201710235588A CN 108686717 A CN108686717 A CN 108686717A
Authority
CN
China
Prior art keywords
montmorillonite
diethylenetriamine
preparation
modified
modified montmorillonite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710235588.2A
Other languages
English (en)
Inventor
夏明珠
王阿龙
王风云
褚玉婷
徐莹
杨蕾
雷武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Science and Technology
Original Assignee
Nanjing University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Science and Technology filed Critical Nanjing University of Science and Technology
Priority to CN201710235588.2A priority Critical patent/CN108686717A/zh
Publication of CN108686717A publication Critical patent/CN108686717A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/12Naturally occurring clays or bleaching earth
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/288Treatment of water, waste water, or sewage by sorption using composite sorbents, e.g. coated, impregnated, multi-layered
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/42Treatment of water, waste water, or sewage by ion-exchange
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/34Organic compounds containing oxygen
    • C02F2101/345Phenols
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/36Organic compounds containing halogen

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Engineering & Computer Science (AREA)
  • Hydrology & Water Resources (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dispersion Chemistry (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Inorganic Chemistry (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)
  • Water Treatment By Sorption (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

本发明公开了一种配合物改性蒙脱石的制备方法。所述方法以钠基蒙脱石为原料,以螯合剂二乙烯三胺为改性剂,按二乙烯三胺的摩尔量为钠基蒙脱石阳离子交换容量的80‑120%,将二乙烯三胺溶液加入到钠基蒙脱石悬浊液中,20‑80℃水浴条件下搅拌反应2‑24h,最后抽滤,洗涤烘干后即得到改性蒙脱石。本发明方法改性得到的蒙脱石作为吸附剂,能够有效吸附水溶液中的Pb(Ⅱ)、Cd(Ⅱ)等有毒重金属离子,且吸附效率高,当Pb离子初始浓度小于100mg/L时,吸附率可达98.4%以上,不易被降解和脱附,在pH>4环境中,脱附率仅为0.12%,能够实现永久性吸附,在重金属离子废水处理中具有应用前景。

Description

一种配合物改性蒙脱石的制备方法
技术领域
本发明涉及一种配合物改性蒙脱石的制备方法,属于材料制备技术领域。
背景技术
重金属污染具有富集性的特点,进入人体后,不易被排出体外,长期积累的重金属离子严重影响人体的各种器官和生理系统的正常运作。传统的含重金属离子废水处理方法包括化学沉淀、膜分离、离子交换、蒸发和电解等,但这些方法普遍存在成本高、效率低、易产生二次污染等问题。吸附法是目前常用的处理含重金属离子废水的方法。
蒙脱石是一种层状硅酸盐,它的单位晶胞是由两层硅氧(Si-O)四面体夹一层铝氧(Al-(O,OH))八面体组成,共用的氧原子连接四面体与八面体,氧层连接各个晶胞。蒙脱石具有亲水性、膨胀性、吸附性、离子交换性、分散性、悬浮性、稳定性等优点。相比于分子筛、活性炭等吸附剂,蒙脱石还具备天然、廉价、产量大、无毒害等优势。蒙脱石作为一种廉价的吸附剂,广泛应用于重金属离子废水处理中。但天然蒙脱石活性点被占据,层间距小,吸附能力有限,限制了其应用范围,因此需对其进行改性处理,进而改善蒙脱石的层间结构和吸附性能,拓宽蒙脱石的应用前景。任广军等人以羟基铁铝为柱化剂制备了Fe-Al柱撑蒙脱石,并研究了其对水溶液中铅离子的吸附去除性能(任广军等.Fe-Al柱撑膨润土对水溶液中铅离子的吸附性能研究[J].材料保护,2007,(08):79-81+88),但无机柱化剂改性蒙脱石存在吸附容量小,吸附不牢固等不足。朱霞萍等人用有机配体(3-巯丙基)三甲氧基硅烷改性蒙脱石,并探究其对Cd(Ⅱ)的吸附性能(朱霞萍等.巯基改性蒙脱石对Cd(Ⅱ)的吸附机理研究[J].岩矿测试,2013,(04):613-620),该方法需使用有机溶剂,能耗大,且会对环境造成污染。
发明内容
本发明的目的是提供一种配合物改性蒙脱石的制备方法,所述方法以钠基蒙脱石为原料,以螯合剂二乙烯三胺为改性剂,对蒙脱石进行改性,该方法工艺简单,环境友好,去除效率高,成本低廉。
为实现上述发明目的,本发明的技术方案如下:
一种配合物改性蒙脱石的制备方法,包括以下步骤:
将钠基蒙脱石超声分散于水中形成蒙脱石悬浊液,按螯合剂二乙烯三胺的摩尔量为钠基蒙脱石阳离子交换容量的80-120%,加入二乙烯三胺溶液,调节pH至4-6,在20-80℃下搅拌反应完全,减压抽滤,洗涤,干燥,研磨,过筛,得到改性蒙脱石。
优选地,所述的钠基蒙脱石的阳离子交换容量为60-120mmoL/100g。
优选地,所述的螯合剂二乙烯三胺的摩尔量为钠基蒙脱石阳离子交换容量的100-110%。
优选地,所述的钠基蒙脱石与水的质量比为1:50-100。
优选地,所述的pH为5。
优选地,所述的二乙烯三胺溶液中二乙烯三胺的体积浓度为1%-10%。
优选地,所述的搅拌反应时间为2-24h。
优选地,所述的干燥温度为60-80℃。
本发明与现有技术相比,具有以下优点:
(1)本发明反应条件简单,易于操作,反应在水溶液中进行,对环境友好;
(2)本发明原料为自然矿物质,廉价易得,无毒,产量丰富,总体成本大大降低,便于工业化生产;
(3)本发明选用的改性剂二乙烯三胺是一种含氮的三齿配体,配体插入蒙脱石层间后,吸附溶液中的Pb、Cd等重金属离子,可使重金属离子与配体结合形成配合物,使吸附更加牢固,吸附效率高,当Pb离子初始浓度小于100mg/L时,吸附率可达98.4%以上,不易被降解和脱附,在pH>4环境中,脱附率仅为0.12%,能够实现永久性吸附,在重金属离子废水处理中具有应用前景。
附图说明
图1为钠基蒙脱石和改性蒙脱石的XRD表征图。
图2为钠基蒙脱石和改性蒙脱石的FT-IR表征图。
具体实施方式
实施例1
(1)将4g钠基蒙脱石分散到400mL蒸馏水中,超声10min。向该悬浊液中加入体积浓度为1%的二乙烯三胺溶液,二乙烯三胺的摩尔量为3.6mmoL,螯合剂二乙烯三胺的摩尔量为钠基蒙脱石阳离子交换容量的100%,用1M HCl调节pH=6。在20℃水浴条件下搅拌24h,抽滤,80℃烘干,研磨,过200目筛,即可得到改性蒙脱石。
对实施例1中制得的改性蒙脱石和钠基蒙脱石进行X-射线粉末衍射表征,如图1所示。从XRD对比图中可以看出改性蒙脱石的层间距有所增大,其基本结构未发生变化;对实施例1中制得的改性蒙脱石和钠基蒙脱石进行红外表征,如图2所示。从FT-IR对比图中可以看出改性剂二乙烯三胺成功负载到蒙脱石上,并插入到蒙脱石层间。
(2)称取0.4g上述改性蒙脱石,投入到100mL初始浓度为200mg/L的Pb(Ⅱ)溶液中,PH=6。在25℃下搅拌90min,离心分离后,测定上清液中Pb(Ⅱ)的剩余浓度。结果表明,改性蒙脱石对Pb(Ⅱ)的吸附量为44.9mg/g,去除率为89.7%。
实施例2
(1)将4g钠基蒙脱石分散到200mL蒸馏水中,超声10min。向该悬浊液中加入体积浓度为10%的二乙烯三胺溶液,二乙烯三胺的摩尔量为4.2mmoL,螯合剂二乙烯三胺的摩尔量为钠基蒙脱石阳离子交换容量的120%,用1M HCl调节pH=6。在20℃水浴条件下搅拌24h,抽滤,80℃烘干,研磨,过200目筛,即可得到改性蒙脱石。
(2)称取0.4g上述改性蒙脱石,投入到100mL初始浓度为200mg/L的Pb(Ⅱ)溶液中,PH=6。在25℃下搅拌90min,离心分离后,测定上清液中Pb(Ⅱ)的剩余浓度。结果表明,改性蒙脱石对Pb(Ⅱ)的吸附量为42.7mg/g,去除率为85.4%。
实施例3
(1)将4g钠基蒙脱石分散到400mL蒸馏水中,超声30min。向该悬浊液中加入体积浓度为1%的二乙烯三胺溶液,二乙烯三胺的摩尔量为3.0mmoL,螯合剂二乙烯三胺的摩尔量为钠基蒙脱石阳离子交换容量的80%,用1M HCl调节pH=4。在80℃水浴条件下搅拌12h,抽滤,80℃烘干,研磨,过200目筛,即可得到改性蒙脱石。
(2)称取0.4g上述改性蒙脱石,投入到100mL初始浓度为200mg/L的Pb(Ⅱ)溶液中,PH=6。在25℃下搅拌90min,离心分离后,测定上清液中Pb(Ⅱ)的剩余浓度。结果表明,改性蒙脱石对Pb(Ⅱ)的吸附量为39.6mg/g,去除率为79.2%。
实施例4
(1)将4g钠基蒙脱石分散到400mL蒸馏水中,超声30min。向该悬浊液中加入体积浓度为1%的二乙烯三胺溶液,二乙烯三胺的摩尔量为3.9mmoL,螯合剂二乙烯三胺的摩尔量为钠基蒙脱石阳离子交换容量的110%,用1M HCl调节pH=5。在80℃水浴条件下搅拌2h,抽滤,60℃烘干,研磨,过200目筛,即可得到改性蒙脱石。
(2)称取0.4g上述改性蒙脱石,投入到100mL初始浓度为200mg/L的Pb(Ⅱ)溶液中,PH=6。在25℃下搅拌90min,离心分离后,测定上清液中Pb(Ⅱ)的剩余浓度。结果表明,改性蒙脱石对Pb(Ⅱ)的吸附量为43.4mg/g,去除率为86.7%。
实施例5
(1)将4g钠基蒙脱石分散到400mL蒸馏水中,超声10min。向该悬浊液中加入体积浓度为1%的二乙烯三胺溶液,二乙烯三胺的摩尔量为3.6mmoL,螯合剂二乙烯三胺的摩尔量为钠基蒙脱石阳离子交换容量的100%,用1M HCl调节pH=6。在20℃水浴条件下搅拌24h,抽滤,80℃烘干,研磨,过200目筛,即可得到改性蒙脱石。
(2)称取0.4g上述改性蒙脱石,投入到100mL初始浓度为100mg/L的Cd(Ⅱ)溶液中,PH=6。在25℃下搅拌90min,离心分离后,测定上清液中Cd(Ⅱ)的剩余浓度。结果表明,改性蒙脱石对Cd(Ⅱ)的吸附量为21.4mg/g,去除率为85.4%。
实施例6
(1)将4g钠基蒙脱石分散到400mL蒸馏水中,超声10min。向该悬浊液中加入体积浓度为1%的二乙烯三胺溶液,二乙烯三胺的摩尔量为3.6mmoL,螯合剂二乙烯三胺的摩尔量为钠基蒙脱石阳离子交换容量的100%,用1M HCl调节pH=6。在20℃水浴条件下搅拌24h,抽滤,80℃烘干,研磨,过200目筛,即可得到改性蒙脱石。
(2)称取0.4g上述改性蒙脱石,投入到100mL初始浓度为200mg/L的Pb(Ⅱ)溶液中,PH=6。在25℃下搅拌90min,离心分离后,测定上清液中Pb(Ⅱ)的剩余浓度。结果表明,改性蒙脱石对Pb(Ⅱ)的吸附量为44.9mg/g,去除率为89.7%。
(3)称取上述吸附后的改性蒙脱石0.2g,投入到50mL蒸馏水中,调节pH=4,20℃水浴条件下搅拌24h,常温静置20天,测定上清液中Pb(Ⅱ)的脱附浓度。结果表明,其脱附率仅为0.12%。
对比例1
(1)将4g钙基蒙脱石分散到400mL蒸馏水中,超声10min。向该悬浊液中加入体积浓度为1%的二乙烯三胺溶液,二乙烯三胺的摩尔量为3.0mmoL,螯合剂二乙烯三胺的摩尔量为钙基蒙脱石阳离子交换容量的100%,用1M HCl调节pH=6。在20℃水浴条件下搅拌24h,抽滤,80℃烘干,研磨,过200目筛,即可得到改性蒙脱石。
(2)称取0.4g上述改性蒙脱石,投入到100mL初始浓度为200mg/L的Pb(Ⅱ)溶液中,PH=6。在25℃下搅拌90min,离心分离后,测定上清液中Pb(Ⅱ)的剩余浓度。结果表明,改性蒙脱石对Pb(Ⅱ)的吸附量为35.1mg/g,去除率为70.1%。
比较实施例1和对比例1可知,以钙基蒙脱石为原料,改性得到的蒙脱石的吸附效率明显低于钠基蒙脱石。
对比例2
(1)将4g钠基蒙脱石分散到200mL蒸馏水中,超声10min。向该悬浊液中加入体积浓度为10%的二乙烯三胺溶液,二乙烯三胺的摩尔量为5.1mmoL,螯合剂二乙烯三胺的摩尔量为钠基蒙脱石阳离子交换容量的150%,用1M HCl调节pH=6。在20℃水浴条件下搅拌24h,抽滤,80℃烘干,研磨,过200目筛,即可得到改性蒙脱石。
(2)称取0.4g上述改性蒙脱石,投入到100mL初始浓度为200mg/L的Pb(Ⅱ)溶液中,PH=6。在25℃下搅拌90min,离心分离后,测定上清液中Pb(Ⅱ)的剩余浓度。结果表明,改性蒙脱石对Pb(Ⅱ)的吸附量为38.2mg/g,去除率为76.4%。
比较实施例2和对比例2可知,当螯合剂二乙烯三胺为蒙脱石阳离子交换容量的150%时,改性得到的蒙脱石的吸附效率明显低于二乙烯三胺为蒙脱石阳离子交换容量的120%改性得到的蒙脱石。
对比例3
(1)将4g钠基蒙脱石分散到400mL蒸馏水中,超声10min。向该悬浊液中加入体积浓度为1%的二乙烯三胺溶液,二乙烯三胺的摩尔量为3.6mmoL,螯合剂二乙烯三胺的摩尔量为钠基蒙脱石阳离子交换容量的100%,用1M HCl调节pH=3。在20℃水浴条件下搅拌24h,抽滤,80℃烘干,研磨,过200目筛,即可得到改性蒙脱石。
(2)称取0.4g上述改性蒙脱石,投入到100mL初始浓度为200mg/L的Pb(Ⅱ)溶液中,PH=6。在25℃下搅拌90min,离心分离后,测定上清液中Pb(Ⅱ)的剩余浓度。结果表明,改性蒙脱石对Pb(Ⅱ)的吸附量为21.6mg/g,去除率为43.2%。
比较实施例1和对比例3可知,当改性过程中pH过酸(pH=3)时,改性得到的蒙脱石的吸附效率明显低于pH(pH=6)为弱酸时改性得到的蒙脱石。

Claims (8)

1.一种配合物改性蒙脱石的制备方法,其特征在于,包括以下步骤:
将钠基蒙脱石超声分散于水中形成蒙脱石悬浊液,按螯合剂二乙烯三胺的摩尔量为钠基蒙脱石阳离子交换容量的80-120%,加入二乙烯三胺溶液,调节pH至4-6,在20-80℃下搅拌反应完全,减压抽滤,洗涤,干燥,研磨,过筛,得到改性蒙脱石。
2.根据权利要求1所述的制备方法,其特征在于,所述的钠基蒙脱石的阳离子交换容量为60-120mmoL/100g。
3.根据权利要求1所述的制备方法,其特征在于,所述的螯合剂二乙烯三胺的阳离子交换容量为钠基蒙脱石的100-110%。
4.根据权利要求1所述的制备方法,其特征在于,所述的钠基蒙脱石与水的质量比为1:50-100。
5.根据权利要求1所述的制备方法,其特征在于,所述的pH为5。
6.根据权利要求1所述的制备方法,其特征在于,所述的二乙烯三胺溶液中二乙烯三胺的体积浓度为1%-10%。
7.根据权利要求1所述的制备方法,其特征在于,所述的搅拌反应时间为2-24h。
8.根据权利要求1所述的制备方法,其特征在于,所述的干燥温度为60-80℃。
CN201710235588.2A 2017-04-12 2017-04-12 一种配合物改性蒙脱石的制备方法 Pending CN108686717A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710235588.2A CN108686717A (zh) 2017-04-12 2017-04-12 一种配合物改性蒙脱石的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710235588.2A CN108686717A (zh) 2017-04-12 2017-04-12 一种配合物改性蒙脱石的制备方法

Publications (1)

Publication Number Publication Date
CN108686717A true CN108686717A (zh) 2018-10-23

Family

ID=63842477

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710235588.2A Pending CN108686717A (zh) 2017-04-12 2017-04-12 一种配合物改性蒙脱石的制备方法

Country Status (1)

Country Link
CN (1) CN108686717A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110499203A (zh) * 2019-08-27 2019-11-26 贵州大学 一种油胺改性蒙脱石的制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101757885A (zh) * 2008-12-25 2010-06-30 恩达电路(深圳)有限公司 一种重金属捕捉剂及其制备方法
CN101884903A (zh) * 2010-07-09 2010-11-17 浙江省环境保护科学设计研究院 一种有机膨润土的制备方法
DE102016004026B4 (de) * 2016-04-04 2019-02-14 Nefigmann GmbH Biokonverter mit kohlehaltigen Schwebekörpern

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101757885A (zh) * 2008-12-25 2010-06-30 恩达电路(深圳)有限公司 一种重金属捕捉剂及其制备方法
CN101884903A (zh) * 2010-07-09 2010-11-17 浙江省环境保护科学设计研究院 一种有机膨润土的制备方法
DE102016004026B4 (de) * 2016-04-04 2019-02-14 Nefigmann GmbH Biokonverter mit kohlehaltigen Schwebekörpern

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ARSALAN JAMSHIDI ETAL.: "Adsorption Behavior of Reactive Blue 29 Dye on Modified Nanoclay", 《TRENDS IN APPLIED SCIENCES RESEARCH》 *
BEINI GONG ETAL.: "Efficient inhibition of heavy metal release from mine tailings against acid rain exposure by triethylenetetramine intercalatedmontmorillonite (TETA-Mt)", 《JOURNAL OF HAZARDOUS MATERIALS》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110499203A (zh) * 2019-08-27 2019-11-26 贵州大学 一种油胺改性蒙脱石的制备方法

Similar Documents

Publication Publication Date Title
Liu et al. Adsorption of lead (Pb) from aqueous solution with Typha angustifolia biomass modified by SOCl2 activated EDTA
Dong et al. A novel method for amino starch preparation and its adsorption for Cu (II) and Cr (VI)
Heidari-Chaleshtori et al. Clinoptilolite nano-particles modified with aspartic acid for removal of Cu (II) from aqueous solutions: isotherms and kinetic aspects
Zhang et al. Study of the mechanisms of Cu2+ biosorption by ethanol/caustic-pretreated baker's yeast biomass
CN105107471B (zh) 巯基木质纤维素/蒙脱土复合重金属吸附剂及制备与应用
Li et al. Recovery of uranyl from aqueous solutions using amidoximated polyacrylonitrile/exfoliated Na-montmorillonite composite
CN100460056C (zh) 一种用于除砷的四方硫酸盐纤铁矿吸附剂的制备方法
CN107088398B (zh) 埃洛石负载针形四氧化三铁纳米复合材料的制备方法
Castaldi et al. Influence of the pH on the accumulation of phosphate by red mud (a bauxite ore processing waste)
Xu et al. Synthesis, characterization and application of a novel silica based adsorbent for boron removal
Bayramoglu et al. Uranium sorption by native and nitrilotriacetate-modified Bangia atropurpurea biomass: kinetics and thermodynamics
Mahdavi Nano-TiO2 modified with natural and chemical compounds as efficient adsorbents for the removal of Cd+ 2, Cu+ 2, and Ni+ 2 from water
CN106824076A (zh) 一种柚子皮活性炭及其应用
Beigzadeh et al. Fast and efficient removal of silver (I) from aqueous solutions using aloe vera shell ash supported Ni0. 5Zn0. 5Fe2O4 magnetic nanoparticles
Sudiono et al. The Role of Carboxyl and Hydroxyl Groups of Humic Acid in Removing AuCl 4-from Aqueous Solution
Gao et al. Two-step modification (sodium dodecylbenzene sulfonate composites acid-base) of sepiolite (SDBS/ABsep) and its performance for remediation of Cd contaminated water and soil
Tao et al. High-performance removal of mercury ions (II) and mercury vapor by SO3−-anchored covalent organic framework
Zhou et al. Preparation of amidoxime functionalized titanate nanosheets for efficient extraction of uranium from aqueous solution
CN109320736A (zh) 一种双功能无定形FeMn-MOF-74纳米花材料及制备方法和应用
Sert et al. Removal of arsenic (III) ions from aqueous solutions by modified hazelnut shell
Zhang et al. Facile electrochemical synthesis of nano iron porous coordination polymer using scrap iron for simultaneous and cost-effective removal of organic and inorganic arsenic
CN112552920A (zh) 一种重金属污染土壤的修复剂及其制备方法和应用
CN108911008B (zh) 去除水体中铜和四环素的方法
CN106669592A (zh) 用于微污染水处理的铁镍负载纳米过氧化钙的制备方法
Yan et al. Recovery and removal of rare earth elements from mine wastewater using synthesized bio-nanoparticles derived from Bacillus cereus

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20181023

RJ01 Rejection of invention patent application after publication