CN108674412A - 一种采用传感器融合的车辆主动避撞方法 - Google Patents
一种采用传感器融合的车辆主动避撞方法 Download PDFInfo
- Publication number
- CN108674412A CN108674412A CN201810301856.0A CN201810301856A CN108674412A CN 108674412 A CN108674412 A CN 108674412A CN 201810301856 A CN201810301856 A CN 201810301856A CN 108674412 A CN108674412 A CN 108674412A
- Authority
- CN
- China
- Prior art keywords
- vehicle
- information
- obstacle
- braking pressure
- collision avoidance
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 33
- 238000012417 linear regression Methods 0.000 claims abstract description 14
- 230000004927 fusion Effects 0.000 claims abstract description 13
- 238000012545 processing Methods 0.000 claims abstract description 7
- 230000007613 environmental effect Effects 0.000 claims abstract description 6
- 230000001133 acceleration Effects 0.000 claims abstract description 5
- 238000004364 calculation method Methods 0.000 claims description 7
- 238000001514 detection method Methods 0.000 claims description 2
- 238000005259 measurement Methods 0.000 abstract description 3
- 239000011295 pitch Substances 0.000 abstract description 3
- 238000010586 diagram Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 206010034719 Personality change Diseases 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 238000007500 overflow downdraw method Methods 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W30/00—Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
- B60W30/08—Active safety systems predicting or avoiding probable or impending collision or attempting to minimise its consequences
- B60W30/095—Predicting travel path or likelihood of collision
- B60W30/0953—Predicting travel path or likelihood of collision the prediction being responsive to vehicle dynamic parameters
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W30/00—Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
- B60W30/08—Active safety systems predicting or avoiding probable or impending collision or attempting to minimise its consequences
- B60W30/09—Taking automatic action to avoid collision, e.g. braking and steering
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W30/00—Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
- B60W30/08—Active safety systems predicting or avoiding probable or impending collision or attempting to minimise its consequences
- B60W30/095—Predicting travel path or likelihood of collision
- B60W30/0956—Predicting travel path or likelihood of collision the prediction being responsive to traffic or environmental parameters
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2552/00—Input parameters relating to infrastructure
- B60W2552/30—Road curve radius
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2554/00—Input parameters relating to objects
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2554/00—Input parameters relating to objects
- B60W2554/80—Spatial relation or speed relative to objects
- B60W2554/801—Lateral distance
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2710/00—Output or target parameters relating to a particular sub-units
- B60W2710/18—Braking system
- B60W2710/182—Brake pressure, e.g. of fluid or between pad and disc
Landscapes
- Engineering & Computer Science (AREA)
- Automation & Control Theory (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Traffic Control Systems (AREA)
- Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
Abstract
本发明公开了一种采用传感器融合的车辆主动避撞方法,包括1:获取车辆自身行驶信息与环境信息;2:结合车辆本身行驶信息与车道线信息对前方障碍物进行分类,筛选出预期行驶路径上的障碍物;3:对步骤2中得到的障碍物信息进行选择,得到对当前车辆行驶具有威胁的障碍物信息;4:利用线性回归预测结合传感器信息对车辆前方障碍物信息进行加权处理;5:综合步骤4与车辆行驶状态信息计算出车车辆所需制动压力;步骤6:重复步骤1‑5,直到车速为0或关闭系统。本发明利用线性回归估计与传感器测量信息加权处理、TTC安全距离模型与期望制动加速度双裕度模型能够消除车身发生俯仰时丢失目标障碍物的弊端,以及更好适应不同速度工况下的主动避撞。
Description
技术领域
本发明涉及一种汽车动态紧急纵向避撞的建模方法,属于行驶安全技术领域。
背景技术
随着汽车保有量的快速增长,道路交通安全问题已经成为各国政府和社会关注的重要问题。美国国家高速公路安全委员会(NHTSA)的调研表明,在道路交通致死事故中,因驾驶员过失造成的约占90%,而因车辆故障造成的仅占约3%。发展先进的车辆主动安全系统是现代道路交通的迫切需求。车辆主动安全系统中的重要环节是车辆的主动避撞方法的研究与开发。现有的主动避撞方法在车辆过弯转向过程中容易出现误报现象,且容易在车身发生俯仰时丢失目标障碍物导致主动避撞方法失效。
发明内容
本发明了一种基于传感器融合的车辆主动避撞方法,能够合理反应当前车辆所受的威胁程度,避免车辆行驶过程中由于转向和车辆姿态变化而带来的误制动或制动判断失效。具体方案如下:
一种采用传感器融合的车辆主动避撞方法,包括如下步骤:
步骤1:获取车辆自身行驶信息与环境信息;
步骤2:结合车辆本身行驶信息与车道线信息对前方障碍物进行分类,筛选出预期行驶路径上的障碍物;
步骤3:对步骤2中得到的障碍物信息进行选择,得到对当前车辆行驶具有威胁的障碍物信息;
步骤4:利用线性回归预测结合传感器信息对车辆前方障碍物信息进行加权处理;
步骤5:综合步骤4与车辆行驶状态信息计算出车车辆所需制动压力;
步骤6:重复步骤1-5,直到车速为0或者关闭系统。
进一步,步骤1中环境信息:雷达获取的车辆行驶前方障碍物信息,包括前方障碍物的距离、角度、速度信息,摄像头获取的信息,包括车辆行驶前方一定纵向距离位置的车道线与车辆中心位置的横向距离以及车道线曲率情况;
车辆自身行驶信息:利用车速传感器测量车速,利用方向盘转角传感器测量转角信息,并从车辆CAN总线读取车辆行驶速度、车辆方向盘偏转角度;
进一步,步骤2中对前方障碍物信息进行分类的具体方法为:
首先,根据前方车道线曲率信息判断当前车辆行驶道路的曲率、判断车辆前方道路环境特征,在小曲率及直行车道条件下,车辆将根据当前车身宽度以及雷达最远探测距离划分出预期行驶路径并将该路径上的目标(雷达探测到的物体)划分为敏感障碍物信息;在大曲率的道路条件下行驶时,将根据车辆方向盘转角计算当前车辆前轮转角,并根据阿克曼转角筛选出前方预期行驶路径上的障碍物信息,并将预期行驶路径上的障碍物信息划分为敏感障碍物信息;
进一步,步骤3中对车辆最具威胁障碍物指所有敏感障碍物信息中距离当前车辆距离最近的障碍物;
进一步,步骤4中利用线性回归预测结合传感器信息对车辆前方障碍物信息进行加权处理的具体方法为:
利用记录的前i次获取前方障碍物的时间与障碍物信息进行线性回归分析,得到当前时间对于车辆前方障碍物信息的估计,将估计值与系统测量值进行加权处理。
Y*=A*X+B
Y=C*Y*+D*Y
其中Xi为系统前i次获取雷达障碍物信息时对应的时间,Yi代表相应时间的前方障碍物信息,A、B为线性回归系数,C、D为加权系数,Y*为障碍物信息估计值,Y为障碍物信息测量值,Y为车辆前方障碍物信息处理结果,X为当前时间;
进一步,步骤5中计算车辆所需制动压力的具体方法为:
利用双裕度模型进行计算,包括:TTC(即碰撞时间)安全距离模型以及期望制动减速度安全距离模型进行计算。
其中TTC安全距离模型制动压力级别计算方法为:
其中,TTC为车辆即碰撞时间,Vvehicle为车辆当前速度,Vobstacle为障碍物运动速度,t0,t1,t2,t3为即碰撞时间制动压力分类边界值,分别为2s,1.2s,0.8s,0.5s,Sobstacle为前方障碍物与车辆距离,Lt为即碰撞时间制动压力级别。
期望制动减速度安全距离模型制动压力计算的方法为:
其中,Vvehicle为车辆当前速度,Vobstacle为障碍物运动速度,a0,a1,a2,a3为期望减速度制动压力分类边界值,分别为3.7m/s2,4.5m/s2,5.2m/s2,5.7m/s2,μroad为当前路面最大附着力系数,g为重力加速度值,Ssafe为预留安全距离,La为期望减速度制动压力级别。
制动压力可以由Lt与La综合得到:
P=max(Lt,La)*KP
其中,P为期望制动压力,KP为期望制动压力系数,为300kPa,La为期望减速度制动压力级别,Lt为即碰撞时间制动压力级别。
本发明的有益效果:
(1)结合传感器采集的信息对前方障碍物进行分类处理,在避免车辆发生符合驾驶员期望的主动偏转时由于车身偏转而导致的误报警;
(2)利用线性回归估计与传感器测量信息加权处理可以消除运动过程中车身发生俯仰时丢失目标障碍物而导致的主动避撞失效;
(3)采用TTC安全距离模型与期望制动加速度双裕度模型可以更好适应不同速度工况下的主动避撞。
附图说明
图1是本发明的方法流程图;
图2是典型工况1示意图;
图3是典型工况2示意图;
具体实施方式
下面结合附图和实施例对本发明作进一步的详细说明。
本发明提供一种基于传感器融合法的车辆主动避撞方法,如图1所示,包括以下几个步骤:步骤1:获取车辆自身行驶信息与环境信息。
CCD工业相机可以安装在车辆前挡风玻璃中间位置,根据相机采集的图像得到车道线曲率信息,将车辆前方的车道线曲率传输给电子控制单元ECU;毫米波雷达安装在车辆前保险杠处,用于获取车辆前方障碍物信息;利用车辆CAN总线获取车辆当前行驶状态信息,所述车辆行驶状态信息包括车辆行驶速度与方向盘转角信号。
步骤2:结合车辆本身行驶信息与车道线信息对前方障碍物进行分类,筛选出预期行驶路径上的障碍物;
以下面两种典型工况举例说明:
(1)如图2所示工况1,车辆前方为直道或小曲率情况时,将前方距离车身左面和右面各半车身的宽度Dvehicle、前方雷达探测距离长度Sradar内的矩形虚线框范围内的障碍物筛选为期望行驶路径上的障碍物;
(2)如图3所示工况2,车辆前方为大曲率情况时,利用阿克曼转角对当前车辆转弯半径进行建模,得到以R1与R2为半径的扇环形区域,筛选区域中的障碍物为期望行驶路径上的障碍物;
步骤3:对步骤2中得到的障碍物信息进行选择,筛选与车辆最近的障碍物作为最具威胁障碍物,并记录其与当前车辆的距离、角度、速度信息;
步骤4:利用线性回归预测结合传感器信息对车辆前方障碍物信息进行加权处理,具体过程如下:
对前i次前方障碍物信息进行线性回归分析,得到当前时间对于车辆前方障碍物信息的估计,将估计值与系统测量值进行加权处理。
Y*=A*X+B
Y=C*Y*+D*Y
其中Xi为系统前i次获取雷达障碍物信息时对应的系统时间,Yi代表相应时间的前方障碍物信息,A、B为线性回归系数,C、D为加权系数,Y*为障碍物信息估计值,Y为障碍物信息测量值,Y为车辆前方障碍物信息处理结果。
步骤5:计算车辆所需制动压力大小,并传输给ECU控制单元对车辆制动压力进行控制。
利用双裕度模型进行计算,包括:TTC(即碰撞时间)安全距离模型以及期望制动减速度安全距离模型进行计算。
其中TTC安全距离模型制动压力级别计算方法为:
其中,TTC为车辆即碰撞时间,Vvehicle为车辆当前速度,Vobstacle为障碍物运动速度,t0,t1,t2,t3为即碰撞时间制动压力分类边界值,Sobstacle为前方障碍物与车辆距离,Lt为即碰撞时间制动压力级别。
期望制动减速度安全距离模型制动压力计算的方法为:
其中,Vvehicle为车辆当前速度,Vobstacle为障碍物运动速度,a0,a1,a2,a3为期望减速度制动压力分类边界值,μroad为当前路面最大附着力系数,g为重力加速度值,Ssafe为预留安全距离,La为期望减速度制动压力级别。
制动压力可以由Lt与La综合得到:
P=max(Lt,La)*KP
其中,P为期望制动压力,KP为期望制动压力系数,La为期望减速度制动压力级别,Lt为即碰撞时间制动压力级别。
步骤6:重复步骤1-5。
上述仅为本发明技术方案和具体实施例的解释,并不用于限定本发明的保护范围,在不违背本发明实质内容和原则的前提下,所作任何修改、润饰等都在保护范围之内。
Claims (10)
1.一种采用传感器融合的车辆主动避撞方法,其特征在于,包括如下:
步骤1:获取车辆自身行驶信息与环境信息;
步骤2:结合车辆本身行驶信息与车道线信息对前方障碍物进行分类,筛选出预期行驶路径上的障碍物;
步骤3:对步骤2中得到的障碍物信息进行选择,得到对当前车辆行驶具有威胁的障碍物信息;
步骤4:利用线性回归预测结合传感器信息对车辆前方障碍物信息进行加权处理;
步骤5:综合步骤4与车辆行驶状态信息计算出车车辆所需制动压力;
步骤6:重复步骤1-5,直到车速为0或者关闭系统。
2.根据权利要求1所述的一种采用传感器融合的车辆主动避撞方法,其特征在于,所述步骤1中环境信息的获取:利用雷达获取车辆行驶前方障碍物信息,包括前方障碍物的距离、角度、速度信息;利用摄像头获取的信息,包括车辆行驶前方一定纵向距离位置的车道线与车辆中心位置的横向距离以及车道线曲率情况。
3.根据权利要求1所述的一种采用传感器融合的车辆主动避撞方法,其特征在于,所述步骤1中车辆自身行驶信息的获取:利用车速传感器测量车速信息,利用方向盘转角传感器测量转角信息,并从车辆CAN总线读取车辆行驶速度和车辆方向盘偏转角度。
4.根据权利要求1所述的一种采用传感器融合的车辆主动避撞方法,其特征在于,所述步骤2中对前方障碍物信息进行分类的具体方法为:
根据前方车道线曲率信息判断当前车辆行驶道路的曲率、判断车辆前方道路环境特征;
在小曲率及直行车道条件下,车辆将根据当前车身宽度以及雷达最远探测距离划分出预期行驶路径并将该路径上的目标划分为敏感障碍物信息;
在大曲率的道路条件下行驶时,将根据车辆方向盘转角计算当前车辆前轮转角,并根据阿克曼转角筛选出前方预期行驶路径上的障碍物信息,并将预期行驶路径上的障碍物信息划分为敏感障碍物信息。
5.根据权利要求4所述的一种采用传感器融合的车辆主动避撞方法,其特征在于,所述步骤3中车辆最具威胁障碍物是指:距离当前车辆最近的障碍物。
6.根据权利要求1所述的一种采用传感器融合的车辆主动避撞方法,其特征在于,所述步骤4中利用线性回归预测结合传感器信息对车辆前方障碍物信息进行加权处理的具体方法为:
利用记录的前i次获取前方障碍物的时间与障碍物信息进行线性回归分析,得到当前时间对于车辆前方障碍物信息的估计,将估计值与系统测量值进行加权处理,表达式如下:
Y*=A*X+B
Y=C*Y*+D*Y
其中Xi为系统前i次获取雷达障碍物信息时对应的时间,Yi代表相应时间的前方障碍物信息,A、B为线性回归系数,C、D为加权系数,Y*为障碍物信息估计值,Y为障碍物信息测量值,Y为车辆前方障碍物信息处理结果。
7.根据权利要求1所述的一种采用传感器融合的车辆主动避撞方法,其特征在于,所述步骤5计算车辆所需制动压力的具体方法为:
利用双裕度模型进行计算,包括TTC安全距离模型以及期望制动减速度安全距离模型进行计算,所述的制动压力由两种模型的计算结果综合得到。
8.根据权利要求7所述的一种采用传感器融合的车辆主动避撞方法,其特征在于,所述TTC安全距离模型制动压力级别计算方法为:
其中,TTC为车辆即碰撞时间,Vvehicle为车辆当前速度,Vobstacle为障碍物运动速度,t0,t1,t2,t3为即碰撞时间制动压力分类边界值,分别为2s,1.2s,0.8s,0.5s,Sobstacle为前方障碍物与车辆距离,Lt为即碰撞时间制动压力级别。
9.根据权利要求8所述的一种采用传感器融合的车辆主动避撞方法,其特征在于,所述期望制动减速度安全距离模型制动压力计算的方法为:
其中,Vvehicle为车辆当前速度,Vobstacle为障碍物运动速度,a0,a1,a2,a3为期望减速度制动压力分类边界值,μroad为当前路面最大附着力系数,g为重力加速度值,Ssafe为预留安全距离,La为期望减速度制动压力级别。
10.根据权利要求9所述的一种采用传感器融合的车辆主动避撞方法,其特征在于,所述制动压力由Lt与La综合得到:
P=max(Lt,La)*KP
其中,P为期望制动压力,KP为期望制动压力系数,La为期望减速度制动压力级别,Lt为即碰撞时间制动压力级别。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810301856.0A CN108674412B (zh) | 2018-04-04 | 2018-04-04 | 一种采用传感器融合的车辆主动避撞方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810301856.0A CN108674412B (zh) | 2018-04-04 | 2018-04-04 | 一种采用传感器融合的车辆主动避撞方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN108674412A true CN108674412A (zh) | 2018-10-19 |
CN108674412B CN108674412B (zh) | 2020-01-24 |
Family
ID=63800656
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810301856.0A Active CN108674412B (zh) | 2018-04-04 | 2018-04-04 | 一种采用传感器融合的车辆主动避撞方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108674412B (zh) |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109808492A (zh) * | 2019-02-15 | 2019-05-28 | 辽宁工业大学 | 一种车载雷达预警装置及预警方法 |
CN110371136A (zh) * | 2019-06-25 | 2019-10-25 | 天津大学 | 一种用于无人驾驶设备避障时速度控制的方法 |
CN111090286A (zh) * | 2020-03-24 | 2020-05-01 | 北京三快在线科技有限公司 | 一种无人车运动状态规划方法及装置 |
CN111231827A (zh) * | 2020-02-27 | 2020-06-05 | 江苏大学 | 一种雨雾天气显示车辆前方碰撞风险区域的装置和方法 |
CN111619560A (zh) * | 2020-07-29 | 2020-09-04 | 北京三快在线科技有限公司 | 车辆控制方法及装置 |
CN111703420A (zh) * | 2020-06-29 | 2020-09-25 | 嘉善新石器智牛科技有限公司 | 一种无人车防碰撞的方法 |
CN111796286A (zh) * | 2020-06-24 | 2020-10-20 | 中国第一汽车股份有限公司 | 一种制动等级的评估方法、装置、车辆和存储介质 |
CN111994073A (zh) * | 2020-07-22 | 2020-11-27 | 北京交通大学 | 一种自动紧急制动控制方法 |
CN112078570A (zh) * | 2020-08-04 | 2020-12-15 | 武汉乐庭软件技术有限公司 | 一种基于阿克曼转向模型的汽车定位方法 |
CN112447045A (zh) * | 2019-08-30 | 2021-03-05 | 罗伯特·博世有限公司 | 用于运行车辆的方法和设备 |
CN113200042A (zh) * | 2020-02-03 | 2021-08-03 | 奥迪股份公司 | 车辆驾驶辅助系统和方法及相应的计算机可读存储介质 |
CN113212429A (zh) * | 2021-05-13 | 2021-08-06 | 际络科技(上海)有限公司 | 一种自动驾驶车辆安全控制方法及装置 |
CN113635895A (zh) * | 2021-07-30 | 2021-11-12 | 靖江市恒大汽车部件制造有限公司 | 一种考虑制动力衰减的车辆主动防撞控制方法 |
CN113753033A (zh) * | 2020-06-03 | 2021-12-07 | 上海汽车集团股份有限公司 | 一种车辆、车辆驾驶任务选择方法及装置 |
CN113753038A (zh) * | 2021-03-16 | 2021-12-07 | 京东鲲鹏(江苏)科技有限公司 | 一种轨迹预测方法、装置、电子设备和存储介质 |
CN113895459A (zh) * | 2021-11-11 | 2022-01-07 | 北京经纬恒润科技股份有限公司 | 一种障碍物的筛选方法及系统 |
CN115769559A (zh) * | 2020-07-09 | 2023-03-07 | 丰田自动车北美公司 | 动态适应驾驶模式安全控制 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN202029843U (zh) * | 2011-05-11 | 2011-11-09 | 北京星河易达科技有限公司 | 一种基于微波雷达的车辆主动防碰撞系统 |
WO2012045323A1 (en) * | 2010-10-07 | 2012-04-12 | Connaught Electronics Ltd. | Method and driver assistance system for warning a driver of a motor vehicle of the presence of an obstacle in an environment of the motor vehicle |
CN103072575A (zh) * | 2013-01-18 | 2013-05-01 | 浙江吉利汽车研究院有限公司杭州分公司 | 一种车辆主动防碰撞方法 |
CN103818378A (zh) * | 2012-11-15 | 2014-05-28 | 通用汽车环球科技运作有限责任公司 | 主动安全系统和操作该系统的方法 |
US8793046B2 (en) * | 2012-06-01 | 2014-07-29 | Google Inc. | Inferring state of traffic signal and other aspects of a vehicle's environment based on surrogate data |
CN104943689A (zh) * | 2015-06-03 | 2015-09-30 | 奇瑞汽车股份有限公司 | 一种汽车主动防撞系统的控制方法 |
-
2018
- 2018-04-04 CN CN201810301856.0A patent/CN108674412B/zh active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012045323A1 (en) * | 2010-10-07 | 2012-04-12 | Connaught Electronics Ltd. | Method and driver assistance system for warning a driver of a motor vehicle of the presence of an obstacle in an environment of the motor vehicle |
CN202029843U (zh) * | 2011-05-11 | 2011-11-09 | 北京星河易达科技有限公司 | 一种基于微波雷达的车辆主动防碰撞系统 |
US8793046B2 (en) * | 2012-06-01 | 2014-07-29 | Google Inc. | Inferring state of traffic signal and other aspects of a vehicle's environment based on surrogate data |
CN103818378A (zh) * | 2012-11-15 | 2014-05-28 | 通用汽车环球科技运作有限责任公司 | 主动安全系统和操作该系统的方法 |
CN103072575A (zh) * | 2013-01-18 | 2013-05-01 | 浙江吉利汽车研究院有限公司杭州分公司 | 一种车辆主动防碰撞方法 |
CN104943689A (zh) * | 2015-06-03 | 2015-09-30 | 奇瑞汽车股份有限公司 | 一种汽车主动防撞系统的控制方法 |
Cited By (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109808492A (zh) * | 2019-02-15 | 2019-05-28 | 辽宁工业大学 | 一种车载雷达预警装置及预警方法 |
CN110371136A (zh) * | 2019-06-25 | 2019-10-25 | 天津大学 | 一种用于无人驾驶设备避障时速度控制的方法 |
CN112447045A (zh) * | 2019-08-30 | 2021-03-05 | 罗伯特·博世有限公司 | 用于运行车辆的方法和设备 |
CN113200042A (zh) * | 2020-02-03 | 2021-08-03 | 奥迪股份公司 | 车辆驾驶辅助系统和方法及相应的计算机可读存储介质 |
CN111231827A (zh) * | 2020-02-27 | 2020-06-05 | 江苏大学 | 一种雨雾天气显示车辆前方碰撞风险区域的装置和方法 |
CN111090286A (zh) * | 2020-03-24 | 2020-05-01 | 北京三快在线科技有限公司 | 一种无人车运动状态规划方法及装置 |
CN113753033A (zh) * | 2020-06-03 | 2021-12-07 | 上海汽车集团股份有限公司 | 一种车辆、车辆驾驶任务选择方法及装置 |
CN111796286B (zh) * | 2020-06-24 | 2023-01-17 | 中国第一汽车股份有限公司 | 一种制动等级的评估方法、装置、车辆和存储介质 |
CN111796286A (zh) * | 2020-06-24 | 2020-10-20 | 中国第一汽车股份有限公司 | 一种制动等级的评估方法、装置、车辆和存储介质 |
WO2021259260A1 (zh) * | 2020-06-24 | 2021-12-30 | 中国第一汽车股份有限公司 | 一种制动等级的评估方法、装置、车辆和存储介质 |
CN111703420A (zh) * | 2020-06-29 | 2020-09-25 | 嘉善新石器智牛科技有限公司 | 一种无人车防碰撞的方法 |
CN111703420B (zh) * | 2020-06-29 | 2021-10-19 | 嘉善新石器智牛科技有限公司 | 一种无人车防碰撞的方法 |
CN115769559A (zh) * | 2020-07-09 | 2023-03-07 | 丰田自动车北美公司 | 动态适应驾驶模式安全控制 |
CN111994073A (zh) * | 2020-07-22 | 2020-11-27 | 北京交通大学 | 一种自动紧急制动控制方法 |
CN111619560A (zh) * | 2020-07-29 | 2020-09-04 | 北京三快在线科技有限公司 | 车辆控制方法及装置 |
CN112078570A (zh) * | 2020-08-04 | 2020-12-15 | 武汉乐庭软件技术有限公司 | 一种基于阿克曼转向模型的汽车定位方法 |
CN113753038A (zh) * | 2021-03-16 | 2021-12-07 | 京东鲲鹏(江苏)科技有限公司 | 一种轨迹预测方法、装置、电子设备和存储介质 |
CN113753038B (zh) * | 2021-03-16 | 2023-09-01 | 京东鲲鹏(江苏)科技有限公司 | 一种轨迹预测方法、装置、电子设备和存储介质 |
CN113212429A (zh) * | 2021-05-13 | 2021-08-06 | 际络科技(上海)有限公司 | 一种自动驾驶车辆安全控制方法及装置 |
CN113635895A (zh) * | 2021-07-30 | 2021-11-12 | 靖江市恒大汽车部件制造有限公司 | 一种考虑制动力衰减的车辆主动防撞控制方法 |
CN113635895B (zh) * | 2021-07-30 | 2022-08-16 | 靖江市恒大汽车部件制造有限公司 | 一种考虑制动力衰减的车辆主动防撞控制方法 |
CN113895459A (zh) * | 2021-11-11 | 2022-01-07 | 北京经纬恒润科技股份有限公司 | 一种障碍物的筛选方法及系统 |
Also Published As
Publication number | Publication date |
---|---|
CN108674412B (zh) | 2020-01-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108674412B (zh) | 一种采用传感器融合的车辆主动避撞方法 | |
US10339391B2 (en) | Fusion-based wet road surface detection | |
CN109080630B (zh) | 一种用于车辆的环境感知系统及其控制方法 | |
CN110481544B (zh) | 一种针对行人的汽车避撞方法及避撞系统 | |
US9555813B2 (en) | Method and system for preventing instability in a vehicle-trailer combination | |
CN103395419B (zh) | 基于安全间距策略的车辆队列行驶控制系统及其控制方法 | |
US8952799B2 (en) | Method and system for warning a driver of a vehicle about potential obstacles behind the vehicle | |
CN104916165B (zh) | 一种前车驾驶员不安全驾驶行为检测方法及装置 | |
CN110588623B (zh) | 一种基于神经网络的大型汽车安全驾驶方法及系统 | |
CN106537180A (zh) | 用于用针对行人的主动制动的摄影机输入缓解雷达传感器限制的方法 | |
CN105844967A (zh) | 基于车车通信的车辆碰撞预警及主动控制方法 | |
CN107273785B (zh) | 多尺度融合的道路表面状况检测 | |
CN101131321A (zh) | 一种实时测量安全车距用于汽车防撞预警的方法及装置 | |
CN107804226A (zh) | 拖车车道偏离警告和摇摆警报 | |
CN103350698A (zh) | 用于运行车辆的方法和设备 | |
CN102274031A (zh) | 异常操作检测方法和异常操作检测系统 | |
CN103587524A (zh) | 一种横向主动避撞系统及其控制方法 | |
CN105263768A (zh) | 车辆控制系统 | |
CN106671961A (zh) | 一种基于电动汽车的主动防碰撞系统及其控制方法 | |
CN110723141A (zh) | 一种车辆主动避撞系统及其避撞方式切换方法 | |
CN206493934U (zh) | 一种基于电动汽车的主动防碰撞系统 | |
CN105263776A (zh) | 车辆控制系统 | |
Milanés et al. | Vision-based active safety system for automatic stopping | |
US20170120903A1 (en) | Cognitive reverse speed limiting | |
CN110682907A (zh) | 一种汽车防追尾控制系统及方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20201214 Address after: 211215 No. 368 zhe Ning Road, zhe Tang Town, Lishui District, Nanjing, Jiangsu Patentee after: NANJING HONGKAI POWER SYSTEM TECHNOLOGY Co.,Ltd. Address before: Zhenjiang City, Jiangsu Province, 212013 Jingkou District Road No. 301 Patentee before: JIANGSU University |