CN108663394B - 一种真空玻璃的热导测量装置及方法 - Google Patents

一种真空玻璃的热导测量装置及方法 Download PDF

Info

Publication number
CN108663394B
CN108663394B CN201710205120.9A CN201710205120A CN108663394B CN 108663394 B CN108663394 B CN 108663394B CN 201710205120 A CN201710205120 A CN 201710205120A CN 108663394 B CN108663394 B CN 108663394B
Authority
CN
China
Prior art keywords
plate
hot plate
vacuum glass
vacuum
thermal conductivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710205120.9A
Other languages
English (en)
Other versions
CN108663394A (zh
Inventor
戴长虹
苑绍东
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qingdao University of Technology
Original Assignee
Qingdao University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qingdao University of Technology filed Critical Qingdao University of Technology
Priority to CN201710205120.9A priority Critical patent/CN108663394B/zh
Publication of CN108663394A publication Critical patent/CN108663394A/zh
Application granted granted Critical
Publication of CN108663394B publication Critical patent/CN108663394B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N25/00Investigating or analyzing materials by the use of thermal means
    • G01N25/20Investigating or analyzing materials by the use of thermal means by investigating the development of heat, i.e. calorimetry, e.g. by measuring specific heat, by measuring thermal conductivity

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

一种真空玻璃的热导测量装置,包括上外壳、下外壳、冷板、热板、真空系统和控制系统,冷板和热板设置在上外壳和下外壳内,待测的真空玻璃放置在冷板与热板之间;上外壳、下外壳闭合后,通过真空系统将其内部抽成高真空,利用高真空得到比真空玻璃更好的绝热性能和提供标准校正;通过读取测量热板的恒温功率、有效面积以及热板与冷板的恒定温度就能利用计算出所测真空玻璃的热导;或通过分别读取测量真空玻璃和校正标准板时测量热板所需的恒温功率,并利用校正标准板的计算热导值,就能直接得到精准的真空玻璃热导值。该测量装置能够解决测量热板的散热问题以及提供校正标准板的问题,具有结构简单、测量方便和数据准确的特点。

Description

一种真空玻璃的热导测量装置及方法
技术领域
本发明涉及一种测量装置,尤其是涉及一种真空玻璃的热导测量装置及方法。
背景技术
真空玻璃是最好的节能玻璃之一,其隔热性能的好坏一般用传热系数来表示,传热系数可以通过热导来求得。由于真空玻璃的传热系数非常小,所以用现有的热导仪来测量时其误差就非常大,例如当传热系数小于1时,其测量误差为±0.1,理论上真空玻璃的传热系数可以小至0.2,在此情况下现有热导仪的误差是无法接受的。现有技术中虽然有许多测量真空玻璃传热系数的装置和方法,如专利申请CN02243245.0、CN200320126692.1、CN200620131674.6、CN200710003450.6、CN201210017369.4和CN201210111168.0等,但对于同样厚度的绝热材料来说,真空玻璃的热导是最小的,难以找到比真空玻璃更好的绝热板,所以以上这些装置和方法无法解决测量热板的散热问题以及提供已知准确传热系数或热导的校正标准板的问题,因而现有技术很难准确测定真空玻璃的传热系数。
发明内容
为了克服上述现有技术的不足,本发明的目的在于提供了一种真空玻璃热导测量装置,能够解决测量热板的散热问题以及提供校正标准板的问题,具有结构简单、测量方便和检测数据准确的特点。
为了实现上述目的,本发明采用的技术方案是:一种真空玻璃热导测量装置,包括上外壳、下外壳、冷板、热板、真空系统和控制系统,其特征在于:冷板和热板分别设置在上外壳和下外壳内或放置在上外壳和下外壳组成的封闭空间内,待测的真空玻璃放置在冷板与热板之间、并与冷板和热板紧密接触;热板包括测量热板和防护热板,测量热板足够大,能够将真空玻璃视为均匀板;上外壳、下外壳闭合后,通过真空系统将其内部抽成高真空,利用高真空得到比真空玻璃更好的绝热性能和提供标准校正;在测量过程中,热板与冷板的温度通过控制系统分别恒定在预先设定的值,热板产生的热流通过真空玻璃稳定传向冷板,通过读取测量热板的恒温功率、测量热板的有效面积以及热板与冷板的恒定温度就能利用控制系统计算出所测真空玻璃的热导;或通过分别读取测量真空玻璃和校正标准板时测量热板所需的恒温功率,并利用测量状态下校正标准板的计算热导值,就能利用控制系统直接得到精准的真空玻璃热导值。
其中:
所述上、下外壳的内表面优选是低辐射面,或有低辐射膜,如铝膜、银膜或金膜等,以减小辐射传热、强化绝热性能;
所述上、下外壳为圆弧形、圆盘形或方形,上下外壳之间通过橡胶密封圈密封,上外壳的开启可采用上开式或先上开后侧开的方式。
所述热板设有加热与控温装置,所述加热装置为电阻丝或电热管或电热膜或其他加热方式,电热膜加热有利于减小加热板的体积和减小热惯性;所述控温装置为热电偶或温度传感器以及外接控温仪表组成。
所述热板为圆形或方形,所述热板一般由测量热板、缓冲热板和防护热板组成;所述测量热板位于中心位置,其次依次是缓冲热板和防护热板;测量热板、缓冲热板和防护热板可以是环形排列,也可以是缓冲热板包裹测量热板、防护热板包裹或环绕缓冲热板,或者防护热板包裹缓冲热板和测量热板;测量热板、缓冲热板和防护热板可以共用一个控温装置,优选具有各自的加热与控温装置;测量热板与缓冲热板之间、缓冲热板与防护热板之间各有间隙,间隙的宽度一般为0.1-10mm,优选为0.1-3mm,更优选为0.1-1.5mm;由于所述热板置于高真空中具有很好的绝热性能,所以可以省去缓冲热板;为了彻底阻断测量热板的横向热流,防护热板的温度可以略高于测量热板,达到矫枉过正的效果,再通过缓冲热板的缓冲,使测量热板的横向热流为零。
所述测量热板的尺寸不受限制,所述测量热板的尺寸大时可以测量真空玻璃的平均热导或整体热导,优选所述测量热板的边长或直径为200-600mm,尺寸越大、测量精度越高;所述测量热板的尺寸小时可以测量真空玻璃的局部热导,优选所述测量热板的边长或直径为20-60mm。
所述热板的外面可以有一安装用的外罩或底盘,外罩或底盘的内表面优选是低辐射面、或有低辐射膜,如铝膜、银膜或金膜等,以减小辐射传热、强化绝热性能。
所述冷板可以在水平方向上固定,其中心与热板重合,竖向上可以通过软连接(如弹簧或滑道)安装在上外壳上、能够上下移动(滑动)一定的距离,使其工作时整个重力能均匀施加在真空玻璃上,以强化真空玻璃与冷板和热板之间的接触,减小接触热阻,并使接触热阻恒定;所述冷板也可以不固定,直接均匀放置在真空玻璃上。
所述冷板设有冷却和温度控制装置,所述冷却装置为半导体制冷装置、液体致冷装置(如液氮、液氨、冷却液或水等)、相变材料致冷装置(如冰水混合物、高分子水溶液等)等;所述控温装置为热电偶或温度传感器以及外接控温仪表组成;所述冷却装置可以采用外循环的方式,即将热流输出到所述装置的外部;优选采用相变材料致冷装置,该装置可以直接将热板传来的热量吸收掉,不需要考虑散热的问题;不但结构简单、成本低,而且温度恒定、又准确。
所述冷板还可以设有加热与控温装置,只是相对于所述热板其工作温度较低;所述加热装置为电阻丝加热或电热膜加热或其他加热方式,电热膜加热有利于减小加热板的体积和减小热惯性;所述控温装置为热电偶或温度传感器以及外接控温仪表组成。
所述冷板的外面可以有一外罩,外罩的内表面优选是低辐射面、或有低辐射膜,如铝膜、银膜或金膜等,以减小辐射传热、强化绝热性能。
所述冷板为圆形或方形,其形状与所述热板相对应;所述冷板的尺寸不小于热板。
所述真空玻璃的放置位置预留有移动空间,真空玻璃移动后,热板所对应的支撑物的数量可能会发生变化、从而导致热流发生变化(支撑物的热导相对于真空部分较大,支撑物的多少对热流有较大的影响),两次或多次测量的平均值更能代表真实值,即利用不同位置的多次测量结果的平均值作为实测值来减小或消除测量误差;预留的移动空间优选能使真空玻璃移动大约支撑物间距一半的距离,并优选沿着对角线的方向移动,这样可以使测量热板对应的支撑物数量发生最大的变化,如果支撑物的数量对热流有影响、那么此时热流的变化也最大;但当测量热板足够大时、真空玻璃位置变化时热流的变化会很小,因为此时测量热板对应的支撑物数量的变化率会很小,真空玻璃可以当做均匀板,就如同其在工作状态一样。
热板和冷板之间的温差至少为10-30K。
热板和冷板的面板由导热系数高的金属制成,如铜、铝或不锈钢等。
热板和冷板的工作表面应该涂漆或进行其他处理,以满足在工作温度下其总半球辐射率大于 0.8;
热板和冷板除工作表面外的其他表面优选为低辐射面、或有低辐射膜,如铝膜、银膜或金膜等,以减小辐射传热、强化绝热性能。
测试时试样的测试区域应全部覆盖加热板的表面。
所述真空玻璃与热板和冷板的接触面上优选有导热油,如硅油等,以减小和固定接触热阻;
所述真空玻璃的尺寸大于热板和冷板,周边留有30-100mm的空隙,以消除边部焊接处热桥的影响;
所述外壳内部的真空度为0.1-0.0001Pa,优选为0.01-0.0001Pa,更优选为0.01-0.001Pa,高于0.1Pa时真空的绝热效果不好,小于0.0001Pa时实现难度大、抽真空时间长,而且对于绝热效果和校正标准板的测量结果也无太大的影响。
所述校正标准板是由两块平板玻璃组成,在边缘处或不影响测量的位置由绝热支撑物隔开一定的距离,优选采用与所测真空玻璃相同的两块平板玻璃,使其结构和热导最接近于所测量的真空玻璃,从而最大限度地消除测量误差和系统误差;与真空玻璃相比,校正标准板的内外均处于已知的高真空状态,其对流传热和空气传热均可以忽略不计,其热板对应的测量区域也没有支撑物,所以在测量状态下校正标准板只有辐射传热,而辐射传热可以通过所用玻璃的辐射率准确算出,因而校正标准板的热导是能够准确得到的。
所述标准校正也可以不放任何玻璃或材料在相同的测量条件下进行空白校正,即通过已知的冷板和热板表面的辐射率利用其之间的辐射传热进行校正。
所述测量装置也可以安装热流计,通过测量热流值来计算热导值。
所述测量装置也可以用于其他材料热导的测量。
本发明的有益效果是:
由于真空玻璃的绝热性能很好,所以通过真空玻璃的热流量非常小,不仅需要高精密度的相关参数(如电流、电压和温度等)测量仪器而且需要高绝热性能的防护材料,由于现有的防护材料其绝热性能没有真空玻璃好,所以热板发出的热量通过防护材料散失的与流经真空玻璃的相比不能忽略,就会带来很大的测量误差,再就是测量装置的系统误差也会给测量结果带来很大的影响,两者的共同作用使绝热性能很好的真空玻璃的传热系数无法得到准确测量。本发明通过将测量装置放入0.001Pa左右的高真空中、并利用低辐射表面使热板处于高绝热状态下,具有比真空玻璃更好的绝热性能,使热板向周围空间散失的热量可以忽略不计,再加上缓冲热板和防护热板的保护,所以可以保证测量热板发出的热量都通过真空玻璃流向了冷板;本发明使用的测量热板足够大,能够涵盖足够多的支撑物,真空玻璃位置的改变、测量热板所对应的支撑物数量的变化量也非常小,所以可以将真空玻璃视为均匀板来进行热导的测量,这样得到的热导与实际应用情况相同,是一个综合的宏观的数据,更能代表真空玻璃的真实隔热性能,更有实际的应用价值;本发明可以直接测出真空玻璃的热导,但为了进一步消除系统误差,本发明采用了已知准确热导的校正标准板,即用两块与真空玻璃组成相同的、相距一定距离的平板玻璃做校正,在高真空下、两块平板玻璃之间只有辐射传热,而辐射传热可以通过理论计算得到准确的数值,在相同的检测条件下得到的真空玻璃的检测数据与校正标准板的数据相比较,就可以有效地消除系统误差,从而得到准确的真空玻璃热导值。
附图说明
图1为本发明测量真空玻璃热导的结构示意图。
图2为本发明测量校正标准板热导的结构示意图。
具体实施方式
下面结合附图对本发明的作进一步详细说明。
如图1和图2所示了本发明的一种实施例,一种真空玻璃的热导测量装置由上外壳1、下外壳2组成,上外壳1和下外壳2闭合后,之间通过橡胶密封圈密封,其内部通过真空系统形成高真空;热板由防护热板5、缓冲热板6和测量热板7组成,通过绝热支架4安装在底盘3内,绝热支架4有弹性、能够使热板与真空玻璃紧密接触;底盘3的内表面为低辐射表面(镀铝、银或金,或用铝箔等)、能够隔绝辐射热,底盘3绝热安装在下外壳2内;真空玻璃10或标准板11放置在热板的上面,与热板紧密接触;冷板8放置在真空玻璃10或标准板11的上面,与真空玻璃10或标准板11紧密接触;为了隔热,冷板的上面还放置一绝热罩9,绝热罩9的内表面为低辐射表面(镀铝、银或金,或用铝箔等)、能够隔绝辐射热。
如图1所示,测量真空玻璃的热导时,首先将真空玻璃放置在冷板和热板之间,然后合上外壳,利用真空系统将测量空间抽真空至0.001Pa左右,并通过控制系统使热板的温度恒定在T1、冷板的温度恒定在T2,由于防护热板、缓冲热板和测量热板的温度均稳定在T1,所以测量热板与缓冲热板、防护热板之间的传热为零,此时测量热板的恒温功率W即可认定是由真空玻璃热面传向冷面的热功率,真空玻璃的实测热导C可由下式得出:
C=W/S(T1-T2)……………………(1)
式中S是测量热板与真空玻璃接触的有效面积。
从上式可以看出,恒温功率W、有效面积S、温度(T1和T2)等数值的准确性都对真空玻璃的热导C值的测量精度有直接的影响;此外,测量热板不经过真空玻璃所散失的热功率、真空玻璃与热板和冷板之间的接触热阻以及玻璃上下表面之间的温度梯度(每一块玻璃在传热过程中上下表面的温度是不同的)也对真空玻璃的热导C值的测量精度产生无法计算的影响。
为了减小和消除以上测量系统误差,本发明采用校正标准板的方式来提高真空玻璃热导的测量精度;如图2所示,校正标准板由与真空玻璃构造相同的两块玻璃组成,两块玻璃在远离测量热板的边缘部位由绝热支撑物隔开一定的距离;这样校正标准板除了没有对流和传导传热外其他与真空玻璃完全相同,可以更有利于消除系统误差,从而得到最准确的真空玻璃热导;校正标准板热导的测量采用与真空玻璃完全相同的测量条件,其实测热导C0可由下式得出:
C0=W0/S(T1-T2)……………………(2)
式中W0是测量热板的恒温功率。
在上述测量条件下,校正标准板只有辐射传热,所以C0就是校正标准板的辐射热导Cr,辐射热导Cr可由下式精确求出:
Cr= (ε1 -12 -1-1) -1•σ• (T1 4-T2 4) /(T1-T2) ……………………(3)
所以校正标准板的准确热导就是:
C0= Cr= (ε1 -12 -1-1) -1•σ• (T1 4-T2 4) /(T1-T2)……………………(4)
式中σ是斯忒芬-波尔兹曼常数,其数值为5.67×10-8W/(m2•K4),
ε1是面向真空层玻璃内表面1的半球辐射率,ε2是面向真空层玻璃内表面2的半球辐射率。
真空玻璃的热导C可由式(1)与式(2)的比值而得出,式(1)与式(2)相除:
C/ C0=W/W0……………………(5)
所以真空玻璃的准确热导就是:
C = C0•W/W0……………………(6)
将校正标准板的热导C0输入控制系统的电脑中,通过分别读取测量真空玻璃和校正标准板时的测量热板的恒温功率W和W0,就可以通过电脑直接得到真空玻璃热导C或传热系数K(或U)的精确数值。
利用本发明测量真空玻璃热导的方法如下:
第一步:选取两块与所测真空玻璃完全相同的平板玻璃,中间靠近边缘处以绝热支架隔开一定的距离(与真空玻璃的真空层厚度相近),制成校正标准板,并按照图2所示将测量装置装配好;
第二步:打开控制系统,利用真空系统将测量装置内的气压维持在0.001Pa左右,将热板和冷板的温度恒定在其设定值T1和T2;控制系统的电脑自动显示测量热板的恒温功率W0、热导C0或传热系数K0;待以上数据不再变化时,测量装置已进入稳定状态,然后将热导C0标定为通过计算得到的准确值;
第三步:解除测量装置的真空,打开上外壳,取出校正标准板,换上待测真空玻璃,并按照图1所示将测量装置装配好;
第四步:打开控制系统,利用真空系统将测量装置内的气压维持在0.001Pa左右,将热板和冷板的温度恒定在其设定值T1和T2(与第二步相同);控制系统的电脑自动显示测量热板的恒温功率W、待测真空玻璃的热导C或传热系数K;待以上数据不再变化时,测量装置已进入稳定状态,此时的热导C值就是待测真空玻璃的热导的准确值。
以上所述,仅是本发明的较佳实施例而已,并非是对本发明作其它形式的限制,任何熟悉本专业的技术人员可能利用上述揭示的技术内容加以变更或改型为等同变化的等效实施例。但是凡是未脱离本发明技术方案内容,依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化与改型,仍属于本发明技术方案的保护范围。

Claims (10)

1.一种真空玻璃热导测量装置,包括上外壳、下外壳、冷板、热板、真空系统和控制系统,其特征在于:冷板和热板分别设置在上外壳和下外壳内或放置在上外壳和下外壳组成的封闭空间内,待测的真空玻璃放置在冷板与热板之间、并与冷板和热板紧密接触;热板包括测量热板和防护热板,测量热板足够大,能够将真空玻璃视为均匀板;上外壳、下外壳闭合后,通过真空系统将其内部抽成高真空,利用高真空得到比真空玻璃更好的绝热性能和提供标准校正;其特征还在于包括有校正标准板,所述校正标准板是由两块平板玻璃组成,在边缘处或其它不影响测量的位置由绝热支撑物隔开一定的距离,在测量状态下校正标准板只有辐射传热,而辐射传热能够通过所用平板玻璃的辐射率准确算出,因而校正标准板的热导能够准确得到;在测量过程中,热板与冷板的温度通过控制系统分别恒定在预先设定的值,热板产生的热流通过真空玻璃稳定传向冷板,通过读取测量热板的恒温功率、测量热板的有效面积以及热板与冷板的恒定温度就能利用控制系统计算出所测真空玻璃的热导;或通过分别读取测量真空玻璃和校正标准板时测量热板所需的恒温功率,并利用测量状态下校正标准板的计算热导值,就能利用控制系统直接得到精准的真空玻璃热导值。
2.根据权利要求1所述的真空玻璃热导测量装置,其特征在于所述上外壳和下外壳的内表面是低辐射面。
3.根据权利要求1所述的真空玻璃热导测量装置,其特征在于所述上外壳和下外壳为圆弧形、圆盘形或方形。
4.根据权利要求1所述的真空玻璃热导测量装置,其特征在于所述热板设有加热与控温装置。
5.根据权利要求1所述的真空玻璃热导测量装置,其特征在于所述热板由测量热板、缓冲热板和防护热板组成,所述测量热板位于中心位置,其次依次是缓冲热板和防护热板。
6.根据权利要求1所述的真空玻璃热导测量装置,其特征在于所述冷板设有冷却和温度控制装置。
7.根据权利要求1所述的真空玻璃热导测量装置,其特征在于所述真空玻璃的放置位置预留有移动空间,能够利用不同位置的多次测量结果的平均值作为实测值来减小或消除测量误差。
8.根据权利要求1所述的真空玻璃热导测量装置,其特征在于所述校正标准板是采用与所测真空玻璃相同的两块平板玻璃,使其结构和热导最接近于所测量的真空玻璃,从而最大限度地消除测量误差和系统误差。
9.根据权利要求1所述的真空玻璃热导测量装置,其特征在于所述标准校正是不放任何材料在相同的测量条件下进行的空白校正。
10.权利要求1-9任一项所述的真空玻璃热导测量装置的测量方法,其特征在于包括以下步骤:
第一步:选取两块与所测真空玻璃完全相同的平板玻璃,中间靠近边缘处以绝热支架隔开一定的距离,距离与真空玻璃的真空层厚度相近,制成校正标准板,并将测量装置装配好;
第二步:打开控制系统,利用真空系统将测量装置内的气压维持在0.001Pa左右,将热板和冷板的温度恒定在其设定值T1和T2;控制系统的电脑自动显示测量热板的恒温功率W0、校正标准板的热导C0或传热系数K0;待以上数据不再变化时,测量装置已进入稳定状态,然后将热导C0标定为通过计算得到的准确值;
第三步:解除测量装置的真空,打开上外壳,取出校正标准板,换上待测真空玻璃,并将测量装置装配好;
第四步:打开控制系统,利用真空系统将测量装置内的气压维持在0.001Pa左右,将热板和冷板的温度恒定在其设定值T1和T2;控制系统的电脑自动显示测量热板的恒温功率W、待测真空玻璃的热导C或传热系数K;待以上数据不再变化时,测量装置已进入稳定状态,此时的热导C值就是待测真空玻璃的热导的准确值。
CN201710205120.9A 2017-03-31 2017-03-31 一种真空玻璃的热导测量装置及方法 Active CN108663394B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710205120.9A CN108663394B (zh) 2017-03-31 2017-03-31 一种真空玻璃的热导测量装置及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710205120.9A CN108663394B (zh) 2017-03-31 2017-03-31 一种真空玻璃的热导测量装置及方法

Publications (2)

Publication Number Publication Date
CN108663394A CN108663394A (zh) 2018-10-16
CN108663394B true CN108663394B (zh) 2022-05-31

Family

ID=63786696

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710205120.9A Active CN108663394B (zh) 2017-03-31 2017-03-31 一种真空玻璃的热导测量装置及方法

Country Status (1)

Country Link
CN (1) CN108663394B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111413242B (zh) * 2020-05-21 2021-04-23 中认南信(江苏)检测技术有限公司 一种平板玻璃温差试验装置及试验方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN200986530Y (zh) * 2006-08-29 2007-12-05 王世忠 建筑玻璃传热系数测定仪
CN101241091A (zh) * 2007-02-08 2008-08-13 北京秦润玻璃有限公司 建筑玻璃稳态热阻测定装置
CN101915783A (zh) * 2010-08-05 2010-12-15 上海交通大学 液氮温区用双试件防护热板导热系数测定仪
KR101012666B1 (ko) * 2010-01-20 2011-02-10 엔알티 주식회사 진공단열재의 열전도율 검사장치
CN102590269A (zh) * 2012-01-19 2012-07-18 陕西科技大学 一种真空玻璃热导测量装置
CN102645449A (zh) * 2012-04-18 2012-08-22 天津大学 实现真空绝热和厚度测量功能的防护热流计法导热系数测定仪
CN103454306A (zh) * 2013-09-06 2013-12-18 苏州市计量测试研究所 一种导热系数测试仪的检测测量方法
CN103675017A (zh) * 2012-09-12 2014-03-26 北京中建建筑科学研究院有限公司 一种材料导热系数测试装置及方法
CN103868948A (zh) * 2014-02-26 2014-06-18 天津大学 单试件防护热板法热导率测试仪的热交换功率的修正方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN200986530Y (zh) * 2006-08-29 2007-12-05 王世忠 建筑玻璃传热系数测定仪
CN101241091A (zh) * 2007-02-08 2008-08-13 北京秦润玻璃有限公司 建筑玻璃稳态热阻测定装置
KR101012666B1 (ko) * 2010-01-20 2011-02-10 엔알티 주식회사 진공단열재의 열전도율 검사장치
CN101915783A (zh) * 2010-08-05 2010-12-15 上海交通大学 液氮温区用双试件防护热板导热系数测定仪
CN102590269A (zh) * 2012-01-19 2012-07-18 陕西科技大学 一种真空玻璃热导测量装置
CN102645449A (zh) * 2012-04-18 2012-08-22 天津大学 实现真空绝热和厚度测量功能的防护热流计法导热系数测定仪
CN103675017A (zh) * 2012-09-12 2014-03-26 北京中建建筑科学研究院有限公司 一种材料导热系数测试装置及方法
CN103454306A (zh) * 2013-09-06 2013-12-18 苏州市计量测试研究所 一种导热系数测试仪的检测测量方法
CN103868948A (zh) * 2014-02-26 2014-06-18 天津大学 单试件防护热板法热导率测试仪的热交换功率的修正方法

Also Published As

Publication number Publication date
CN108663394A (zh) 2018-10-16

Similar Documents

Publication Publication Date Title
KR20080006687A (ko) 온도 보정용 다중 셀 및 이를 이용한 온도계 교정장치
US20110125444A1 (en) Mini-Cell, On-Orbit, Temperature Re-Calibration Apparatus and Method
CN108663399B (zh) 建筑玻璃的热导测量装置
CN107315888B (zh) 一种适用于断路器的热点温度分析方法
CN108663394B (zh) 一种真空玻璃的热导测量装置及方法
CN103743778A (zh) 测试管状材料径向导热系数的装置
CN114791325A (zh) 一种用于空天飞机地面热强度舱体试验的热流标定方法
CN110220940A (zh) 一种不规则样品导热性能测试方法
CN108663397B (zh) 真空玻璃的热导测量装置
CN103713013B (zh) 测试管状材料轴向导热系数的装置
CN110988027A (zh) 页岩热传导参数的测试装置及其测试方法
US20200080952A1 (en) Thermal conductivity measuring device, heating device, thermal conductivity measuring method, and quality assurance method
CN104122010A (zh) 辐射热流测量装置
Zandt et al. Capabilities for dielectric-constant gas thermometry in a special large-volume liquid-bath thermostat
Kralik et al. Device for measurement of thermal emissivity at cryogenic temperatures
Zhang et al. Evaluation of blackbody radiation shift with 2× 10− 18 uncertainty at room temperature for a transportable 40Ca+ optical clock
Zhao et al. A Metal Nanoparticle Thermistor with the Beta Value of 10 000 K
CN116222824A (zh) 一种高精度低温温度传感器校准装置及校准方法
CN108663400A (zh) 真空玻璃热导仪
CN112730507B (zh) 一种液体比热容测量系统及测量方法
CN111121915B (zh) 一种热式液位计、液位测量方法及装置、系统
CN106768615B (zh) 一种低温温区高精度恒温试验腔
US1977340A (en) Heat convection meter
CN108663395A (zh) 一种真空玻璃热导仪
JPH03154856A (ja) 熱膨張測定装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant