CN108657305A - The driving joint of robot of liquid metal pressure and self-generating device - Google Patents
The driving joint of robot of liquid metal pressure and self-generating device Download PDFInfo
- Publication number
- CN108657305A CN108657305A CN201810604037.3A CN201810604037A CN108657305A CN 108657305 A CN108657305 A CN 108657305A CN 201810604037 A CN201810604037 A CN 201810604037A CN 108657305 A CN108657305 A CN 108657305A
- Authority
- CN
- China
- Prior art keywords
- liquid metal
- joint
- metal pressure
- power generation
- robot
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910001338 liquidmetal Inorganic materials 0.000 title claims abstract description 234
- 238000010248 power generation Methods 0.000 claims abstract description 80
- 239000011553 magnetic fluid Substances 0.000 claims abstract description 35
- 239000012530 fluid Substances 0.000 claims abstract description 7
- 244000309466 calf Species 0.000 claims description 23
- 210000000689 upper leg Anatomy 0.000 claims description 21
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 20
- 210000001503 joint Anatomy 0.000 claims description 20
- 229910021389 graphene Inorganic materials 0.000 claims description 19
- 239000007788 liquid Substances 0.000 claims description 18
- 210000002414 leg Anatomy 0.000 claims description 12
- 210000000544 articulatio talocruralis Anatomy 0.000 claims description 10
- 239000000178 monomer Substances 0.000 claims description 9
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 claims description 8
- 210000002683 foot Anatomy 0.000 claims description 8
- 229910052733 gallium Inorganic materials 0.000 claims description 8
- 210000000629 knee joint Anatomy 0.000 claims description 7
- 230000017525 heat dissipation Effects 0.000 claims description 6
- 229910000807 Ga alloy Inorganic materials 0.000 claims description 5
- 229910052751 metal Inorganic materials 0.000 claims description 5
- 239000002184 metal Substances 0.000 claims description 5
- 239000011248 coating agent Substances 0.000 claims description 3
- 238000000576 coating method Methods 0.000 claims description 3
- 238000006073 displacement reaction Methods 0.000 claims description 3
- 239000011810 insulating material Substances 0.000 claims description 3
- 239000002131 composite material Substances 0.000 claims description 2
- 238000001816 cooling Methods 0.000 claims description 2
- 210000002478 hand joint Anatomy 0.000 claims description 2
- 238000011089 mechanical engineering Methods 0.000 claims description 2
- 210000000323 shoulder joint Anatomy 0.000 claims description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 2
- 239000002041 carbon nanotube Substances 0.000 claims 1
- 229910021393 carbon nanotube Inorganic materials 0.000 claims 1
- 239000002135 nanosheet Substances 0.000 claims 1
- 239000002245 particle Substances 0.000 claims 1
- 230000001105 regulatory effect Effects 0.000 claims 1
- 230000033001 locomotion Effects 0.000 abstract description 6
- 230000000694 effects Effects 0.000 abstract description 4
- 230000009977 dual effect Effects 0.000 abstract description 2
- 238000011161 development Methods 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 230000009471 action Effects 0.000 description 3
- 230000033228 biological regulation Effects 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 206010033799 Paralysis Diseases 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000002574 poison Substances 0.000 description 1
- 231100000614 poison Toxicity 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B62—LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
- B62D—MOTOR VEHICLES; TRAILERS
- B62D57/00—Vehicles characterised by having other propulsion or other ground- engaging means than wheels or endless track, alone or in addition to wheels or endless track
- B62D57/02—Vehicles characterised by having other propulsion or other ground- engaging means than wheels or endless track, alone or in addition to wheels or endless track with ground-engaging propulsion means, e.g. walking members
- B62D57/032—Vehicles characterised by having other propulsion or other ground- engaging means than wheels or endless track, alone or in addition to wheels or endless track with ground-engaging propulsion means, e.g. walking members with alternately or sequentially lifted supporting base and legs; with alternately or sequentially lifted feet or skid
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/32—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from a charging set comprising a non-electric prime mover rotating at constant speed
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/34—Parallel operation in networks using both storage and other DC sources, e.g. providing buffering
- H02J7/345—Parallel operation in networks using both storage and other DC sources, e.g. providing buffering using capacitors as storage or buffering devices
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K44/00—Machines in which the dynamo-electric interaction between a plasma or flow of conductive liquid or of fluid-borne conductive or magnetic particles and a coil system or magnetic field converts energy of mass flow into electrical energy or vice versa
- H02K44/08—Magnetohydrodynamic [MHD] generators
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02N—ELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
- H02N11/00—Generators or motors not provided for elsewhere; Alleged perpetua mobilia obtained by electric or magnetic means
- H02N11/002—Generators
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- Manipulator (AREA)
Abstract
本发明公开了一种液态金属压力驱动型机器人关节及自发电装置,包括:热温差发电式液态金属压力工作缸、液态金属磁流体发电器、伺服阀、磁力泵、机器人关节、传感器、智能控制器、单向阀、过滤器、溢流阀、液态金属储存箱、超级电容器;采用将液态金属压力工作缸与热温差发电器相结合构成一体化结构,并产生热温差发电效应;采用了将热温差发电式液态金属压力工作缸与液态金属磁流体发电器相结合,其液态金属通过磁体,并切割磁力线,产生液态金属磁流体发电效应;因此本发明机器人关节装置,具有热温差发电与磁流体发电的双重自发电功能,为机器人行走运动提供了电能保障。
The invention discloses a liquid metal pressure-driven robot joint and a self-generating device, including: a thermal temperature difference power generation type liquid metal pressure working cylinder, a liquid metal magnetic fluid generator, a servo valve, a magnetic pump, a robot joint, a sensor, and an intelligent control devices, check valves, filters, overflow valves, liquid metal storage tanks, and supercapacitors; an integrated structure is formed by combining liquid metal pressure working cylinders with thermal thermoelectric generators, and thermal thermoelectric power generation effects are generated; The thermal temperature difference power generation type liquid metal pressure working cylinder is combined with the liquid metal magnetic fluid generator. The liquid metal passes through the magnet and cuts the magnetic force lines to generate the liquid metal magnetic fluid power generation effect; therefore, the robot joint device of the present invention has thermal temperature difference power generation and magnetic The dual self-generating function of fluid power generation provides electric energy guarantee for the robot's walking movement.
Description
技术领域technical field
本发明涉及机器人领域,涉及液态金属压力驱动机器人与自发电应用技术,更具体地说,涉及一种液态金属压力驱动型机器人关节及自发电装置。The invention relates to the field of robots, and relates to a liquid metal pressure-driven robot and self-generating application technology, more specifically, to a liquid metal pressure-driven robot joint and a self-generating device.
背景技术Background technique
随着科学技术的不断发展,人们需要寻求一种人力替代品来完成一些恶劣环境下的、具有危险性的工作任务。近年来,机器人技术快速发展给人们带来了期望。机器人能够较为理想地适应人类的生存环境及使用的工具,并且能够进行人机对话、交流等;机器人广泛的应用价值体现在它不仅可以代替人们在有辐射、粉尘、有毒的恶劣环境中作业,还能形成动力型假肢,协助瘫痪病人行走等。因此,机器人在医疗、海洋开发、教育、救灾、工程、军事、生物技术、机器维修、农林水产、交通运输等多个领域具有发展前景及广泛应用价值。在机器人发展过程中,关节驱动技术是重要核心技术。目前许多机器人采用电机作为机器人关节驱动力,即电气驱动。但是电气驱动方式有其弱点,比如无法承受大载荷、经常需要外部连接较大且笨重的传动装置;电机还存在由于负载过高,易造成工作温度偏高而损毁等。电气驱动方式随着负载的增大其电机输出功率也需要增大,则会引起电机体积和重量的增大,因此对机器人系统整体影响很大,同样如果不增加电机功率就需要增加传动装置,这样不仅降低了速度还增加了机器人系统的重量。为了克服这类问题,人们采用了液压驱动关节式机器人。With the continuous development of science and technology, people need to seek a human substitute to complete some dangerous work tasks in harsh environments. In recent years, the rapid development of robotics has brought expectations. Robots can ideally adapt to the living environment and tools used by humans, and can carry out human-machine dialogue, communication, etc.; the extensive application value of robots is reflected in the fact that they can not only replace people to work in harsh environments with radiation, dust, and poison, It can also form a powered prosthesis to assist paralyzed patients to walk. Therefore, robots have development prospects and wide application value in many fields such as medical treatment, ocean development, education, disaster relief, engineering, military, biotechnology, machine maintenance, agriculture, forestry and aquatic products, transportation and so on. In the process of robot development, joint drive technology is an important core technology. At present, many robots use motors as the driving force of robot joints, that is, electric drive. However, the electric drive method has its weaknesses, such as being unable to bear large loads and often requiring a large and cumbersome transmission device to be externally connected; the motor is also prone to damage due to high operating temperature due to excessive load. With the increase of the load, the output power of the motor needs to be increased in the electric drive mode, which will cause the increase of the volume and weight of the motor, so it has a great impact on the overall robot system. Similarly, if the power of the motor is not increased, the transmission device needs to be increased. This not only reduces the speed but also increases the weight of the robot system. In order to overcome this kind of problem, people have adopted hydraulic drive articulated robot.
液压驱动关节式机器人与电气驱动关节式机器人相比,其最突出的优点是装置体积较小和惯性较小。对于一个需要具有灵活响应的行走机器人而言,装置体积和惯性决定了对控制系统及装备的要求。因此选择液压能作为机器人驱动关节能,具有一定的实际使用价值。当前,如何进一步提高液压驱动关节式机器人的动态特性、负载能力和环境适应能力,如何开发液压驱动关节式机器人具有高动态性、良好的平衡控制能力、极强越障能力,如何使腿足式关节驱动型机器人在行走过程中能够自发电来补充自身需要的电能,这些都是面临需要解决的技术问题。Compared with the electrically driven articulated robot, the hydraulically driven articulated robot has the most prominent advantages of smaller device volume and less inertia. For a walking robot that needs flexible responses, the volume and inertia of the device determine the requirements for the control system and equipment. Therefore, choosing hydraulic energy as the driving joint energy of the robot has certain practical value. At present, how to further improve the dynamic characteristics, load capacity and environmental adaptability of hydraulically driven articulated robots, how to develop hydraulically driven articulated Joint-driven robots can self-generate electricity to supplement the electric energy they need during walking, and these are all technical problems that need to be solved.
发明内容Contents of the invention
有鉴于此,本发明提供了一种液态金属压力驱动型机器人关节及自发电装置。In view of this, the present invention provides a liquid metal pressure-driven robot joint and a self-generating device.
本发明采用了一种技术方案:一种液态金属压力驱动型机器人关节及自发电装置,其特征在于,包括:热温差发电式液态金属压力工作缸、液态金属磁流体发电器、伺服阀、磁力泵、机器人关节、传感器、智能控制器、单向阀、过滤器、溢流阀、液态金属储存箱、超级电容器;所述液态金属磁流体发电器装配在热温差发电式液态金属压力工作缸的液态金属进入通道上,并构成液态金属压力驱动机器人关节与自发电结构;所述液态金属储存箱与过滤器相连接;所述过滤器通过磁力泵与单向阀和溢流阀相连接;所述单向阀与伺服阀的液态金属进口p端相连接;所述伺服阀液态金属流出a端与液态金属磁流体发电器的液态金属进入端相连接;所述液态金属磁流体发电器的液态金属流出端与热温差发电式液态金属压力工作缸的液态金属流入端相连接;热温差发电式液态金属压力工作缸的液态金属流出端与伺服阀液态金属流入b端相连接;所述伺服阀液态金属流出t端与另一液态金属储存箱相连接;所述智能控制器与伺服阀、磁力泵、传感器、单向阀、溢流阀、液态金属储存箱、超级电容器、控制信号器相连接;所述智能控制器根据控制信号器、传感器反馈信息进行逻辑运算,来指令调控伺服阀,达到调控进入液态金属磁流体发电器和热温差发电式液态金属压力工作缸的液态金属流动速度、流动时间、流动量大小,实现液态金属在液态金属磁流体发电器和热温差发电式液态金属压力工作缸的工作循环;所述热温差发电式液态金属压力工作缸中的热温差发电器、液态金属磁流体发电器与超级电容器相连接;超级电容器的电能输出端与机器人中需要用电装置相连接;所述热温差发电式液态金属压力工作缸中的活塞杆输出端通过传感器与机器人关节相连接,并带动机器人关节按照相关指令进行可控动作。The present invention adopts a technical solution: a liquid metal pressure-driven robot joint and self-generating device, which is characterized in that it includes: a thermal temperature difference power generation type liquid metal pressure working cylinder, a liquid metal magnetic fluid generator, a servo valve, a magnetic Pumps, robot joints, sensors, intelligent controllers, one-way valves, filters, overflow valves, liquid metal storage tanks, and supercapacitors; The liquid metal enters the passage, and forms a liquid metal pressure-driven robot joint and a self-generating structure; the liquid metal storage tank is connected with a filter; the filter is connected with a one-way valve and an overflow valve through a magnetic pump; the The one-way valve is connected with the liquid metal inlet p end of the servo valve; the liquid metal outlet a end of the servo valve is connected with the liquid metal inlet end of the liquid metal magnetic fluid generator; the liquid metal magnetic fluid generator of the liquid metal The metal outflow end is connected to the liquid metal inflow end of the thermal thermoelectric power generation type liquid metal pressure working cylinder; the liquid metal outflow end of the thermal thermoelectric power generation type liquid metal pressure working cylinder is connected to the servo valve liquid metal inflow port b; the servo valve The liquid metal outflow t end is connected with another liquid metal storage tank; the intelligent controller is connected with servo valves, magnetic pumps, sensors, one-way valves, overflow valves, liquid metal storage tanks, supercapacitors, and control signals The intelligent controller performs logical operations according to the control signal device and sensor feedback information to instruct and regulate the servo valve, so as to achieve the regulation and control of the flow rate and flow of liquid metal entering the liquid metal magnetic fluid generator and the thermal temperature difference power generation type liquid metal pressure working cylinder. The time and the flow rate realize the working cycle of the liquid metal in the liquid metal magnetic fluid generator and the thermal thermoelectric power generation type liquid metal pressure working cylinder; The magnetic fluid generator is connected with the supercapacitor; the electric energy output terminal of the supercapacitor is connected with the required electric device in the robot; the piston rod output terminal in the thermal thermoelectric power generation type liquid metal pressure working cylinder is connected with the robot joint through the sensor , and drive the robot joints to perform controllable actions according to relevant instructions.
上述方案中,所述液态金属压力驱动型机器人关节及自发电装置为液态金属压力驱动型机器人腿关节及自发电装置;所述机器人关节为机器人腿关节,包括:大腿关节、大腿关节连接轴、膝关节、小腿关节、小腿关节连接轴、踝关节、机器人足;所述大腿关节通过膝关节与小腿关节相连接;所述小腿关节通过踝关节与机器人足相连接;所述热温差发电式液态金属压力工作缸上端,通过大腿关节连接轴与大腿关节中部相连接;所述热温差发电式液态金属压力工作缸下端,通过小腿关节连接轴与小腿关节中部相连接;所述液态金属磁流体发电器、伺服阀、超级电容器、传感器均装配在热温差发电式液态金属压力工作缸旁侧;所述大腿关节、小腿关节和热温差发电式液态金属压力工作缸,共同构成液态金属压力驱动可产生形变的三脚架结构,为机器人的腿部行走运动提供可控的驱动力。In the above scheme, the liquid metal pressure-driven robot joint and the self-generating device are liquid metal pressure-driven robot leg joints and the self-generating device; the robot joint is a robot leg joint, including: a thigh joint, a thigh joint connecting shaft, Knee joint, calf joint, calf joint connection shaft, ankle joint, robot foot; the thigh joint is connected to the calf joint through the knee joint; the calf joint is connected to the robot foot through the ankle joint; the thermal temperature difference power generation liquid The upper end of the metal pressure working cylinder is connected to the middle part of the thigh joint through the connecting shaft of the thigh joint; the lower end of the liquid metal pressure working cylinder of the thermal temperature difference power generation type is connected to the middle part of the lower leg joint through the connecting shaft of the lower leg joint; Electrical appliances, servo valves, supercapacitors, and sensors are all assembled on the side of the thermal thermoelectric power generation type liquid metal pressure cylinder; The deformable tripod structure provides controllable driving force for the robot's leg walking motion.
上述方案中,所述热温差发电式液态金属压力工作缸,包括:液态金属压力工作缸体、液态金属、活塞、活塞杆、热温差发电器、石墨烯层、散热器;所述活塞、活塞杆、液态金属装配在液态金属压力工作缸体内;所述活塞杆与活塞相连接;所述活塞将液态金属封装于液态金属压力工作缸体内一侧;所述活塞杆为液态金属压力工作缸的液态金属压力驱动力输出端,与机器人关节相连接;所述液态金属压力工作缸体外侧通过石墨烯层与热温差发电器热端相连接;所述热温差发电器冷端与散热器相连接;所述热温差发电器与超级电容器相连接,并将温差发电电能存储在超级电容器中,供机器人需用电装置使用。In the above scheme, the thermal thermoelectric power generation type liquid metal pressure working cylinder includes: liquid metal pressure working cylinder, liquid metal, piston, piston rod, thermal thermoelectric generator, graphene layer, radiator; the piston, piston The rod and the liquid metal are assembled in the liquid metal pressure working cylinder; the piston rod is connected with the piston; the piston encapsulates the liquid metal in one side of the liquid metal pressure working cylinder; the piston rod is the liquid metal pressure working cylinder. The liquid metal pressure driving force output end of the cylinder is connected to the robot joint; the outside of the liquid metal pressure working cylinder is connected to the hot end of the thermal thermoelectric generator through a graphene layer; the cold end of the thermal thermoelectric generator is connected to the radiator connected; the thermal thermoelectric generator is connected with the supercapacitor, and the thermoelectric power is stored in the supercapacitor for use by the robot's electric device.
上述方案中,所述液态金属磁流体发电器,包括:磁体、发电通道、电极条、电极引出端;所述磁体装配在发电通道上端和下端;所述电极条装配在发电通道两侧面;所述电极引出端连接电极条,并与超级电容器相连接;所述磁体包括:永久磁体或超导磁体;所述液态金属在伺服阀控制下进入发电通道流动,不断地切割在发电通道上端、下端装配的磁体产生的磁力线,从而产生电能,并将发电电能存储在超级电容器中,供机器人所需用电装置使用。In the above solution, the liquid metal magnetic fluid generator includes: magnets, power generation channels, electrode strips, and electrode leads; the magnets are assembled on the upper and lower ends of the power generation channels; the electrode strips are assembled on both sides of the power generation channels; The lead-out ends of the electrodes are connected to the electrode strips and connected to the supercapacitor; the magnets include: permanent magnets or superconducting magnets; the liquid metal flows into the power generation channel under the control of the servo valve, and is continuously cut at the upper and lower ends of the power generation channel The magnetic lines of force generated by the assembled magnets generate electrical energy, and the generated electrical energy is stored in a supercapacitor for use by the electrical devices required by the robot.
上述方案中,所述液态金属包括:液态镓、液态镓合金或液态镓纳米流体;所述液态镓纳米流体,包括:添加并分散碳纳米管、石墨烯纳米片或纳米导热颗粒的液态镓或液态镓合金,所述液态金属还可采用导热性良好的液体或气体替代;所述石墨烯层包括:石墨烯薄膜、石墨烯涂层或石墨烯复合材料层;所述热温差发电器件,包括若干块串联的或/和并联的温差发电片单体,所述温差发电片单体与温差发电片单体之间通过绝热材料隔开;所述散热器件包括:风冷翅片散热器件或工质循环散热器件;所述工质包括:水、纳米流体或导热流体。In the above scheme, the liquid metal includes: liquid gallium, liquid gallium alloy or liquid gallium nanofluid; the liquid gallium nanofluid includes: liquid gallium or Liquid gallium alloy, the liquid metal can also be replaced by liquid or gas with good thermal conductivity; the graphene layer includes: graphene film, graphene coating or graphene composite material layer; the thermal thermoelectric power generation device includes A number of thermoelectric power generation sheet monomers connected in series or/and in parallel, the thermoelectric power generation sheet monomers are separated from the thermoelectric power generation sheet monomers by heat insulating materials; the heat dissipation devices include: air-cooled fin heat dissipation devices or industrial Mass circulation cooling device; the working medium includes: water, nano fluid or heat conduction fluid.
上述方案中,所述液态金属压力驱动型机器人关节及自发电装置,还包括:液态金属压力驱动型机器人肩关节及自发电装置、液态金属压力驱动型机器人臂关节及自发电装置、液态金属压力驱动型机器人手关节及自发电装置、液态金属压力驱动型机器人颈关节及自发电装置、液态金属压力驱动型机器人踝关节及自发电装置中的一种或几种;所述液态金属压力驱动型机器人关节及自发电装置可应用于:飞行器液态金属压力驱动装置、机械工程液态金属压力驱动装置、军工装备液态金属压力驱动装置、舰船液态金属压力驱动装置、交通轨道液态金属压力驱动装置、车辆液态金属压力驱动装置、港口车站液态金属压力驱动装置中的一种或几种。In the above solution, the liquid metal pressure-driven robot joint and self-generating device also include: liquid metal pressure-driven robot shoulder joint and self-generating device, liquid metal pressure-driven robot arm joint and self-generating device, liquid metal pressure One or more of the driven robot hand joint and self-generating device, liquid metal pressure-driven robot neck joint and self-generating device, liquid metal pressure-driven robot ankle joint and self-generating device; the liquid metal pressure-driven robot Robot joints and self-generating devices can be applied to: aircraft liquid metal pressure drive device, mechanical engineering liquid metal pressure drive device, military equipment liquid metal pressure drive device, ship liquid metal pressure drive device, transportation track liquid metal pressure drive device, vehicles One or more of the liquid metal pressure drive device and the port station liquid metal pressure drive device.
上述方案中,所述传感器包括:压力传感器、位移传感器、温度传感器、角度传感器。In the above solution, the sensors include: pressure sensors, displacement sensors, temperature sensors, and angle sensors.
本发明的实施例提供的技术方案带来的有益效果是:The beneficial effects brought by the technical solution provided by the embodiments of the present invention are:
(1)本发明采用并公开的热温差发电式液态金属压力工作缸,将液态金属压力工作缸与热温差发电器相结合,构成一体化结构;将液态金属作为液压缸的工作液体与传统液压油相比较,液态金属具有性能稳定、耐高温、导热性好等系列优势,提高了动态特性、负载能力、环境适应能力、平衡控制能力、越障能力;由于液态金属导热性能优良,能够将高负载情况下产生的热量快速传输给热温差发电器的热端进行发电利用,因此液态金属压力驱动型机器人关节及自发电装置具有较高的自发电效率。(1) The thermal thermoelectric power generation type liquid metal pressure working cylinder adopted and disclosed in the present invention combines the liquid metal pressure working cylinder with the thermal thermoelectric generator to form an integrated structure; the liquid metal is used as the working fluid of the hydraulic cylinder and the traditional hydraulic pressure Compared with oil, liquid metal has a series of advantages such as stable performance, high temperature resistance, and good thermal conductivity, which improves dynamic characteristics, load capacity, environmental adaptability, balance control ability, and obstacle-surpassing ability; The heat generated under load is quickly transferred to the hot end of the thermal thermoelectric generator for power generation and utilization. Therefore, the liquid metal pressure-driven robot joint and self-generating device have high self-generating efficiency.
(2)本发明采用将热温差发电式液态金属压力工作缸与液态金属磁流体发电器相结合,其液态金属通过磁体,并切割磁力线,产生发电效应;因此本发明机器人关节装置,具有热温差发电与磁流体发电的自发电与双重发电功能,为机器人行走运动提供了电能保障。(2) The present invention combines the thermal temperature difference power generation type liquid metal pressure working cylinder with the liquid metal magnetic fluid generator, the liquid metal passes through the magnet, and cuts the magnetic field lines to generate power generation effect; therefore, the robot joint device of the present invention has thermal temperature difference The self-power generation and dual power generation functions of power generation and magnetic fluid power generation provide electric energy guarantee for the walking movement of the robot.
附图说明Description of drawings
图1是本发明的液态金属压力驱动型机器人关节及自发电装置的工作原理图;Fig. 1 is a working principle diagram of the liquid metal pressure-driven robot joint and self-generating device of the present invention;
图2是本发明的液态金属压力驱动型机器人腿关节及自发电装置的结构示意图;Fig. 2 is a schematic structural view of the liquid metal pressure-driven robot leg joint and self-generating device of the present invention;
图3是本发明的液态金属磁流体发电器中液态金属流动切割磁力线发电的结构示意图。Fig. 3 is a structural schematic diagram of the liquid metal magnetic fluid power generator of the present invention cutting the magnetic field lines when the liquid metal flows.
其中,热温差发电式液态金属压力工作缸1、液态金属磁流体发电器2、伺服阀3、磁力泵4、机器人关节5、传感器6、智能控制器7、单向阀8、过滤器9、溢流阀10、液态金属储存箱11、超级电容器12、控制信号器13、热温差发电器14、活塞杆15、大腿关节16、大腿关节连接轴17、膝关节18、小腿关节19、小腿关节连接轴20、踝关节21、机器人足22、液态金属压力工作缸体23、活塞24、石墨烯层25、散热器26、磁体27、发电通道28、液态金属29、电极条30、电极引出端31、电能输出端32。Among them, thermal temperature difference power generation type liquid metal pressure working cylinder 1, liquid metal magnetic fluid generator 2, servo valve 3, magnetic pump 4, robot joint 5, sensor 6, intelligent controller 7, one-way valve 8, filter 9, Overflow valve 10, liquid metal storage tank 11, supercapacitor 12, control signal device 13, thermal thermoelectric generator 14, piston rod 15, thigh joint 16, thigh joint connecting shaft 17, knee joint 18, calf joint 19, calf joint Connection shaft 20, ankle joint 21, robot foot 22, liquid metal pressure working cylinder 23, piston 24, graphene layer 25, radiator 26, magnet 27, power generation channel 28, liquid metal 29, electrode strip 30, electrode lead-out end 31. Electric energy output terminal 32.
具体实施方式Detailed ways
为使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明实施方式作进一步地描述。In order to make the purpose, technical solution and advantages of the present invention clearer, the embodiments of the present invention will be further described below in conjunction with the accompanying drawings.
实施例Example
本发明的实施例液态金属压力驱动型机器人关节及自发电装置采用液态金属压力驱动型机器人腿关节及自发电装置,其工作原理见图1,其结构见图2,包括:热温差发电式液态金属压力工作缸1、液态金属磁流体发电器2、伺服阀3、磁力泵4、机器人关节5、传感器6、智能控制器7、单向阀8、过滤器9、溢流阀10、液态金属储存箱11、超级电容器12;液态金属磁流体发电器2装配在热温差发电式液态金属压力工作缸1的液态金属29进入通道上,并构成液态金属压力驱动机器人关节与自发电功能结构;液态金属储存箱11中存储液态金属29,与过滤器9相连接;过滤器9通过磁力泵4与单向阀8和溢流阀10相连接;单向阀8与伺服阀3的液态金属进口p端相连接;伺服阀3的流出端a端与液态金属磁流体发电器2的液态金属29进入端相连接;液态金属磁流体发电器2的液态金属29流出端与热温差发电式液态金属压力工作缸1的液态金属29流入端相连接;热温差发电式液态金属压力工作缸1的液态金属流出端与伺服阀3的液态金属流进端b端相连接;伺服阀3的液态金属流出端t端与另一液态金属储存箱11相连接;智能控制器与7与伺服阀3、磁力泵4、传感器6、单向阀9、溢流阀10、液态金属储存箱11、超级电容器12、控制信号器13相连接;智能控制器7根据控制信号器13、传感器6反馈信息进行逻辑运算,来指令调控伺服阀3,达到调控进入液态金属磁流体发电器2和热温差发电式液态金属压力工作缸1的液态金属29流动速度、流动时间、流动量大小,实现液态金属29在液态金属磁流体发电器2和热温差发电式液态金属压力工作缸1的工作循环;热温差发电式液态金属压力工作缸1中的热温差发电器14、液态金属磁流体发电器2与超级电容器12相连接;超级电容器12的电能输出端32与机器人中需要用电装置相连接;热温差发电式液态金属压力工作缸1中的活塞杆15输出端通过传感器6与机器人关节5相连接,并带动机器人关节5按照相关指令进行可控动作。The liquid metal pressure-driven robot joint and self-generating device of the embodiment of the present invention adopts the liquid metal pressure-driven robot leg joint and self-generating device, its working principle is shown in Figure 1, and its structure is shown in Figure 2, including: thermal temperature difference power generation liquid Metal pressure working cylinder 1, liquid metal magnetic fluid generator 2, servo valve 3, magnetic pump 4, robot joint 5, sensor 6, intelligent controller 7, one-way valve 8, filter 9, overflow valve 10, liquid metal Storage tank 11, supercapacitor 12; liquid metal magnetic fluid generator 2 is assembled on the liquid metal 29 entry channel of thermal thermoelectric power generation type liquid metal pressure working cylinder 1, and constitutes liquid metal pressure-driven robot joints and self-generating functional structure; liquid state The liquid metal 29 is stored in the metal storage tank 11 and is connected to the filter 9; the filter 9 is connected to the one-way valve 8 and the overflow valve 10 through the magnetic pump 4; the one-way valve 8 is connected to the liquid metal inlet p of the servo valve 3 The outlet end a of the servo valve 3 is connected to the inlet end of the liquid metal 29 of the liquid metal magnetic fluid generator 2; the outlet end of the liquid metal 29 of the liquid metal magnetic fluid generator 2 is connected to the liquid metal pressure The inflow end of the liquid metal 29 of the working cylinder 1 is connected; the liquid metal outflow end of the thermal thermoelectric power generation type liquid metal pressure working cylinder 1 is connected with the liquid metal inflow end b of the servo valve 3; the liquid metal outflow end of the servo valve 3 The t end is connected with another liquid metal storage tank 11; the intelligent controller and 7 are connected with the servo valve 3, the magnetic pump 4, the sensor 6, the one-way valve 9, the overflow valve 10, the liquid metal storage tank 11, the supercapacitor 12, The control annunciators 13 are connected; the intelligent controller 7 performs logic operations according to the feedback information of the control annunciators 13 and the sensors 6 to instruct and regulate the servo valve 3 to achieve the regulation and control of the magnetic fluid generator 2 entering the liquid metal and the pressure of the liquid metal of the thermothermal difference power generation type. The liquid metal 29 flow velocity, flow time, and flow volume of the working cylinder 1 realize the working cycle of the liquid metal 29 in the liquid metal magnetic fluid generator 2 and the thermal thermoelectric power generation type liquid metal pressure working cylinder 1; The thermal thermoelectric generator 14 in the pressure working cylinder 1, the liquid metal magnetic fluid generator 2 are connected with the supercapacitor 12; The output end of the piston rod 15 in the pressure working cylinder 1 is connected with the robot joint 5 through the sensor 6, and drives the robot joint 5 to perform controllable actions according to relevant instructions.
本实施例的机器人关节5为机器人腿关节,包括:大腿关节16、大腿关节连接轴17、膝关节18、小腿关节19、小腿关节连接轴20、踝关节21、机器人足22;大腿关节16通过膝关节18与小腿关节19相连接;小腿关节19通过踝关节21与机器人足22相连接;热温差发电式液态金属压力工作缸1上端,通过大腿关节连接轴17与大腿关节16中部相连接;热温差发电式液态金属压力工作缸1下端,通过小腿关节连接轴20与小腿关节19中部相连接;液态金属磁流体发电器2、伺服阀3、超级电容器12、传感器6均装配在热温差发电式液态金属压力工作缸1旁侧;大腿关节16、小腿关节19和热温差发电式液态金属压力工作缸1,共同构成液态金属压力驱动可产生形变的三脚架结构,为机器人行走运动提供可控的驱动力。The robot joint 5 of the present embodiment is a robot leg joint, comprising: a thigh joint 16, a thigh joint connecting shaft 17, a knee joint 18, a calf joint 19, a calf joint connecting shaft 20, an ankle joint 21, and a robot foot 22; The knee joint 18 is connected with the calf joint 19; the calf joint 19 is connected with the robot foot 22 through the ankle joint 21; the upper end of the thermal temperature difference power generation type liquid metal pressure working cylinder 1 is connected with the middle part of the thigh joint 16 through the thigh joint connecting shaft 17; The lower end of the thermal temperature difference power generation type liquid metal pressure working cylinder 1 is connected to the middle part of the calf joint 19 through the calf joint connection shaft 20; The side of the liquid metal pressure working cylinder 1; the thigh joint 16, the calf joint 19 and the thermal temperature difference power generation type liquid metal pressure working cylinder 1 together constitute a tripod structure that can be deformed by the liquid metal pressure drive and provide a controllable movement for the robot to walk. driving force.
热温差发电式液态金属压力工作缸1,包括:液态金属压力工作缸体23、液态金属29、活塞24、活塞杆15、热温差发电器14、石墨烯层25、散热器26;液态金属29、活塞24、活塞杆15装配在液态金属压力工作缸体23内;活塞杆15与活塞24相连接;活塞24将液态金属29封装于液态金属压力工作缸体23内一侧;活塞杆15为液态金属压力工作缸体23的液态金属压力驱动力输出端,与机器人腿关节相连接;液态金属压力工作缸体23外侧通过石墨烯层25与热温差发电器14热端相连接;热温差发电器14冷端与散热器26相连接;热温差发电器14与超级电容器12相连接,并将温差发电电能存储在超级电容器12中,供机器人所需用电装置使用。Thermal thermoelectric power generation type liquid metal pressure working cylinder 1, including: liquid metal pressure working cylinder 23, liquid metal 29, piston 24, piston rod 15, thermal thermoelectric generator 14, graphene layer 25, radiator 26; liquid metal 29 , piston 24, piston rod 15 are assembled in the liquid metal pressure working cylinder body 23; Piston rod 15 is connected with piston 24; Piston 24 encapsulates liquid metal 29 in one side in liquid metal pressure working cylinder body 23; Piston rod 15 is The liquid metal pressure driving force output end of the liquid metal pressure working cylinder body 23 is connected with the leg joint of the robot; the outside of the liquid metal pressure working cylinder body 23 is connected with the hot end of the thermal thermoelectric generator 14 through a graphene layer 25; The cold end of the electrical appliance 14 is connected to the radiator 26; the thermal thermoelectric generator 14 is connected to the supercapacitor 12, and the thermoelectric power is stored in the supercapacitor 12 for use by the electrical devices required by the robot.
液态金属磁流体发电器2(见图3),包括:磁体27、发电通道28、电极条30、电极引出端31;磁体27装配在发电通道28上端和下端;电极条30装配在发电通道28两侧面;电极引出端31连接电极条30,并与超级电容器12相连接;磁体27采用永久磁体;液态金属29在伺服阀3控制下进入发电通道28流动,不断地切割在发电通道28上端、下端装配磁体27产生的磁力线,从而产生电能,并将发电电能存储在超级电容器12中,供机器人所需用电装置使用。Liquid metal magnetic fluid generator 2 (see Figure 3), comprising: magnet 27, power generation channel 28, electrode strip 30, electrode lead-out end 31; magnet 27 is assembled on the upper end and lower end of power generation channel 28; electrode bar 30 is assembled on power generation channel 28 Both sides; the electrode lead-out end 31 is connected to the electrode strip 30, and is connected to the supercapacitor 12; the magnet 27 is a permanent magnet; the liquid metal 29 flows into the power generation channel 28 under the control of the servo valve 3, and is continuously cut on the upper end of the power generation channel 28, The magnetic lines of force produced by the magnet 27 are assembled at the lower end to generate electrical energy, and the generated electrical energy is stored in the supercapacitor 12 for use by the electrical devices required by the robot.
本实施例液态金属采用液态镓合金;石墨烯层采用石墨烯涂层;热温差发电器件14,包括若干块串联的或/和并联的温差发电片单体,温差发电片单体与温差发电片单体之间通过使用绝热材料隔开;散热器件26采用风冷翅片散热器件;传感器6采用:压力传感器、位移传感器、角度传感器。In this embodiment, the liquid metal adopts liquid gallium alloy; the graphene layer adopts graphene coating; the thermal thermoelectric power generation device 14 includes several thermoelectric power generation sheet monomers connected in series or/and in parallel, the thermoelectric power generation sheet monomer and the thermoelectric power generation sheet The monomers are separated by using heat insulating material; the heat dissipation device 26 adopts air-cooled fin heat dissipation device; the sensor 6 adopts: a pressure sensor, a displacement sensor, and an angle sensor.
本实施例的工作过程如下:The working process of this embodiment is as follows:
智能控制器7收到控制信号器13关于驱动腿关节指令信息(见图1),智能控制器7指令液态金属储存箱11、过滤器9和磁力泵4工作;磁力泵4从液态金属储存箱11抽出液态金属29通过过滤器9进入伺服阀3的p端,并从伺服阀3的a端流出后进入液态金属磁流体发电器2的液态金属29进入端,并从液态金属磁流体发电器2的流出端进入热温差发电式液态金属压力工作缸1的液态金属进入端;当液态金属29在伺服阀3控制下进入液态金属磁流体发电器2的发电通道28流动时(见图3),则不断地切割在发电通道28上端、下端装配磁体27产生的磁力线,通过从而产生电能电流;通过电极条30和电极引出端31,将发电电能存储在超级电容器12中,通过电能输出端32供机器人所需用电装置使用。Intelligent controller 7 receives control signal device 13 about driving leg joint instruction information (see Fig. 1), and intelligent controller 7 instructions liquid metal storage tank 11, filter 9 and magnetic force pump 4 work; Magnetic force pump 4 from liquid metal storage tank 11 Extract the liquid metal 29 into the p end of the servo valve 3 through the filter 9, and flow out from the a end of the servo valve 3 to enter the liquid metal 29 inlet end of the liquid metal magnetic fluid generator 2, and from the liquid metal magnetic fluid generator The outflow end of 2 enters the liquid metal inlet end of the thermal thermoelectric power generation type liquid metal pressure working cylinder 1; when the liquid metal 29 flows into the power generation channel 28 of the liquid metal magnetic fluid generator 2 under the control of the servo valve 3 (see Figure 3) , then continuously cut the magnetic lines of force produced by assembling the magnet 27 at the upper end and lower end of the power generation channel 28, and pass through to generate electric energy current; through the electrode strip 30 and the electrode lead-out end 31, the generated electric energy is stored in the supercapacitor 12, and passed through the electric energy output end 32 It is used for the electrical device required by the robot.
当液态金属29从液态金属磁流体发电器2的流出端进入热温差发电式液态金属压力工作缸1的液态金属29进入端时,液态金属29产生一定的压力推动活塞24及活塞杆15运动;智能控制器7根据控制信号器13、传感器6反馈信息进行逻辑运算,来指令调控伺服阀3,达到调控进入液态金属磁流体发电器2和热温差发电式液态金属压力工作缸1的液态金属29流动速度、流动时间、流动量大小,实现液态金属29在液态金属磁流体发电器2和热温差发电式液态金属压力工作缸1的工作循环;活塞杆15则带动机器人腿关节实施可控运动。When the liquid metal 29 enters the liquid metal 29 inlet end of the thermothermoelectric power generation type liquid metal pressure working cylinder 1 from the outflow end of the liquid metal magnetic fluid generator 2, the liquid metal 29 generates a certain pressure to push the piston 24 and the piston rod 15 to move; The intelligent controller 7 performs logic operations according to the feedback information of the control signal device 13 and the sensor 6 to instruct and regulate the servo valve 3 to achieve regulation and control of the liquid metal 29 entering the liquid metal magnetic fluid generator 2 and the thermal thermoelectric power generation type liquid metal pressure working cylinder 1 The flow speed, flow time, and flow volume realize the working cycle of the liquid metal 29 in the liquid metal magnetic fluid generator 2 and the thermal temperature difference power generation type liquid metal pressure working cylinder 1; the piston rod 15 drives the robot leg joints to implement controllable motion.
当液态金属29从液态金属磁流体发电器2的流出端进入热温差发电式液态金属压力工作缸1的液态金属29进入端时,液态金属29产生一定的压力推动活塞24及活塞杆15运动时,则会产生一定的热量;液态金属压力工作缸体23通过石墨烯层25,快速将热量传输给热温差发电器14的热端,由于热温差发电器14的冷端与风冷翅片散热器件26相连接,在热温差发电器14的热端与冷端温差作用下,产生热温差发电效应,并将发电电能存储在超级电容器12中,供机器人所需用电装置使用。When the liquid metal 29 enters the liquid metal 29 inlet end of the thermal thermoelectric power generation type liquid metal pressure working cylinder 1 from the outflow end of the liquid metal magnetic fluid generator 2, the liquid metal 29 generates a certain pressure to push the piston 24 and the piston rod 15 to move. , a certain amount of heat will be generated; the liquid metal pressure working cylinder 23 quickly transmits heat to the hot end of the thermal thermoelectric generator 14 through the graphene layer 25, because the cold end of the thermal thermoelectric generator 14 dissipates heat with the air-cooled fins The devices 26 are connected to each other, and under the action of the temperature difference between the hot end and the cold end of the thermal thermoelectric generator 14, a thermal thermoelectric power generation effect is generated, and the generated electric energy is stored in the supercapacitor 12 for use by the electrical devices required by the robot.
当当液态金属29进入热温差发电式液态金属压力工作缸1的液态金属29进入端时(见图2),液态金属29产生一定的压力推动活塞24及活塞杆15运动,通过大腿关节连接轴17带动大腿关节16,通过小腿关节连接轴20带动小腿关节19;由于大腿关节16、小腿关节19和热温差发电式液态金属压力工作缸1,共同构成液态金属压力驱动可产生形变的三脚架结构。由于小腿关节19通过踝关节21与机器人足22相连接,为机器人腿关节行走运动提供可控的驱动力。When the liquid metal 29 enters the liquid metal 29 entry end of the thermal temperature difference power generation type liquid metal pressure working cylinder 1 (see Figure 2), the liquid metal 29 generates a certain pressure to push the piston 24 and the piston rod 15 to move, and connects the shaft 17 through the thigh joint The thigh joint 16 is driven, and the calf joint 19 is driven through the calf joint connecting shaft 20; the thigh joint 16, the calf joint 19 and the thermal temperature difference power generation type liquid metal pressure working cylinder 1 together constitute a tripod structure that can be deformed due to the liquid metal pressure drive. Since the lower leg joint 19 is connected with the robot foot 22 through the ankle joint 21, it provides a controllable driving force for the walking motion of the robot leg joint.
在本文中,所涉及的前、后、上、下等方位词是以附图中零部件位于图中以及零部件相互之间的位置来定义的,只是为了表达技术方案的清楚及方便。应当理解,所述方位词的使用不应限制本申请请求保护的范围。In this article, the orientation words such as front, rear, upper, and lower involved are defined by the parts in the drawings and the positions between the parts in the drawings, just for the clarity and convenience of expressing the technical solution. It should be understood that the use of the location words should not limit the scope of protection claimed in this application.
在不冲突的情况下,本文中上述实施例及实施例中的特征可以相互结合。In the case of no conflict, the above-mentioned embodiments and features in the embodiments herein may be combined with each other.
以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。The above descriptions are only preferred embodiments of the present invention, and are not intended to limit the present invention. Any modifications, equivalent replacements, improvements, etc. made within the spirit and principles of the present invention shall be included in the protection of the present invention. within range.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810604037.3A CN108657305B (en) | 2018-06-12 | 2018-06-12 | Liquid metal pressure-driven robot joint self-generating device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810604037.3A CN108657305B (en) | 2018-06-12 | 2018-06-12 | Liquid metal pressure-driven robot joint self-generating device |
Publications (2)
Publication Number | Publication Date |
---|---|
CN108657305A true CN108657305A (en) | 2018-10-16 |
CN108657305B CN108657305B (en) | 2020-01-17 |
Family
ID=63775771
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810604037.3A Expired - Fee Related CN108657305B (en) | 2018-06-12 | 2018-06-12 | Liquid metal pressure-driven robot joint self-generating device |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108657305B (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109605356A (en) * | 2018-11-16 | 2019-04-12 | 中国科学院理化技术研究所 | A liquid metal flexible machine capable of self-driving snake-like motion |
CN111293856A (en) * | 2020-03-16 | 2020-06-16 | 追信数字科技有限公司 | Low-cost wearable human body movement power generation device and manufacturing method thereof |
CN111355358A (en) * | 2020-03-19 | 2020-06-30 | 追信数字科技有限公司 | Human motion power generation device for gymnasium and manufacturing method thereof |
CN111608964A (en) * | 2020-04-16 | 2020-09-01 | 浙江大学 | A robot capable of recovering support phase pressing action energy and its control method |
CN114633824A (en) * | 2022-03-22 | 2022-06-17 | 陇东学院 | Biped robot and leg damping and energy recovery device thereof |
CN114776733A (en) * | 2022-05-11 | 2022-07-22 | 空间液态金属科技发展(江苏)有限公司 | A high heat dissipation disc brake system |
CN118017795A (en) * | 2024-04-08 | 2024-05-10 | 浙江大学 | Induction electromagnetic pump |
TWI872968B (en) * | 2024-03-01 | 2025-02-11 | 吳佳音 | Fluid booster power generation system |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6422329B1 (en) * | 1999-11-12 | 2002-07-23 | Homayoon Kazerooni | Human assisted walking robot |
CN104135191A (en) * | 2014-08-18 | 2014-11-05 | 中国地质大学(武汉) | Foam metal composite phase change material heat storage temperature-difference power generation device |
CN106357084A (en) * | 2016-11-29 | 2017-01-25 | 无锡斯科海洋科技有限公司 | Double-channel liquid metal magnetic fluid power generator |
CN106457566A (en) * | 2014-07-22 | 2017-02-22 | 谷歌公司 | Hybrid hydraulic and electrically actuated mobile robot |
US9731416B1 (en) * | 2015-03-11 | 2017-08-15 | Google Inc. | Legged robot passive fluid-based ankles with spring centering |
CN107370328A (en) * | 2017-07-10 | 2017-11-21 | 西安交通大学 | A kind of energy recycle device and method of field legged type robot leg damping |
CN107672686A (en) * | 2017-09-20 | 2018-02-09 | 深圳市行者机器人技术有限公司 | A kind of biped robot and its leg damping and energy recycle device |
-
2018
- 2018-06-12 CN CN201810604037.3A patent/CN108657305B/en not_active Expired - Fee Related
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6422329B1 (en) * | 1999-11-12 | 2002-07-23 | Homayoon Kazerooni | Human assisted walking robot |
CN106457566A (en) * | 2014-07-22 | 2017-02-22 | 谷歌公司 | Hybrid hydraulic and electrically actuated mobile robot |
CN104135191A (en) * | 2014-08-18 | 2014-11-05 | 中国地质大学(武汉) | Foam metal composite phase change material heat storage temperature-difference power generation device |
US9731416B1 (en) * | 2015-03-11 | 2017-08-15 | Google Inc. | Legged robot passive fluid-based ankles with spring centering |
CN106357084A (en) * | 2016-11-29 | 2017-01-25 | 无锡斯科海洋科技有限公司 | Double-channel liquid metal magnetic fluid power generator |
CN107370328A (en) * | 2017-07-10 | 2017-11-21 | 西安交通大学 | A kind of energy recycle device and method of field legged type robot leg damping |
CN107672686A (en) * | 2017-09-20 | 2018-02-09 | 深圳市行者机器人技术有限公司 | A kind of biped robot and its leg damping and energy recycle device |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109605356A (en) * | 2018-11-16 | 2019-04-12 | 中国科学院理化技术研究所 | A liquid metal flexible machine capable of self-driving snake-like motion |
CN109605356B (en) * | 2018-11-16 | 2021-06-25 | 中国科学院理化技术研究所 | A liquid metal flexible machine capable of self-driving snake-like motion |
CN111293856A (en) * | 2020-03-16 | 2020-06-16 | 追信数字科技有限公司 | Low-cost wearable human body movement power generation device and manufacturing method thereof |
CN111355358A (en) * | 2020-03-19 | 2020-06-30 | 追信数字科技有限公司 | Human motion power generation device for gymnasium and manufacturing method thereof |
CN111608964A (en) * | 2020-04-16 | 2020-09-01 | 浙江大学 | A robot capable of recovering support phase pressing action energy and its control method |
CN114633824A (en) * | 2022-03-22 | 2022-06-17 | 陇东学院 | Biped robot and leg damping and energy recovery device thereof |
CN114776733A (en) * | 2022-05-11 | 2022-07-22 | 空间液态金属科技发展(江苏)有限公司 | A high heat dissipation disc brake system |
CN114776733B (en) * | 2022-05-11 | 2023-11-24 | 空间液态金属科技发展(江苏)有限公司 | A high heat dissipation disc brake system |
TWI872968B (en) * | 2024-03-01 | 2025-02-11 | 吳佳音 | Fluid booster power generation system |
CN118017795A (en) * | 2024-04-08 | 2024-05-10 | 浙江大学 | Induction electromagnetic pump |
Also Published As
Publication number | Publication date |
---|---|
CN108657305B (en) | 2020-01-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108657305B (en) | Liquid metal pressure-driven robot joint self-generating device | |
EP2960498B1 (en) | Rapidly modulated hydraulic supply for a robotic device | |
Zhang et al. | Fluid-driven artificial muscles: bio-design, manufacturing, sensing, control, and applications | |
Chen et al. | Soft crawling robots: design, actuation, and locomotion | |
Shang et al. | A novel electro hydrostatic actuator system with energy recovery module for more electric aircraft | |
US10352334B2 (en) | Hydraulic actuator system | |
Ouyang et al. | Development of a novel compact hydraulic power unit for the exoskeleton robot | |
CN108412821B (en) | A hydraulic-electric hybrid-driven walking robot | |
CN108678918B (en) | Laser-induced photothermal expansion drive device | |
CN108343646B (en) | An electro-hydraulic hybrid drive mechanical arm control system and control method | |
CN111692058A (en) | Ocean temperature difference energy phase change power generation device for unmanned underwater vehicle | |
CN105856214B (en) | A kind of arm-and-hand system with high controllability | |
CN109940645A (en) | Thermal expansion fluid composite non-shaped cavity-driven robotic soft hand | |
CN108583723A (en) | A kind of bionics mechanical legs with three joints of the autonomous hydraulic pressure distributed power of band | |
CN108843714B (en) | Robot leg foot buffer shock-absorbing and self power generation integrated apparatus | |
Khan et al. | Development of a lightweight on-board hydraulic system for a quadruped robot | |
Davis et al. | Enhanced dynamic performance in pneumatic muscle actuators | |
CN106545535B (en) | A kind of robot motor drives hydraulic power system and control method | |
Kang et al. | Electrically Driven Robotic Pistons Exploiting Liquid-Vapor Phase Transition for Underwater Applications | |
US8915073B1 (en) | Fluid power device, method and system | |
CN103807249B (en) | Robotic Bionic Hydraulic System | |
Guglielmino et al. | Energy efficient fluid power in autonomous legged robotics | |
CN117719280A (en) | A frog-like soft robot based on gas-liquid phase change | |
Niu et al. | Portable electro-hydraulic actuator technology based on spherical micro pump | |
CN111422275A (en) | Electro-hydraulic hybrid-driven motion mode reconfigurable foot type robot |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20200117 Termination date: 20210612 |
|
CF01 | Termination of patent right due to non-payment of annual fee |