CN108636416A - 一种ZnO/煤矸石复合光催化剂及其制备方法和应用 - Google Patents

一种ZnO/煤矸石复合光催化剂及其制备方法和应用 Download PDF

Info

Publication number
CN108636416A
CN108636416A CN201810403674.4A CN201810403674A CN108636416A CN 108636416 A CN108636416 A CN 108636416A CN 201810403674 A CN201810403674 A CN 201810403674A CN 108636416 A CN108636416 A CN 108636416A
Authority
CN
China
Prior art keywords
zno
gangue
zinc
composite photo
zinc salt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810403674.4A
Other languages
English (en)
Other versions
CN108636416B (zh
Inventor
谢娟
杜红霞
许永权
赵华
康文通
张国刚
赵树春
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hebei University of Science and Technology
Original Assignee
Hebei University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hebei University of Science and Technology filed Critical Hebei University of Science and Technology
Priority to CN201810403674.4A priority Critical patent/CN108636416B/zh
Publication of CN108636416A publication Critical patent/CN108636416A/zh
Application granted granted Critical
Publication of CN108636416B publication Critical patent/CN108636416B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/80Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with zinc, cadmium or mercury
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0027Powdering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0027Powdering
    • B01J37/0036Grinding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/725Treatment of water, waste water, or sewage by oxidation by catalytic oxidation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/34Organic compounds containing oxygen
    • C02F2101/345Phenols
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/36Organic compounds containing halogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Water Supply & Treatment (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Catalysts (AREA)

Abstract

本发明涉及一种ZnO/煤矸石复合光催化剂,其包括如下原料经沸腾回流制备:预处理后的煤矸石和锌盐的水溶液;所述锌盐的水溶液以ZnO质量计与预处理后的煤矸石的质量比为0.5~20:100。本发明还涉及制备上述复合光催化剂的方法及其应用。本发明的产品可在紫外光照条件下有效降解氯酚类化合物。本发明的制备方法具有原料少、工艺简单、反应时间短、条件相对温和、对环境无污染的特点,是一种绿色合成工艺,容易实现工业化。

Description

一种ZnO/煤矸石复合光催化剂及其制备方法和应用
技术领域
本发明属于光催化剂制备领域,具体涉及一种ZnO/煤矸石复合光催化剂、其制备方法及其在降解氯酚类化合物中的应用。
背景技术
光催化技术能够直接利用光能在常温常压下将有机污染物降解为无机小分子,而且具有能耗低、操作简便、反应条件温和、二次污染小的特点,是一种理想的环境污染治理技术。在化石能源日趋紧张、环境污染日益严重的今天,光催化技术的重要性不言而喻。
光催化反应的关键是光催化剂,常见的光催化材料主要为TiO2、SnO2、CdS、WO3、ZrO2和Fe2O3等一些n型半导体化合物,其中TiO2因氧化还原能力强、性质稳定、无毒无害等优势,一直处于光催化研究的核心地位。ZnO不仅拥有与TiO2相近的禁带宽度和价带能级位置,而且两者的光催化降解机理也完全相同。加之ZnO利用太阳光的能力和量子效率均高于TiO2,生产成本却相对较低,所以ZnO非常有希望成为继TiO2之后的又一种极具应用前景的光催化剂。
因为光催化剂的活性与其粒度大小关系密切,粒度越小,比表面积越大,光催化活性越高,所以半导体光催化剂大多是微/纳米颗粒。但光催化降解有机污染物的过程中,微/纳米颗粒也会因粒度过小引发二次团聚,并存在使用后难以回收,易形成二次污染的弊病。这已成为制约微/纳米半导体光催化剂推广应用的一大技术瓶颈。
作为解决上述问题的一种有效方法,微/纳米半导体光催化剂的固载化近年来受到了国内外学者们越来越多的关注。目前,常用的固载方法一般分为成膜固载化和载体固载化两种,后者多选用具有发达孔隙结构和较大比表面积的活性炭、碳纳米管等做载体。由于它们价格比较昂贵,其工业化进程十分缓慢。
煤矸石是煤炭形成过程中与煤层伴生、共生的一种含碳量比煤低的灰黑色岩石。这种煤炭开采、洗选及加工过程中排放的固体废弃物约占煤炭产量的15%~20%。大量未被利用的煤矸石随意堆积,既占用土地,又污染环境。深入开展煤矸石的综合利用现已成为我国煤炭行业深化转型和可持续发展的根本途径。天然的煤矸石成分复杂、结构致密,但经改性后,煤矸石中的无机矿物由结晶态部分转化为无定形态,其结构变疏松、比表面积增大、孔隙结构发达,吸附性能得到显著改善。
迄今尚未见有关ZnO/煤矸石复合光催化剂的报道。若以改性煤矸石为吸附载体负载微/纳米ZnO颗粒,形成ZnO/煤矸石复合光催化剂,不仅能把煤矸石变废为宝,实现资源的有效利用,还将有助于提高微/纳米ZnO的光催化效率。因此,寻找一种工艺简单、成本低、耗能少、绿色环保的ZnO/煤矸石复合光催化剂制备方法具有重要的现实意义。
发明内容
本发明的目的是提供一种ZnO/煤矸石复合光催化剂及其制备方法。该制备方法具有原料少、工艺简单、反应时间短、条件相对温和、对环境无污染的特点,是一种绿色合成工艺,容易实现工业化。所制备的产品可在紫外光照条件下有效降解氯酚类化合物。
本发明采用如下技术方案:
一种ZnO/煤矸石复合光催化剂,其包括如下原料经沸腾回流制备:预处理后的煤矸石和锌盐的水溶液;所述锌盐的水溶液以ZnO质量计与预处理后的煤矸石的质量比为0.5~20:100。
所述锌盐的水溶液参数通过如下公式计算:
m ZnO= C 锌盐的水溶液×V 锌盐的水溶液×M ZnO
式中,C—摩尔浓度,mol/L;V—体积,L;M—摩尔质量,g/mol;m—质量,g。
进一步的,所述预处理后的煤矸石为煤矸石经粉碎、研磨过150~300目筛后,于700~900 ℃煅烧1.5~3 h后备用。
优选的,所述预处理后的煤矸石为煤矸石经粉碎、研磨过200目筛后,于800 ℃煅烧2 h后备用。
进一步的,所述锌盐包括硫酸锌、氯化锌、硝酸锌或醋酸锌。
进一步的,所述锌盐的水溶液浓度为0.5 mol/L。
一种上述ZnO/煤矸石复合光催化剂的制备方法,其包括如下步骤:
(1)取煤矸石,经粉碎、研磨后过150~300目筛,于700~900 ℃煅烧1.5~3 h,得到预处理后的煤矸石;
(2)配制0.5 mol/L的锌盐的水溶液;
(3)取步骤(2)配制好的锌盐的水溶液5 mL,加入蒸馏水定容至100 mL,再向溶液中加入步骤(1)得到的预处理后的煤矸石,磁力搅拌1 h;
所述锌盐的水溶液以ZnO质量计,ZnO与预处理后的煤矸石的质量比为0.5~20:100;
(4)调节步骤(3)得到的反应体系的pH至9~11后沸腾回流3 h;
(5)经抽滤,蒸馏水洗涤和自然晾干后,得到ZnO/煤矸石复合光催化剂。
其中,所述步骤(1)中,煤矸石经粉碎、研磨后过200目筛,煅烧温度为800 ℃,煅烧时间为2 h。
其中,所述步骤(2)中,所述锌盐为硫酸锌、氯化锌、硝酸锌或醋酸锌。
其中,所述步骤(3)中,所述ZnO与预处理后的煤矸石的质量比为5~15:100,优选为10:100。
其中,所述步骤(4)中,所述反应体系的pH值为10。
其中,所述步骤(4)中,使用6 mol/L及0.1 mol/L的氢氧化钠水溶液调节反应体系pH值。
一种上述ZnO/煤矸石复合光催化剂在降解氯酚类化合物中的应用。
本发明的有益效果在于:天然煤矸石粒度较大、质地坚硬、结构致密,很难直接应用。通常要先对其进行粉碎、研磨、过筛和煅烧处理。粉碎、研磨使天然煤矸石的粒径迅速变小,晶格发生畸变,比表面积相应变大,但此时煤矸石颗粒的结构依旧致密,吸附性仍然很差,进行化学反应时基本不显示活性。高温煅烧处理后,煤矸石不仅有一定的成分挥发,一些无机化合物还会发生晶态转变,进而使煤矸石的结构疏松度和化学活性大大提高。虽然上述处理都能起到改善煤矸石性能的作用,可是这对于煤矸石用作吸附剂来说,其效果远远不够。煅烧后的煤矸石要再用酸或碱等物质进一步处理。
酸溶液能溶解煤矸石中Al、Fe、Ca的氧化物,增大煤矸石颗粒的孔隙率,从而增强煤矸石的吸附能力。碱溶液则不仅能溶解煤矸石中的一些金属氧化物,增大煤矸石颗粒的孔隙率,适量的碱还可与煤矸石中Si及Al的氧化物发生反应,生成具有较好吸附能力的沸石分子筛。
众所周知,光催化剂吸附被降解物的能力是影响其光催化效率的一个重要因素。改性煤矸石比表面积大、多微孔,具有良好的吸附性,不但有利于用化学方法负载ZnO光催化剂,形成的ZnO/煤矸石复合光催化剂还能够实现ZnO、煤矸石二者的协同作用,使催化剂表面始终保持较高的污染物浓度,促进ZnO与被降解物分子之间的电子转移,提高ZnO的光催化效率。
我们的前期研究发现,以锌盐和碱为反应物,采用沸腾回流法,在pH 9~11条件下可以得到光催化性能良好的微/纳米ZnO颗粒,这一发现使得一步制备ZnO/煤矸石复合物成为可能。存在于反应体系中的碱既能对煤矸石进行改性,又可与改性煤矸石吸附的Zn2+离子发生反应得到ZnO,从而将ZnO负载在改性煤矸石上。该方法所需原料少、工艺简单、反应时间短、条件相对温和、对环境无污染,是一种绿色合成工艺。
附图说明
图1为改性煤矸石、纯ZnO及ZnO/煤矸石复合物的XRD谱图。
图1中,a为改性煤矸石、b为纯ZnO、c为ZnO/煤矸石复合物。
图2为纯ZnO及不同质量比ZnO/煤矸石复合物光催化降解五氯酚效率随时间变化的曲线。
具体实施方式
为了加深对本发明的理解,下面结合附图和实施例对本发明进行详细的描述,该实施例是示例性的,仅用于解释本发明,并不对保护范围构成限定。
实施例1
取自山西平朔矿区的煤矸石经粉碎和充分研磨后,过200目筛,于700 ℃煅烧2 h备用。同时,配制0.5 mol/L的锌盐水溶液,6 mol/L及0.1 mol/L的氢氧化钠水溶液备用。
将5 mL硫酸锌水溶液(0.5 mol/L)引入三口烧瓶中,用蒸馏水定容100 mL,加入计算量的预处理后的煤矸石粉,磁力搅拌1 h后,向瓶中缓慢滴加6 mol/L和0.1 mol/L的氢氧化钠水溶液,通过控制氢氧化钠水溶液的加入量调节反应体系的pH值为9,沸腾回流3 h。经抽滤、蒸馏水洗涤、自然晾干,得到ZnO/煤矸石复合光催化剂。
实施例2~6及对比例1~2
实施例2~6及对比例1~2与实施例1的操作步骤相同,区别仅在于所用锌盐的种类、煤矸石煅烧温度、煤矸石用量和反应体系pH值,具体如表1所示。
表1 实施例1~6及对比例1~2
效果例1 XRD表征
图1为改性煤矸石、纯ZnO及ZnO/煤矸石复合物的XRD谱图。图1c中同时出现了2θ=26.64°处改性煤矸石的衍射峰(图1a)和2θ = 31.97 °,34.66 °,36.44 °,47.69 °,56.76 °,63.05 °,66.54 °,68.11 °,69.23 °处六方晶系纤锌矿ZnO(JCPDS 36-1451)的衍射峰(图1b),证明产物确为ZnO/煤矸石复合物。因为ZnO覆盖在改性煤矸石的表面上,所以ZnO/煤矸石复合物中属于ZnO的各衍射峰强度较纯ZnO变化不大,而属于改性煤矸石的衍射峰强度却较未负载ZnO之前显著降低。
效果例2 ZnO/煤矸石复合物的光催化性能评价
氯酚类化合物是一类典型的“三致(致癌、致畸、致突变)”有机污染物,被广泛应用于生产防腐剂、染料、除草剂和杀虫剂等。同时,废物焚烧、纸浆漂白、饮用水氯化消毒过程中也有可能产生氯酚类副产物。常见的氯酚类化合物有2,4-二氯酚、2,4,6-三氯酚、2,3,4,6-四氯酚和五氯酚等。该种有机化合物的大量使用、早期对其毒性和危害的认识不足以及伴随而来的长期忽视,导致了它在环境中的不断积累,对水环境和人类健康造成了直接破坏和潜在威胁。然而,常规的水处理方法和生物技术很难有效降解氯酚类化合物。近年来,以光催化为代表的高级氧化技术在污染物环境治理方面发展迅速,其应用于降解氯酚类化合物的研究也取得了显著成果。
光催化性能评价实验结果显示,所制ZnO/煤矸石复合物对上述氯酚类化合物均有较好降解效果。以五氯酚为目标降解物进行的光催化性能评价实验步骤及数据如下:
在烧杯中加入100 mL五氯酚溶液(10 mg/L,pH 9~10)和0.1 g ZnO/煤矸石复合物粉体,避光强力搅拌30 min,使五氯酚在催化剂表面达到吸附-脱附平衡。然后在磁力搅拌下,采用125 W 高压汞灯照射(灯与液面距离10 cm)并开始计时。间隔取样,离心分离,取上清液经微孔滤膜过滤,用紫外-可见分光光度计测定其在五氯酚最大吸收波长(λ max = 220nm)处的吸光度,并依下式计算五氯酚的降解率(η):
η=(A 0A t)/A 0×100%
式中,A 0为光照前五氯酚溶液的吸光度;A t为光照时间t后五氯酚溶液的吸光度。
图2为纯ZnO及不同质量比ZnO/煤矸石复合物光催化降解五氯酚效率随时间变化的曲线。空白实验显示,紫外光照射时,180 min后五氯酚降解率仅为46.92%,该现象为五氯酚的自分解。紫外光照射的同时,投入纯ZnO或ZnO/煤矸石复合光催化剂,相同光照时间内,五氯酚的降解率显著提高。观察发现,所有ZnO/煤矸石复合物的光催化活性均高于纯ZnO,这证实ZnO/煤矸石复合物中ZnO与煤矸石之间确实存在协同效应。然而,ZnO与煤矸石的质量比并非越大越好,质量比为10:100的ZnO/煤矸石复合物表现出了最高的光催化活性,180min内五氯酚几乎被完全降解。
以上所述的实施例仅仅是对本发明的优选实施方式进行描述,但并不限于此,本领域的技术人员很容易根据上述实施例领会本发明的精神,并作出不同的引申和变化,但只要不脱离本发明的精神,都在本发明的保护范围之内。

Claims (10)

1.一种ZnO/煤矸石复合光催化剂,其特征在于,其包括如下原料经沸腾回流制备:预处理后的煤矸石和锌盐的水溶液;所述锌盐的水溶液以ZnO质量计与预处理后的煤矸石的质量比为0.5~20:100。
2.根据权利要求1所述的ZnO/煤矸石复合光催化剂,其特征在于,所述预处理后的煤矸石为煤矸石经粉碎、研磨过150~300目筛后,于700~900 ℃煅烧1.5~3 h。
3.根据权利要求1所述的ZnO/煤矸石复合光催化剂,其特征在于,所述锌盐包括硫酸锌、氯化锌、硝酸锌或醋酸锌。
4.根据权利要求1所述的ZnO/煤矸石复合光催化剂,其特征在于,所述锌盐的水溶液浓度为0.5 mol/L。
5.一种权利要求1~4任一项所述的ZnO/煤矸石复合光催化剂的制备方法,其特征在于,其包括如下步骤:
(1)取煤矸石,经粉碎、研磨后过150~300目筛,于700~900 ℃煅烧1.5~3 h,得到预处理后的煤矸石;
(2)配制0.5 mol/L的锌盐的水溶液;
(3)取步骤(2)配制好的锌盐的水溶液5 mL,加入蒸馏水定容至100 mL,再向溶液中加入步骤(1)得到的预处理后的煤矸石,磁力搅拌1 h;
所述锌盐的水溶液以ZnO质量计,ZnO与预处理后的煤矸石的质量比为0.5~20:100;
(4)调节步骤(3)得到的反应体系的pH至9~11后沸腾回流3 h;
(5)经抽滤,蒸馏水洗涤和自然晾干后,得到ZnO/煤矸石复合光催化剂。
6.根据权利要求5所述的制备方法,其特征在于,所述步骤(1)中,煤矸石经粉碎、研磨后过200目筛,煅烧温度为800 ℃,煅烧时间为2 h。
7.根据权利要求5所述的制备方法,其特征在于,所述步骤(2)中,所述锌盐为硫酸锌、氯化锌、硝酸锌或醋酸锌。
8.根据权利要求5所述的制备方法,其特征在于,所述步骤(3)中,所述ZnO与预处理后的煤矸石的质量比为5~15:100,优选为10:100。
9.根据权利要求5所述的制备方法,其特征在于,所述步骤(4)中,所述反应体系的pH值为10。
10.一种如权利要求1~4所述的ZnO/煤矸石复合光催化剂在降解氯酚类化合物中的应用。
CN201810403674.4A 2018-04-28 2018-04-28 一种ZnO/煤矸石复合光催化剂及其制备方法和应用 Expired - Fee Related CN108636416B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810403674.4A CN108636416B (zh) 2018-04-28 2018-04-28 一种ZnO/煤矸石复合光催化剂及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810403674.4A CN108636416B (zh) 2018-04-28 2018-04-28 一种ZnO/煤矸石复合光催化剂及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN108636416A true CN108636416A (zh) 2018-10-12
CN108636416B CN108636416B (zh) 2021-04-13

Family

ID=63748299

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810403674.4A Expired - Fee Related CN108636416B (zh) 2018-04-28 2018-04-28 一种ZnO/煤矸石复合光催化剂及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN108636416B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112675846A (zh) * 2020-12-22 2021-04-20 安徽稞馨环境科技有限公司 一种催化氧化法室温脱除一氧化碳的贵金属整体式催化剂制备方法及其应用
CN116139921A (zh) * 2023-04-24 2023-05-23 太原理工大学 尾煤基沸石@CDs-TiO2复合光催化剂的制备方法及应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100298118A1 (en) * 2009-05-21 2010-11-25 Zhiping Tan Fluid catalytic cracking catalyst with low coke yield and method for making the same
CN102500378A (zh) * 2011-11-03 2012-06-20 东华大学 一种类蛋结构的可磁分离光催化剂纳米球的制备方法
CN102861570A (zh) * 2011-07-07 2013-01-09 北京三聚创洁科技发展有限公司 一种复合型煤焦油加氢催化剂及其制备方法
CN105195155A (zh) * 2015-09-30 2015-12-30 河北工程大学 一种片状α-Fe2O3/ZnO复合光催化剂的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100298118A1 (en) * 2009-05-21 2010-11-25 Zhiping Tan Fluid catalytic cracking catalyst with low coke yield and method for making the same
CN102861570A (zh) * 2011-07-07 2013-01-09 北京三聚创洁科技发展有限公司 一种复合型煤焦油加氢催化剂及其制备方法
CN102500378A (zh) * 2011-11-03 2012-06-20 东华大学 一种类蛋结构的可磁分离光催化剂纳米球的制备方法
CN105195155A (zh) * 2015-09-30 2015-12-30 河北工程大学 一种片状α-Fe2O3/ZnO复合光催化剂的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
王丹萍: ""改性煤矸石/TiO2复合材料的制备及其光催化性能的研究"", 《中国优秀硕士学位论文全文数据库(工程科技Ⅰ辑)》 *
谢娟 等: ""棒状α-Fe2O3-ZnO复合物的制备及其光催化性能"", 《化工新型材料》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112675846A (zh) * 2020-12-22 2021-04-20 安徽稞馨环境科技有限公司 一种催化氧化法室温脱除一氧化碳的贵金属整体式催化剂制备方法及其应用
CN116139921A (zh) * 2023-04-24 2023-05-23 太原理工大学 尾煤基沸石@CDs-TiO2复合光催化剂的制备方法及应用

Also Published As

Publication number Publication date
CN108636416B (zh) 2021-04-13

Similar Documents

Publication Publication Date Title
Qu et al. Carbon quantum dots/KNbO3 hybrid composites with enhanced visible-light driven photocatalytic activity toward dye waste-water degradation and hydrogen production
Lan et al. Application of polyoxometalates in photocatalytic degradation of organic pollutants
He et al. Room-temperature in situ fabrication of Bi2O3/g-C3N4 direct Z-scheme photocatalyst with enhanced photocatalytic activity
CN108686656A (zh) 一种α-Fe2O3/煤矸石复合光催化剂及其制备方法和应用
Wang et al. Hollow spherical WO3/TiO2 heterojunction for enhancing photocatalytic performance in visible-light
Qiu et al. Enhanced visible-light-driven photocatalytic degradation of tetracycline by 16% Er3+-Bi2WO6 photocatalyst
Zhang et al. Photocatalytic degradation of rhodamine B and phenol by solution combustion synthesized BiVO4 photocatalyst
Gao et al. The hierarchical layered microsphere of BiOIxBr1-x solid solution decorated with N-doped CQDs with enhanced visible light photocatalytic oxidation pollutants
He et al. Controllable construction of ZnWO4 nanostructure with enhanced performance for photosensitized Cr (VI) reduction
Dong et al. Synthesis of g-C3N4/BiVO4 heterojunction composites for photocatalytic degradation of nonylphenol ethoxylate
Bo et al. Efficient photocatalytic degradation of Rhodamine B catalyzed by SrFe2O4/g-C3N4 composite under visible light
Zhang et al. Efficient removal of methylene blue over composite-phase BiVO4 fabricated by hydrothermal control synthesis
Liang et al. Porous loofah-sponge-like ternary heterojunction g-C3N4/Bi2WO6/MoS2 for highly efficient photocatalytic degradation of sulfamethoxazole under visible-light irradiation
Song et al. Enhanced photocatalytic activity of Ag3PO4 photocatalyst via glucose-based carbonsphere modification
Darkhosh et al. One pot synthesis of CuFeO2@ expanding perlite as a novel efficient floating catalyst for rapid degradation of methylene blue under visible light illumination
Wang et al. The controllable synthesis of novel heterojunction CoO/BiVO4 composite catalysts for enhancing visible-light photocatalytic property
Yang et al. A novel flower-like Z-type heterojunction CuS/Bi 7 O 9 I 3 composite catalyst prepared under mild conditions for degradation of antibiotics and sterilization under visible light
CN102380366B (zh) 铋、硅共掺杂的纳米二氧化钛光催化剂及其制备、应用
Huang et al. Bi 2 O 2 CO 3/Bi 2 O 3 Z-scheme photocatalyst with oxygen vacancies and Bi for enhanced visible-light photocatalytic degradation of tetracycline
Wu et al. The preparation of self-floating Sm/N co-doped TiO2/diatomite hybrid pellet with enhanced visible-light-responsive photoactivity and reusability
Jia et al. Degradation of tetracycline by visible light over ZnO nanophotocatalyst
Zheng et al. Efficient solar-light photocatalytic activity of FeS/S-doped MgO composites for tetracycline removal
Yin et al. Synergistically enhanced photocatalytic degradation of tetracycline hydrochloride by Z-scheme heterojunction MT-BiVO4 microsphere/P-doped g-C3N4 nanosheet composite
Cong et al. A novel silver-loaded graphitic carbon nitride with structural defect assisted by ascorbic acid for the fast and efficient degradation of sulfamethoxazole
CN113398936A (zh) 一种氧化锌/ZnFe-LDH@生物炭可见光催化剂及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20210413

CF01 Termination of patent right due to non-payment of annual fee