CN1086268A - Method for separating and enriching rhodium and iridium from gold, platinum and palladium in solution - Google Patents
Method for separating and enriching rhodium and iridium from gold, platinum and palladium in solution Download PDFInfo
- Publication number
- CN1086268A CN1086268A CN92112761A CN92112761A CN1086268A CN 1086268 A CN1086268 A CN 1086268A CN 92112761 A CN92112761 A CN 92112761A CN 92112761 A CN92112761 A CN 92112761A CN 1086268 A CN1086268 A CN 1086268A
- Authority
- CN
- China
- Prior art keywords
- iridium
- rhodium
- platinum
- gold
- palladium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 title claims abstract description 63
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 title claims abstract description 53
- 239000010948 rhodium Substances 0.000 title claims abstract description 53
- 229910052741 iridium Inorganic materials 0.000 title claims abstract description 50
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 title claims abstract description 50
- 229910052703 rhodium Inorganic materials 0.000 title claims abstract description 50
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 title claims abstract description 50
- 229910052697 platinum Inorganic materials 0.000 title claims abstract description 31
- 238000000034 method Methods 0.000 title claims abstract description 26
- 229910052763 palladium Inorganic materials 0.000 title claims abstract description 26
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 title claims abstract description 25
- 239000010931 gold Substances 0.000 title claims abstract description 25
- 229910052737 gold Inorganic materials 0.000 title claims abstract description 25
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims abstract description 22
- 238000001556 precipitation Methods 0.000 claims abstract description 10
- 238000006073 displacement reaction Methods 0.000 claims description 18
- 238000006467 substitution reaction Methods 0.000 claims description 15
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical group [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims description 8
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims description 8
- 239000002893 slag Substances 0.000 claims description 5
- 230000008021 deposition Effects 0.000 claims description 4
- PGTXKIZLOWULDJ-UHFFFAOYSA-N [Mg].[Zn] Chemical compound [Mg].[Zn] PGTXKIZLOWULDJ-UHFFFAOYSA-N 0.000 abstract description 7
- 239000000843 powder Substances 0.000 abstract description 7
- 239000007788 liquid Substances 0.000 abstract description 4
- 238000001514 detection method Methods 0.000 abstract 1
- 239000000243 solution Substances 0.000 description 8
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- 238000011084 recovery Methods 0.000 description 6
- 238000012544 monitoring process Methods 0.000 description 5
- 239000010970 precious metal Substances 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 4
- 238000000926 separation method Methods 0.000 description 4
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 2
- 239000000284 extract Substances 0.000 description 2
- 229910052762 osmium Inorganic materials 0.000 description 2
- SYQBFIAQOQZEGI-UHFFFAOYSA-N osmium atom Chemical compound [Os] SYQBFIAQOQZEGI-UHFFFAOYSA-N 0.000 description 2
- 238000012797 qualification Methods 0.000 description 2
- 238000007670 refining Methods 0.000 description 2
- 229910052707 ruthenium Inorganic materials 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 229910000570 Cupronickel Inorganic materials 0.000 description 1
- 229910017061 Fe Co Inorganic materials 0.000 description 1
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 1
- 238000013019 agitation Methods 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- YOCUPQPZWBBYIX-UHFFFAOYSA-N copper nickel Chemical compound [Ni].[Cu] YOCUPQPZWBBYIX-UHFFFAOYSA-N 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000004821 distillation Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000005272 metallurgy Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000006386 neutralization reaction Methods 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 239000012085 test solution Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
Landscapes
- Manufacture And Refinement Of Metals (AREA)
Abstract
A method for separating and enriching rhodium and iridium from gold, platinum and palladium in a solution. The method is characterized in that gold, platinum and palladium are replaced by copper powder under the control of potential and separated from rhodium and iridium, and rhodium and iridium are enriched in residual copper powder replacement liquid by a detection control potential zinc-magnesium powder replacement method. The rhodium precipitation rate is 99 percent, and the iridium precipitation rate is more than 98 percent.
Description
Rhodium, iridium and gold, platinum, palladium method for separating and concentrating the invention relates to precious metals metallurgy in the solution.
The cu-ni sulphide ore that contains precious metal is one of valuable source that extracts precious metal.From with the isolating precious metal concentrate of copper nickel extract precious metal, now the flow process of using is distillation osmium, ruthenium earlier, and osmium, ruthenium are separated with gold, platinum, palladium, rhodium, iridium; With the copper powder substitution method gold, platinum, palladium precipitation are separated with rhodium, iridium again; From copper powder displacement raffinate, use zinc-magnesium powder substitution method enriching and recovering rhodium, iridium.Copper powder substitution method and zinc-magnesium powder substitution method can be easier, realize the grouping separation and concentration of gold, platinum, palladium and rhodium, iridium apace, and next step refining is provided.。But owing to lack monitoring means, reaction conditions control is inaccurate, in copper powder displacement gold, platinum, the palladium process, has~70% rhodium, and 15% iridium enters in the copper replacement slag in company with gold, platinum, palladium, causes the dispersion of rhodium, iridium, loses with relief liquor at platinum, palladium refining process; By the same token in original zinc, magnesium powder substitution rhodium, iridium process, also has quite partly rhodium, iridium replaces, loses with displacement liquid that (rhodium-containing is generally 0.0xg/l, and iridium is 0.xg/l~0.0xg/l).Rhodium, iridium spread loss are more like this, and the rate of recovery is not high.
The objective of the invention is to improve the technical qualification that the copper powder substitution method makes gold, platinum, palladium and rhodium, iridium grouping separation and concentration, improve and strengthen the technical qualification and the monitoring means of zinc-magnesium powder substitution method enrichment rhodium, iridium, improve gold, platinum, palladium and rhodium, iridium grouping separation and concentration effect, particularly improve the rate of recovery of rhodium, iridium, reduce spread loss.
The method applied in the present invention is: 1, improve active copper powder substitution method precipitation of gold, platinum, palladium and rhodium, the isolating condition of iridium with the CONTROLLED POTENTIAL method, the replacement slag enrichment gold, platinum, palladium, rhodium, iridium are stayed in the displacement liquid.Actual conditions is: the current potential of control solution system is 200~250mv(platinum electrode electrode of giving instruction), acidity<2N, 40~60 ℃ of temperature add active copper powder and replace, 2 hours time, filtering separation replacement slag and raffinate.Rate of displacement is (%): palladium, gold 99.9, platinum 98~99, rhodium~8, iridium~5.2, the copper powder displacement raffinate CONTROLLED POTENTIAL most of rhodium of zinc dust precipitation, iridium, its actual conditions is: after making solution be low acidity with solid NaOH neutralization, 70~90 ℃ of temperature, add zinc dust precipitation, Monitoring and Controlling current potential-300~-the 350mv(platinum electrode electrode of giving instruction), PH=2~2.5 are reaction end, this moment rhodium rate of displacement~98%, iridium~75%.3, follow CONTROLLED POTENTIAL remaining rhodium, iridium in the magnesium powder substitution solution, its actual conditions is: at solution temperature 85-95 ℃, add the magnesium powder substitution, Monitoring and Controlling solution PH=4.5~5.5, current potential=-500 ± 10mv(platinum electrode electrode of giving instruction) be reaction end.Precipitate recovery rate rhodium>99%, iridium>98%.Rhodium, iridium content drop to 0.000xg/l, 0.00xg/l respectively in the displacement raffinate.
Advantage of the present invention is: 1, rhodium, iridium have reduced spread loss, and the rate of recovery improves bigger, rate of recovery rhodium>99%, iridium>98%.2, working method is simple reliable again, does not increase equipment and technological process and just can reclaim rhodium, iridium effectively.3, with low cost, avoided the excessive adding of zinc-magnesium powder.
Embodiment
The used test solution composition of the present invention is (g/l):
Copper powder displacement stoste
Element Pt Pd Au Rh Ir
Content 9.50 4.80 2.14 0.513 0.529
Element Cu Ni Fe Co
Content 14.77 4.46 1.99 1.36
Zinc-magnesium powder substitution stoste (copper powder displacement raffinate)
Element Rh Ir Pt Pd
Content 0.243 0.325 0.118<0.0002
Elements A u Cu Ni Fe Co
Content<0.002 6.60 3.09 1.33 0.88
1, copper powder displacement stoste is 60 ℃ of temperature, and acidity 1.65N under the agitation condition, replaces gold, platinum, palladium with active copper powder respectively at 210mv, 220mv, 230mv and separates with rhodium, iridium, and the time was all 2 hours, result such as following table:
Copper powder is replaced each metal replacement rate (%)
Sequence number current potential Au Pt Pd Rh Ir
1 230mv 99.98 96.58 99.92 1.75 3.59
2 220mv 99.98 98.32 99.92 7.21 4.73
3 210mv 99.98 99.28 99.92 5.65 5.48
Gold, platinum, palladium recovery rate respectively~99.9%, 98~99% ,~99.9%; Rhodium, iridium scatter coefficient be respectively~5% ,~4%, reduced about 60% and 10% respectively than former technology rhodium, iridium scatter coefficient.
2, copper powder displacement raffinate is neutralized to PH=0.5~1 80 ℃ of temperature with solid NaOH, with zinc dust precipitation PH=2~2.5 to terminal, measure CONTROLLED POTENTIAL-300~-350mv is a terminal point, rhodium rate of displacement 98% at this moment, iridium 75%.
3, then zinc dust precipitation liquid elevated temperature is added the magnesium powder substitution again to~90 ℃, until Monitoring and Controlling solution PH=~5, current potential=-500 ± 10mv is a reaction end, this moment rhodium deposition rate>99%, iridium deposition rate>98%.
Zinc-magnesium powder substitution rate (%)
Sequence number terminal point current potential (mv) Rh Ir
1-350 (zinc powder) 98 75
2-500 ± 10 (magnesium powder)〉99.72 98.03
3-500 ± 10 (magnesium powder)〉99.72 99.26
Claims (4)
1, rhodium, iridium and gold, platinum, palladium method for separating and concentrating in the solution is characterized in that: a, CONTROLLED POTENTIAL separate with rhodium, iridium with copper powder displacement gold, platinum, palladium, the replacement slag enrichment gold, platinum, palladium; B, copper powder displacement raffinate detects CONTROLLED POTENTIAL with the most of rhodium of zinc dust precipitation, iridium, detects CONTROLLED POTENTIAL again with the remaining rhodium of magnesium powder substitution, iridium, the replacement slag enrichment rhodium, iridium.
2, rhodium, iridium and gold, platinum, palladium method for separating and concentrating in the solution as claimed in claim 1, it is characterized in that 1a/ step CONTROLLED POTENTIAL with copper powder displacement gold, platinum, palladium and rhodium, the isolating condition of iridium is: control solution system current potential 200~250mv(platinum electrode electrode of giving instruction), acidity<2N, 40~60 ℃ of temperature, add active copper powder and replace, 2 hours time, rate of displacement (%) is palladium, gold 99.9, rhodium~8, iridium~5.
3, rhodium, iridium and gold, platinum, palladium method for separating and concentrating in the solution as claimed in claim 1, it is characterized in that 1b, step copper powder displacement raffinate CONTROLLED POTENTIAL with the condition of the most rhodium of zinc dust precipitation, iridium are: terminal point solution PH=2~2.5, detect control terminal point system current potential and be-300~350mv(platinum electrode electrode of giving instruction), temperature is 70~95 ℃.
4, rhodium, iridium and gold, platinum, palladium method for separating and concentrating in the solution as claimed in claim 1, it is characterized in that 1b, process again CONTROLLED POTENTIAL with the condition of magnesium powder substitution residue rhodium, iridium be: 80~95 ℃ of temperature, terminal point pH value=4.5~5.5, detect control terminal point current potential-500 ± 10mv(platinum electrode electrode of giving instruction) rhodium deposition rate>99%, iridium deposition rate>98%.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN92112761A CN1031805C (en) | 1992-10-30 | 1992-10-30 | Method for separating and enriching rhodium and iridium from gold, platinum and palladium in solution |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN92112761A CN1031805C (en) | 1992-10-30 | 1992-10-30 | Method for separating and enriching rhodium and iridium from gold, platinum and palladium in solution |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1086268A true CN1086268A (en) | 1994-05-04 |
CN1031805C CN1031805C (en) | 1996-05-15 |
Family
ID=4946097
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN92112761A Expired - Fee Related CN1031805C (en) | 1992-10-30 | 1992-10-30 | Method for separating and enriching rhodium and iridium from gold, platinum and palladium in solution |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN1031805C (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102087218A (en) * | 2010-12-01 | 2011-06-08 | 金川集团有限公司 | Method for identifying extent of replacement purification reaction of platinum group metals |
CN103668204A (en) * | 2013-11-18 | 2014-03-26 | 王金良 | Process for deplating gold plated layer and recovering gold with cyanide-free gold stripping powder |
CN104032144A (en) * | 2014-06-09 | 2014-09-10 | 励福实业(江门)贵金属有限公司 | Method for separating and purifying precious metal from palladium-containing K gold |
CN105256138A (en) * | 2015-11-18 | 2016-01-20 | 金川集团股份有限公司 | Method for separating platinum group metal from platinum group metal-contained solution |
CN105441680A (en) * | 2015-11-18 | 2016-03-30 | 金川集团股份有限公司 | Method for selectively separating precious metal |
CN105779766A (en) * | 2016-03-23 | 2016-07-20 | 江西铜业集团公司 | Method for gathering platinum and palladium in solution |
CN109457122A (en) * | 2018-10-26 | 2019-03-12 | 云南云铜锌业股份有限公司 | A kind of method of the heavy cadmium of control of Electric potentials zinc dust precipitation |
CN112359205A (en) * | 2020-11-20 | 2021-02-12 | 金川集团股份有限公司 | Treatment method of platinum group metal beneficiation concentrate enhanced leaching solution |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105256139B (en) * | 2015-11-18 | 2017-08-04 | 金川集团股份有限公司 | A kind of method for reducing the golden extraction raffinate of extraction |
-
1992
- 1992-10-30 CN CN92112761A patent/CN1031805C/en not_active Expired - Fee Related
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102087218A (en) * | 2010-12-01 | 2011-06-08 | 金川集团有限公司 | Method for identifying extent of replacement purification reaction of platinum group metals |
CN102087218B (en) * | 2010-12-01 | 2012-07-04 | 金川集团有限公司 | Method for identifying extent of replacement purification reaction of platinum group metals |
CN103668204A (en) * | 2013-11-18 | 2014-03-26 | 王金良 | Process for deplating gold plated layer and recovering gold with cyanide-free gold stripping powder |
CN103668204B (en) * | 2013-11-18 | 2016-03-30 | 王金良 | Without cyanogen degold powder strip layer gold and recovery gold process |
CN104032144A (en) * | 2014-06-09 | 2014-09-10 | 励福实业(江门)贵金属有限公司 | Method for separating and purifying precious metal from palladium-containing K gold |
CN104032144B (en) * | 2014-06-09 | 2015-07-01 | 励福实业(江门)贵金属有限公司 | Method for separating and purifying precious metal from palladium-containing K gold |
CN105256138A (en) * | 2015-11-18 | 2016-01-20 | 金川集团股份有限公司 | Method for separating platinum group metal from platinum group metal-contained solution |
CN105441680A (en) * | 2015-11-18 | 2016-03-30 | 金川集团股份有限公司 | Method for selectively separating precious metal |
CN105779766A (en) * | 2016-03-23 | 2016-07-20 | 江西铜业集团公司 | Method for gathering platinum and palladium in solution |
CN109457122A (en) * | 2018-10-26 | 2019-03-12 | 云南云铜锌业股份有限公司 | A kind of method of the heavy cadmium of control of Electric potentials zinc dust precipitation |
CN112359205A (en) * | 2020-11-20 | 2021-02-12 | 金川集团股份有限公司 | Treatment method of platinum group metal beneficiation concentrate enhanced leaching solution |
CN112359205B (en) * | 2020-11-20 | 2022-10-04 | 金川集团股份有限公司 | Treatment method of platinum group metal beneficiation concentrate strengthened leaching solution |
Also Published As
Publication number | Publication date |
---|---|
CN1031805C (en) | 1996-05-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN1063229C (en) | Method for recovering nickel hydrometallurgically from two different nickel mattes | |
CA1177254A (en) | Process for the extraction of precious metals for concentrates thereof | |
CN1031805C (en) | Method for separating and enriching rhodium and iridium from gold, platinum and palladium in solution | |
CA1049794A (en) | Separation and/or purification of precious metals | |
CN85106670A (en) | Extract precious metal with the CONTROLLED POTENTIAL method from the anode sludge | |
DE2620659A1 (en) | PROCESS FOR TREATMENT OF METAL-CONTAINING INTERMEDIATE PRODUCTS | |
DE69801335T2 (en) | SEPARATION OF THE METALS OF THE PLATING GROUP | |
EP0404327B1 (en) | Recovery of pure platinum and palladium | |
CN1029746C (en) | One-step electrolytic extraction process of copper | |
CA2111792C (en) | Electrolytic process for extracting platinum of high purity from platinum alloys | |
GB2291870A (en) | Recovering nickel from a nickel sulphide concentrate | |
US2349697A (en) | Art of producing selenium | |
CN1688728A (en) | Method for the recovery of metals using chloride leaching and extraction | |
US4163664A (en) | Process for precipitating precious metals from solutions which contain them | |
US4552632A (en) | Hydrometallurgical method of extraction of copper from sulphide-containing material | |
CA1154265A (en) | Precious metals recovery process | |
CN1008448B (en) | Method for separating and purifying iridium by utilizing pressurized hydrogen reduction | |
CN105256138A (en) | Method for separating platinum group metal from platinum group metal-contained solution | |
Fleming | A process for the simultaneous leaching and recovery of gold, platinum group metals and base metals from ores and concentrates | |
US5961940A (en) | Method for the treatment of bismuth-containing sulphide ores or concentrates of such ore | |
RU2108294C1 (en) | Method of recovering and purifying platinum group metals and gold | |
CA2530355C (en) | Method for processing sulfide ores containing precious metals | |
JP3431427B2 (en) | Extraction method of palladium | |
JPH10158752A (en) | Method for extracting and recovering silver | |
Djokić et al. | Influence of electrolyte impurities from e-waste electrorefining on copper extraction recovery. Metals 2021, 11, 1383 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C19 | Lapse of patent right due to non-payment of the annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |