CN108624793B - A kind of high-strength heat-resistant magnesium alloy containing Ag and preparation method thereof - Google Patents
A kind of high-strength heat-resistant magnesium alloy containing Ag and preparation method thereof Download PDFInfo
- Publication number
- CN108624793B CN108624793B CN201810966108.4A CN201810966108A CN108624793B CN 108624793 B CN108624793 B CN 108624793B CN 201810966108 A CN201810966108 A CN 201810966108A CN 108624793 B CN108624793 B CN 108624793B
- Authority
- CN
- China
- Prior art keywords
- heat
- extrusion
- strength
- temperature
- treatment
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229910000861 Mg alloy Inorganic materials 0.000 title claims abstract description 48
- 238000002360 preparation method Methods 0.000 title claims abstract description 20
- 238000010438 heat treatment Methods 0.000 claims abstract description 42
- 239000011777 magnesium Substances 0.000 claims abstract description 36
- 230000032683 aging Effects 0.000 claims abstract description 34
- 229910052709 silver Inorganic materials 0.000 claims abstract description 32
- 229910052688 Gadolinium Inorganic materials 0.000 claims abstract description 27
- 229910052779 Neodymium Inorganic materials 0.000 claims abstract description 26
- 229910052761 rare earth metal Inorganic materials 0.000 claims abstract description 23
- 229910052726 zirconium Inorganic materials 0.000 claims abstract description 20
- 238000001125 extrusion Methods 0.000 claims description 46
- 229910045601 alloy Inorganic materials 0.000 claims description 35
- 239000000956 alloy Substances 0.000 claims description 35
- 238000005266 casting Methods 0.000 claims description 29
- 239000000155 melt Substances 0.000 claims description 21
- 238000001035 drying Methods 0.000 claims description 10
- 238000000265 homogenisation Methods 0.000 claims description 7
- 229910052727 yttrium Inorganic materials 0.000 claims description 7
- 238000002844 melting Methods 0.000 claims description 5
- 230000008018 melting Effects 0.000 claims description 5
- 238000000465 moulding Methods 0.000 claims description 5
- 238000003756 stirring Methods 0.000 claims description 5
- 238000007790 scraping Methods 0.000 claims description 3
- 239000000463 material Substances 0.000 abstract description 17
- 238000005728 strengthening Methods 0.000 abstract description 13
- 150000002910 rare earth metals Chemical class 0.000 abstract description 9
- 230000000694 effects Effects 0.000 abstract description 6
- 238000001556 precipitation Methods 0.000 abstract description 6
- 230000007246 mechanism Effects 0.000 abstract description 5
- 239000006185 dispersion Substances 0.000 abstract description 4
- 230000005496 eutectics Effects 0.000 abstract description 4
- 229910000765 intermetallic Inorganic materials 0.000 abstract description 4
- 239000000203 mixture Substances 0.000 abstract description 3
- 239000012535 impurity Substances 0.000 description 8
- 230000000052 comparative effect Effects 0.000 description 6
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 4
- 229910052749 magnesium Inorganic materials 0.000 description 4
- 238000003723 Smelting Methods 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- 229910000691 Re alloy Inorganic materials 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000005275 alloying Methods 0.000 description 1
- 230000007123 defense Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 229910001325 element alloy Inorganic materials 0.000 description 1
- 239000000289 melt material Substances 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C23/00—Alloys based on magnesium
- C22C23/06—Alloys based on magnesium with a rare earth metal as the next major constituent
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/02—Making non-ferrous alloys by melting
- C22C1/03—Making non-ferrous alloys by melting using master alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/06—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of magnesium or alloys based thereon
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Forging (AREA)
- Extrusion Of Metal (AREA)
Abstract
本发明提供了一种含Ag的高强耐热镁合金,具有以下质量分数的成分:Y:4.5~6.5wt%,Nd:1.5~4.0wt%,Gd:1.5~4.0wt%,Ag:0.1~1.5wt%,Zr:0.15~1.5w%,余量为Mg,其中稀土元素总量不超过10wt%。本发明高强耐热镁合金组分为Mg‑Y‑Nd‑Gd‑Ag‑Zr,以含稀土金属间化合物的析出强化为主要强化机制,并通过添加非稀土元素Ag,形成了RE‑Ag细小高温稳定相及Mg‑RE‑Ag共晶体,新形成的相具有细小弥散及高温稳定的特点,显著提高了本发明材料的热处理时效硬化效果及耐热性能。本发明还提供了一种含Ag的高强耐热镁合金的制备方法。The invention provides a high-strength and heat-resistant magnesium alloy containing Ag, which has the following components by mass fraction: Y: 4.5-6.5wt%, Nd: 1.5-4.0wt%, Gd: 1.5-4.0wt%, Ag: 0.1- 1.5wt%, Zr: 0.15-1.5w%, the balance is Mg, and the total amount of rare earth elements does not exceed 10wt%. The composition of the high-strength and heat-resistant magnesium alloy of the invention is Mg-Y-Nd-Gd-Ag-Zr, the precipitation strengthening of the rare earth-containing intermetallic compound is used as the main strengthening mechanism, and by adding non-rare earth element Ag, the RE-Ag small RE-Ag is formed. The high temperature stable phase and the Mg-RE-Ag eutectic, the newly formed phase has the characteristics of fine dispersion and high temperature stability, which significantly improves the heat treatment aging hardening effect and heat resistance of the material of the present invention. The invention also provides a preparation method of the Ag-containing high-strength heat-resistant magnesium alloy.
Description
技术领域technical field
本发明属于金属材料技术领域,尤其涉及一种含Ag的高强耐热镁合金及其制备方法。The invention belongs to the technical field of metal materials, and in particular relates to a high-strength and heat-resistant magnesium alloy containing Ag and a preparation method thereof.
背景技术Background technique
在国际镁合金研究领域,时效析出强化是近些年高强度镁合金发展的重要方向,在过去的50年,国内外先后开发了多种以稀土为主合金化元素的镁合金。基于镁中添加稀土元素的时效硬化效应,大多重镁稀土都表现出良好的时效强化效果,尤其以Gd、Y元素最为显著,但此类合金依赖析出相阻碍位错运动的Orowan机制强化,明显降低合金的塑性,难以满足精密制造的加工性能要求及航空、轨道交通等领域的使用需求。In the field of international magnesium alloy research, aging precipitation strengthening is an important direction for the development of high-strength magnesium alloys in recent years. In the past 50 years, a variety of magnesium alloys with rare earth as the main alloying element have been developed at home and abroad. Based on the aging hardening effect of rare earth elements added to magnesium, most heavy magnesium rare earths show good aging strengthening effect, especially with Gd and Y elements. It is difficult to reduce the plasticity of the alloy, and it is difficult to meet the processing performance requirements of precision manufacturing and the needs of aviation, rail transit and other fields.
因此,有必要进一步探讨和研究多元合金强化与韧化基质,以得到能够同时满足高强、耐热和高容损的需求。Therefore, it is necessary to further explore and study the strengthening and toughening matrix of multi-element alloys to obtain the requirements that can meet the requirements of high strength, heat resistance and high capacity loss at the same time.
发明内容SUMMARY OF THE INVENTION
本发明的目的在于提供一种含Ag的高强耐热镁合金及其制备方法,本发明中的含Ag高强耐热镁合金具有优异的室温力学性能和高温力学性能。The purpose of the present invention is to provide an Ag-containing high-strength heat-resistant magnesium alloy and a preparation method thereof. The Ag-containing high-strength heat-resistant magnesium alloy in the present invention has excellent room temperature mechanical properties and high temperature mechanical properties.
本发明提供一种含Ag的高强耐热镁合金,具有以下质量分数的成分:The present invention provides a high-strength and heat-resistant magnesium alloy containing Ag, which has the following components in mass fractions:
Y:4.5~6.5wt%,Nd:1.5~4.0wt%,Gd:1.5~4.0wt%,Ag:0.1~1.5wt%,Zr:0.15~1.5w%,余量为Mg,其中稀土元素总量不超过10wt%。Y: 4.5-6.5wt%, Nd: 1.5-4.0wt%, Gd: 1.5-4.0wt%, Ag: 0.1-1.5wt%, Zr: 0.15-1.5w%, the balance is Mg, of which the total amount of rare earth elements not more than 10wt%.
本发明提供一种含Ag的高强耐热镁合金的制备方法,包括以下步骤:The invention provides a preparation method of a high-strength heat-resistant magnesium alloy containing Ag, comprising the following steps:
A)将纯Mg、纯Ag、Mg-Zr中间合金和Mg-RE中间合金按照以下质量分数进行配料,熔炼并浇铸成型;A) batching pure Mg, pure Ag, Mg-Zr master alloy and Mg-RE master alloy according to the following mass fractions, smelting and casting;
RE=Y,Nd和Gd;RE=Y, Nd and Gd;
Y:4.5~6.5wt%,Nd:1.5~4.0wt%,Gd:1.5~4.0wt%,Ag:0.1~1.5wt%,Zr:0.15~1.5wt%,余量为Mg,其中稀土元素总量不超过10wt%;Y: 4.5-6.5wt%, Nd: 1.5-4.0wt%, Gd: 1.5-4.0wt%, Ag: 0.1-1.5wt%, Zr: 0.15-1.5wt%, the balance is Mg, of which the total amount of rare earth elements not more than 10wt%;
B)将铸件进行热处理或挤压,得到含Ag的高强耐热镁合金。B) heat treatment or extrusion of the casting to obtain a high-strength and heat-resistant magnesium alloy containing Ag.
优选的,所述步骤A)具体为:Preferably, described step A) is specifically:
(1)在CO2和SF6混合气体的保护下,将纯Mg、纯Ag、Mg-Zr中间合金和Mg-RE中间合金按比例进行配料,进行烘干,烘干温度为100~200℃,烘干时间为1~2h;(1) Under the protection of CO 2 and SF 6 mixed gas, pure Mg, pure Ag, Mg-Zr master alloy and Mg-RE master alloy are proportioned and dried, and the drying temperature is 100 ~ 200 ℃ , the drying time is 1-2h;
所述CO2与SF6的体积比为99.5:0.5;The volume ratio of CO 2 to SF 6 is 99.5:0.5;
(2)将烘干好的纯Mg、纯Ag、Mg-RE中间合金放入坩埚中随炉升温,直至完全熔化,温度控制在680~780℃;(2) Put the dried pure Mg, pure Ag, Mg-RE master alloy into the crucible and heat up with the furnace until it is completely melted, and the temperature is controlled at 680~780 ℃;
(3)将熔体升温至700~740℃,将烘干好的Mg-Zr中间合金加入到熔体中,完全熔化后搅拌5~10分钟;(3) heating the melt to 700~740℃, adding the dried Mg-Zr master alloy into the melt, and stirring for 5~10 minutes after complete melting;
(4)将熔体降温至680~700℃,静置20~40分钟;(4) cooling the melt to 680~700℃, and let stand for 20~40 minutes;
(5)刮除熔体表面浮渣,进行浇铸成型。(5) Scraping off the dross on the surface of the melt and casting and molding.
优选的,所述步骤B)中的热处理依次包括固溶处理和时效处理。Preferably, the heat treatment in the step B) sequentially includes solution treatment and aging treatment.
优选的,所述固溶处理的温度为500~530℃;Preferably, the temperature of the solution treatment is 500-530°C;
所述固溶处理的时间为6~24小时。The time of the solution treatment is 6 to 24 hours.
优选的,所述时效处理的温度为200~250℃;Preferably, the temperature of the aging treatment is 200-250°C;
所述时效处理的时间为12~72小时。The time of the aging treatment is 12-72 hours.
优选的,所述挤压包括以下步骤:Preferably, the extrusion includes the following steps:
将铸件依次进行均匀化、预热、挤压和时效处理,得到Li掺杂的轻质高强镁合金。The castings are sequentially homogenized, preheated, extruded and aged to obtain a Li-doped light-weight and high-strength magnesium alloy.
优选的,所述均匀化的温度为500~530℃;Preferably, the temperature of the homogenization is 500-530°C;
所述均匀化的时间为4~10小时。The time for the homogenization is 4 to 10 hours.
优选的,所述预热的温度为300~400℃;Preferably, the temperature of the preheating is 300-400°C;
所述预热的时间为2~2.5小时;The preheating time is 2 to 2.5 hours;
所述挤压比为(8~20):1;The extrusion ratio is (8-20): 1;
所述挤压的速度为0.01~1.0m/min。The extrusion speed is 0.01-1.0 m/min.
优选的,所述时效处理的温度为200~250℃;Preferably, the temperature of the aging treatment is 200-250°C;
所述时效处理的时间为10~72小时。The time of the aging treatment is 10-72 hours.
本发明提供了一种含Ag的高强耐热镁合金,具有以下质量分数的成分:Y:4.5~6.5wt%,Nd:1.5~4.0wt%,Gd:1.5~4.0wt%,Ag:0.1~1.5wt%,Zr:0.15~1.5w%,余量为Mg,其中稀土元素总量不超过10wt%。The invention provides a high-strength and heat-resistant magnesium alloy containing Ag, which has the following components by mass fraction: Y: 4.5-6.5wt%, Nd: 1.5-4.0wt%, Gd: 1.5-4.0wt%, Ag: 0.1- 1.5wt%, Zr: 0.15-1.5w%, the balance is Mg, and the total amount of rare earth elements does not exceed 10wt%.
本发明的一种含稀土Y、Nd、Gd及元素Ag的高强耐热镁合金组分为Mg-Y-Nd-Gd-Ag-Zr,以含稀土金属间化合物的析出强化为主要强化机制,并通过添加非稀土元素Ag,形成了RE-Ag细小高温稳定相及Mg-RE-Ag共晶体,新形成的相具有细小弥散及高温稳定的特点,显著提高了本发明材料的热处理时效硬化效果及耐热性能。本发明材料具有优异的室温及高温力学性能,有益效果如下:The composition of a high-strength heat-resistant magnesium alloy containing rare earth Y, Nd, Gd and element Ag of the present invention is Mg-Y-Nd-Gd-Ag-Zr, and the precipitation strengthening of intermetallic compounds containing rare earth is the main strengthening mechanism, And by adding non-rare earth element Ag, RE-Ag small high-temperature stable phase and Mg-RE-Ag eutectic are formed. The newly formed phase has the characteristics of fine dispersion and high temperature stability, which significantly improves the heat treatment and aging hardening effect of the material of the present invention. and heat resistance. The material of the present invention has excellent mechanical properties at room temperature and high temperature, and the beneficial effects are as follows:
1、本发明材料的室温力学性能得到明显提高:铸造后热处理态材料抗拉强度、屈服强度、延伸率分别达到:300~340MPa、230~240MPa、4~6%,挤压后热处理态材料抗拉强度、屈服强度、延伸率分别达到:350~390MPa、260~280MPa、8~10%。在不增加稀土总量的前提下,强度性能指标有不同程度提高,且保留了较好的塑性,易于实现工程化应用。1. The room temperature mechanical properties of the material of the present invention are significantly improved: the tensile strength, yield strength and elongation of the heat-treated material after casting reach: 300-340MPa, 230-240MPa, 4-6%, and the heat-treated material after extrusion is resistant to Tensile strength, yield strength and elongation are respectively: 350-390MPa, 260-280MPa, 8-10%. Under the premise of not increasing the total amount of rare earth, the strength and performance indicators are improved to varying degrees, and good plasticity is retained, which is easy to achieve engineering applications.
2、本发明材料的高温力学性能优异,添加Ag后对材料高温性能提升明显:铸造后热处理态材料在250℃时抗拉强度、屈服强度、延伸率分别达到:280~310MPa、200~220MPa、8~12%,挤压后热处理态材料在250℃时抗拉强度、屈服强度、延伸率分别达到:330~350MPa、250~270MPa、10~16%,能够满足当前航空航天、导弹军工、轨道交通等领域对轻质结构材料在高温坏境下力学性能的需求。2. The high-temperature mechanical properties of the material of the present invention are excellent, and the high-temperature performance of the material is significantly improved after adding Ag: the tensile strength, yield strength and elongation of the heat-treated material after casting reach: 280-310MPa, 200-220MPa, 8~12%, the tensile strength, yield strength and elongation of the heat-treated material after extrusion reach: 330~350MPa, 250~270MPa, 10~16% respectively at 250 °C, which can meet the current aerospace, missile military, orbital The demand for mechanical properties of lightweight structural materials in high temperature environments in transportation and other fields.
3、本发明材料以含稀土金属间化合物的析出强化为主要强化机制,并通过添加非稀土元素Ag提高时效硬化效果,优化了此类合金的多元化组分。该合金中稀土含量不高于10wt.%,生产过程简单易行,工艺性能稳定、良好。由于塑性良好,使本发明合金加工性能有了明显提高,实用性增强,在航天及其他高技术产业有着良好的应用前景。3. The material of the present invention takes the precipitation strengthening of rare earth-containing intermetallic compounds as the main strengthening mechanism, and improves the aging hardening effect by adding non-rare earth element Ag, and optimizes the diversified components of such alloys. The rare earth content in the alloy is not higher than 10wt.%, the production process is simple and easy, and the process performance is stable and good. Due to the good plasticity, the processing performance of the alloy of the invention is obviously improved, the practicability is enhanced, and the alloy has a good application prospect in aerospace and other high-tech industries.
4、本发明材料可以采用铸造成型及挤压成型工艺,能够适应不同场合的制备要求,有利于产业化应用简化合金种类,减低技术难度与生产成本。4. The material of the present invention can adopt casting molding and extrusion molding process, which can adapt to the preparation requirements of different occasions, is beneficial to industrial application, simplifies alloy types, and reduces technical difficulty and production cost.
附图说明Description of drawings
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据提供的附图获得其他的附图。In order to explain the embodiments of the present invention or the technical solutions in the prior art more clearly, the following briefly introduces the accompanying drawings that need to be used in the description of the embodiments or the prior art. Obviously, the accompanying drawings in the following description are only It is an embodiment of the present invention. For those of ordinary skill in the art, other drawings can also be obtained according to the provided drawings without creative work.
图1为本发明实施例1中镁合金的金相图;Fig. 1 is the metallographic diagram of magnesium alloy in the embodiment of the present invention 1;
图2为本发明实施例5中镁合金的金相图。2 is a metallographic diagram of the magnesium alloy in Example 5 of the present invention.
具体实施方式Detailed ways
本发明提供了一种含Ag的高强耐热镁合金,具有以下质量分数的成分:The invention provides a high-strength and heat-resistant magnesium alloy containing Ag, which has the following components in mass fractions:
Y:4.5~6.5wt%,Nd:1.5~4.0wt%,Gd:1.5~4.0wt%,Ag:0.1~1.5wt%,Zr:0.15~1.5w%,余量为Mg,其中稀土元素总量不超过10wt%。Y: 4.5-6.5wt%, Nd: 1.5-4.0wt%, Gd: 1.5-4.0wt%, Ag: 0.1-1.5wt%, Zr: 0.15-1.5w%, the balance is Mg, of which the total amount of rare earth elements not more than 10wt%.
在本发明中,所述含Ag的高强耐热镁合金可以是以下配方:In the present invention, the high-strength heat-resistant magnesium alloy containing Ag can be the following formula:
Y:4.5wt%,Nd:1.5wt%,Gd:1.5wt%,Ag:0.1wt%,Zr:0.5wt%,余量为Mg;Y: 4.5wt%, Nd: 1.5wt%, Gd: 1.5wt%, Ag: 0.1wt%, Zr: 0.5wt%, the balance is Mg;
Y:6.5wt%,Nd:1.5wt%,Gd:1.5wt%,Ag:0.5wt%,Zr:0.5wt%,余量为Mg;Y: 6.5wt%, Nd: 1.5wt%, Gd: 1.5wt%, Ag: 0.5wt%, Zr: 0.5wt%, the balance is Mg;
Y:4.5wt%,Nd:4.0wt%,Gd:1.5wt%,Ag:1.0wt%,Zr:0.5wt%,余量为Mg;Y: 4.5wt%, Nd: 4.0wt%, Gd: 1.5wt%, Ag: 1.0wt%, Zr: 0.5wt%, the balance is Mg;
Y:4.5wt%,Nd:1.5wt%,Gd:4.0wt%,Ag:1.5wt%,Zr:0.5wt%,余量为Mg。Y: 4.5 wt %, Nd: 1.5 wt %, Gd: 4.0 wt %, Ag: 1.5 wt %, Zr: 0.5 wt %, and the balance is Mg.
本发明还提供了一种含Ag的高强耐热镁合金的制备方法,包括以下步骤:The present invention also provides a preparation method of a high-strength heat-resistant magnesium alloy containing Ag, comprising the following steps:
A)将纯Mg、纯Ag、Mg-Zr中间合金和Mg-RE中间合金按照以下质量分数进行配料,熔炼并浇铸成型;A) batching pure Mg, pure Ag, Mg-Zr master alloy and Mg-RE master alloy according to the following mass fractions, smelting and casting;
RE=Y,Nd和Gd;RE=Y, Nd and Gd;
Y:4.5~6.5wt%,Nd:1.5~4.0wt%,Gd:1.5~4.0wt%,Ag:0.1~1.5wt%,Zr:0.15~1.5wt%,余量为Mg,其中稀土元素总量不超过10wt%;Y: 4.5-6.5wt%, Nd: 1.5-4.0wt%, Gd: 1.5-4.0wt%, Ag: 0.1-1.5wt%, Zr: 0.15-1.5wt%, the balance is Mg, of which the total amount of rare earth elements not more than 10wt%;
B)将铸件进行热处理或挤压,得到含Ag的高强耐热镁合金。B) heat treatment or extrusion of the casting to obtain a high-strength and heat-resistant magnesium alloy containing Ag.
本发明优选将纯Mg、纯Ag、Mg-Zr中间合金和Mg-RE中间合金按比例进行配料,进行烘干,烘干温度为100~200℃,烘干时间为1~2h;In the present invention, pure Mg, pure Ag, Mg-Zr master alloy and Mg-RE master alloy are preferably proportioned and dried, and the drying temperature is 100-200° C. and the drying time is 1-2 h;
(2)将烘干好的纯Mg、纯Ag、Mg-RE中间合金放入坩埚中随炉升温,直至完全熔化,温度控制在680~780℃。(2) Put the dried pure Mg, pure Ag, Mg-RE intermediate alloy into the crucible and heat up with the furnace until it is completely melted, and the temperature is controlled at 680-780 °C.
(3)将熔体升温至700~740℃,将烘干好的Mg-Zr中间合金加入到熔体中,完全熔化后搅拌5~10分钟。(3) heating the melt to 700-740° C., adding the dried Mg-Zr master alloy into the melt, and stirring for 5-10 minutes after complete melting.
(4)将熔体降温至680~700℃,静置20~40分钟。(4) The melt is cooled to 680-700° C. and left to stand for 20-40 minutes.
(5)刮除熔体表面浮渣,进行浇铸成型。(5) Scraping off the dross on the surface of the melt and casting and molding.
上述步骤中,所述熔体一直处在CO2和SF6混合气体的保护下,所述CO2与SF6的体积比为99.5:0.5。In the above steps, the melt is always under the protection of the mixed gas of CO 2 and SF 6 , and the volume ratio of the CO 2 to SF 6 is 99.5:0.5.
在本发明中,Mg-RE合金中的Re为Y,Nd和Gd,所述Mg-RE合金中RE占所有原料的20~30wt%。In the present invention, Re in the Mg-RE alloy is Y, Nd and Gd, and RE in the Mg-RE alloy accounts for 20-30wt% of all raw materials.
熔炼工作完成后,得到的熔体材料可以进行铸造成型,也可将其浇铸成坯料进行挤压成型。After the smelting work is completed, the obtained melt material can be cast and formed, or it can be cast into a billet for extrusion forming.
铸造成型:Casting:
将铸件依次进行固溶处理和时效处理,得到含Ag的高强耐热镁合金。The castings are sequentially subjected to solution treatment and aging treatment to obtain a high-strength and heat-resistant magnesium alloy containing Ag.
所述固溶处理的温度优选为500~530℃;所述固溶处理的时间优选为6~24小时,更优选为12~18小时;固溶处理后空冷至室温;The temperature of the solution treatment is preferably 500 to 530°C; the time of the solution treatment is preferably 6 to 24 hours, more preferably 12 to 18 hours; air-cooled to room temperature after the solution treatment;
所述时效处理的温度优选为200~250℃;所述时效处理的时间优选为12~72小时,更优选为24~36小时;时效处理后空冷至室温。The temperature of the aging treatment is preferably 200 to 250° C.; the time of the aging treatment is preferably 12 to 72 hours, more preferably 24 to 36 hours; air-cooled to room temperature after the aging treatment.
挤压成型:Extrusion:
将铸件依次进行挤压坯料制备、挤压型材制备和时效处理,得到含Ag的高强耐热镁合金。The casting is successively subjected to extrusion billet preparation, extrusion profile preparation and aging treatment to obtain a high-strength and heat-resistant magnesium alloy containing Ag.
所述挤压坯料制备为均匀化处理,所述均匀化处理的温度为500~530℃,所述均匀化处理的时间为4~10小时,更优选为5~8小时。The extrusion billet is prepared for homogenization treatment, the temperature of the homogenization treatment is 500-530°C, and the time of the homogenization treatment is 4-10 hours, more preferably 5-8 hours.
所述挤压型材制备包括预热和挤压,将得到的挤压坯料和挤压模具在300~400℃下预热2~2.5小时,然后进行挤压;The preparation of the extrusion profile includes preheating and extrusion, and the obtained extrusion billet and extrusion die are preheated at 300-400° C. for 2-2.5 hours, and then extruded;
所述挤压的挤压比优选为(8~20):1,更优选为(10~15):1;所述挤压的挤压速度优选为0.01~1.0m/min,更优选为0.1~0.8m/min,最优选为0.5~0.6m/min。The extrusion ratio of the extrusion is preferably (8-20):1, more preferably (10-15):1; the extrusion speed of the extrusion is preferably 0.01-1.0m/min, more preferably 0.1 ~0.8 m/min, most preferably 0.5 to 0.6 m/min.
所述时效处理温度优选为200~250℃;所述时效处理的时间优选为10~72小时,更优选为24~36小时;时效处理后空冷至室温。The aging treatment temperature is preferably 200-250°C; the aging treatment time is preferably 10-72 hours, more preferably 24-36 hours; air-cooled to room temperature after the aging treatment.
本发明提供了一种含Ag的高强耐热镁合金,具有以下质量分数的成分:Y:4.5~6.5wt%,Nd:1.5~4.0wt%,Gd:1.5~4.0wt%,Ag:0.1~1.5wt%,Zr:0.15~1.5w%,余量为Mg,其中稀土元素总量不超过10wt%。本发明的一种含稀土Y、Nd、Gd及元素Ag的高强耐热镁合金组分为Mg-Y-Nd-Gd-Ag-Zr,以含稀土金属间化合物的析出强化为主要强化机制,并通过添加非稀土元素Ag,形成了RE-Ag细小高温稳定相及Mg-RE-Ag共晶体,新形成的相具有细小弥散及高温稳定的特点,显著提高了本发明材料的热处理时效硬化效果及耐热性能。本发明材料具有优异的室温及高温力学性能。The invention provides a high-strength and heat-resistant magnesium alloy containing Ag, which has the following components by mass fraction: Y: 4.5-6.5wt%, Nd: 1.5-4.0wt%, Gd: 1.5-4.0wt%, Ag: 0.1- 1.5wt%, Zr: 0.15-1.5w%, the balance is Mg, and the total amount of rare earth elements does not exceed 10wt%. The composition of a high-strength heat-resistant magnesium alloy containing rare earth Y, Nd, Gd and element Ag of the present invention is Mg-Y-Nd-Gd-Ag-Zr, and the precipitation strengthening of intermetallic compounds containing rare earth is the main strengthening mechanism, And by adding non-rare earth element Ag, RE-Ag small high-temperature stable phase and Mg-RE-Ag eutectic are formed. The newly formed phase has the characteristics of fine dispersion and high temperature stability, which significantly improves the heat treatment and aging hardening effect of the material of the present invention. and heat resistance. The material of the invention has excellent mechanical properties at room temperature and high temperature.
为了进一步说明本发明,以下结合实施例对本发明提供的一种含Ag的高强耐热镁合金及其制备方法进行详细描述,但不能将其理解为对本发明保护范围的限定。In order to further illustrate the present invention, a kind of Ag-containing high-strength heat-resistant magnesium alloy and its preparation method provided by the present invention will be described in detail below with reference to the examples, but it should not be construed as a limitation on the protection scope of the present invention.
实施例1Example 1
本实施例高强耐热镁合金由以下质量百分比的组分组成:Y:4.5wt%,Nd:1.5wt%,Gd:1.5wt%,Ag:0.1wt%,Zr:0.5wt%,余量为Mg及不可避免的杂质。The high-strength and heat-resistant magnesium alloy of this embodiment is composed of the following components by mass percentage: Y: 4.5wt%, Nd: 1.5wt%, Gd: 1.5wt%, Ag: 0.1wt%, Zr: 0.5wt%, and the balance is Mg and inevitable impurities.
本实施例高强耐热镁合金的铸造成型制备包括以下步骤:The casting molding preparation of the high-strength and heat-resistant magnesium alloy of the present embodiment includes the following steps:
(1)将原料纯Mg、纯Ag、Mg-Zr中间合金、Mg-RE(20wt.%)中间合金按比例配齐,进行烘干,烘干温度为200℃,烘干时间为2h。(1) The raw material pure Mg, pure Ag, Mg-Zr master alloy and Mg-RE (20wt.%) master alloy were prepared in proportion, and dried at a drying temperature of 200°C and a drying time of 2h.
(2)制备过程中,熔体一直在CO2和SF6混合气体的保护下,CO2与SF6的比例为99.5:0.5。(2) During the preparation process, the melt was kept under the protection of the mixed gas of CO2 and SF6 , and the ratio of CO2 to SF6 was 99.5:0.5.
(3)将烘干好的纯Mg、纯Ag、Mg-RE(20wt.%)中间合金放入坩埚中随炉升温,直至完全熔化,温度控制在780℃。(3) Put the dried pure Mg, pure Ag, Mg-RE (20wt.%) master alloy into the crucible and heat up with the furnace until it is completely melted, and the temperature is controlled at 780°C.
(4)将熔体降温至740℃,将烘干好的Mg-Zr中间合金加入到镁溶液中,完全熔化后搅拌10分钟。(4) Cooling the melt to 740° C., adding the dried Mg-Zr master alloy into the magnesium solution, and stirring for 10 minutes after complete melting.
(5)将熔体降温至700℃,静置30分钟。(5) The melt was cooled to 700° C. and allowed to stand for 30 minutes.
(6)刮除熔体表面浮渣,进行浇铸作业。(6) Scrape off the dross on the surface of the melt and carry out the casting operation.
(7)固溶处理:将铸件在500℃热处理6h,然后空冷至室温。(7) Solution treatment: heat treatment at 500°C for 6h, and then air-cool to room temperature.
(8)时效处理:将铸件在200℃热处理72h,然后空冷至室温。(8) Aging treatment: heat treatment at 200°C for 72h, and then air-cool to room temperature.
实施例2Example 2
本实施例2与实施例1不同的是:高强耐热镁合金由以下质量百分比的组分组成:Y:6.5wt%,Nd:1.5wt%,Gd:1.5wt%,Ag:0.5wt%,Zr:0.5wt%,余量为Mg及不可避免的杂质。The difference between Example 2 and Example 1 is that the high-strength and heat-resistant magnesium alloy is composed of the following components by mass: Y: 6.5wt%, Nd: 1.5wt%, Gd: 1.5wt%, Ag: 0.5wt%, Zr: 0.5 wt%, the balance being Mg and inevitable impurities.
固溶处理:将铸件在510℃热处理12h,然后空冷至室温。时效处理:将铸件在225℃热处理48h,然后空冷至室温。Solution treatment: heat treatment at 510℃ for 12h, and then air-cool to room temperature. Aging treatment: heat treatment at 225℃ for 48h, and then air-cool to room temperature.
实施例3Example 3
本实施例3与实施例1不同的是:高强耐热镁合金由以下质量百分比的组分组成:Y:4.5wt%,Nd:4.0wt%,Gd:1.5wt%,Ag:1.0wt%,Zr:0.5wt%,余量为Mg及不可避免的杂质。The difference between Example 3 and Example 1 is that the high-strength and heat-resistant magnesium alloy is composed of the following components by mass: Y: 4.5wt%, Nd: 4.0wt%, Gd: 1.5wt%, Ag: 1.0wt%, Zr: 0.5 wt%, the balance being Mg and inevitable impurities.
固溶处理:将铸件在520℃热处理18h,然后空冷至室温。时效处理:将铸件在250℃热处理24h,然后空冷至室温。Solution treatment: heat treatment at 520℃ for 18h, and then air-cool to room temperature. Aging treatment: heat treatment at 250℃ for 24h, and then air-cool to room temperature.
实施例4Example 4
本实施例4与实施例1不同的是:高强耐热镁合金由以下质量百分比的组分组成:Y:4.5wt%,Nd:1.5wt%,Gd:4.0wt%,Ag:1.5wt%,Zr:0.5wt%,余量为Mg及不可避免的杂质。The difference between Example 4 and Example 1 is that the high-strength and heat-resistant magnesium alloy is composed of the following components by mass: Y: 4.5wt%, Nd: 1.5wt%, Gd: 4.0wt%, Ag: 1.5wt%, Zr: 0.5 wt%, the balance being Mg and inevitable impurities.
固溶处理:将铸件在530℃热处理24h,然后空冷至室温。时效处理:将铸件在250℃热处理12h,然后空冷至室温。Solution treatment: heat treatment at 530℃ for 24h, and then air-cool to room temperature. Aging treatment: heat treatment at 250℃ for 12h, and then air-cool to room temperature.
实施例5Example 5
本实施例高强耐热镁合金由以下质量百分比的组分组成:Y:4.5wt%,Nd:1.5wt%,Gd:1.5wt%,Ag:0.1wt%,Zr:0.5wt%,,余量为Mg及不可避免的杂质。The high-strength and heat-resistant magnesium alloy of this embodiment is composed of the following components by mass percentage: Y: 4.5wt%, Nd: 1.5wt%, Gd: 1.5wt%, Ag: 0.1wt%, Zr: 0.5wt%, the remainder For Mg and inevitable impurities.
本实施例高强耐热镁合金的挤压成型制备包括以下步骤:The extrusion molding preparation of the high-strength and heat-resistant magnesium alloy of the present embodiment includes the following steps:
(1)将原料纯Mg、纯Ag、Mg-Zr中间合金、Mg-RE(20wt.%)中间合金按比例配齐,进行烘干,烘干温度为200℃,烘干时间为2h。(1) The raw material pure Mg, pure Ag, Mg-Zr master alloy and Mg-RE (20wt.%) master alloy were prepared in proportion, and dried at a drying temperature of 200°C and a drying time of 2h.
(2)制备过程中,熔体一直在CO2和SF6混合气体的保护下,CO2与SF6的比例为99.5:0.5。(2) During the preparation process, the melt was kept under the protection of the mixed gas of CO2 and SF6 , and the ratio of CO2 to SF6 was 99.5:0.5.
(3)将烘干好的纯Mg、纯Ag、Mg-RE(20wt.%)中间合金放入坩埚中随炉升温,直至完全熔化,温度控制在780℃。(3) Put the dried pure Mg, pure Ag, Mg-RE (20wt.%) master alloy into the crucible and heat up with the furnace until it is completely melted, and the temperature is controlled at 780°C.
(4)将熔体降温至740℃,将烘干好的Mg-Zr中间合金加入到镁溶液中,完全熔化后搅拌10分钟。(4) Cooling the melt to 740° C., adding the dried Mg-Zr master alloy into the magnesium solution, and stirring for 10 minutes after complete melting.
(5)将熔体降温至700℃,静置30分钟。(5) The melt was cooled to 700° C. and allowed to stand for 30 minutes.
(6)刮除熔体表面浮渣,进行浇铸作业。(6) Scrape off the dross on the surface of the melt and carry out the casting operation.
(7)挤压坯料制备:将上述镁合金铸态坯料在515℃均匀化处理7h,并加工成挤压坯料。(7) Preparation of extrusion billet: The magnesium alloy as-cast billet was homogenized at 515° C. for 7 hours, and processed into an extrusion billet.
(8)挤压型材制备:将上述挤压坯料和挤压模具在350℃时预热2h,挤压比为16:1,挤压速度为0.3m/min,经塑性变形制备成挤压型材。(8) Extrusion profile preparation: Preheat the above extrusion billet and extrusion die at 350°C for 2 hours, the extrusion ratio is 16:1, the extrusion speed is 0.3m/min, and the extrusion profile is prepared by plastic deformation. .
(9)时效处理:将上述挤压型材在200℃热处理72h。(9) Aging treatment: heat treatment of the above extruded profiles at 200° C. for 72 hours.
实施例6Example 6
本实施例6与实施例5不同的是:高强耐热镁合金由以下质量百分比的组分组成:Y:6.5wt%,Nd:1.5wt%,Gd:1.5wt%,Ag:0.5wt%,Zr:0.5wt%,余量为Mg及不可避免的杂质。The difference between Example 6 and Example 5 is that the high-strength and heat-resistant magnesium alloy is composed of the following components by mass: Y: 6.5wt%, Nd: 1.5wt%, Gd: 1.5wt%, Ag: 0.5wt%, Zr: 0.5 wt%, the balance being Mg and inevitable impurities.
时效处理:将挤压型材在225℃热处理48h,然后空冷至室温。Aging treatment: heat the extruded profile at 225℃ for 48h, and then air-cool to room temperature.
实施例7Example 7
本实施例7与实施例5不同的是:高强耐热镁合金由以下质量百分比的组分组成:Y:4.5wt%,Nd:4.0wt%,Gd:1.5wt%,Ag:1.0wt%,Zr:0.5wt%,余量为Mg及不可避免的杂质。The difference between Example 7 and Example 5 is that the high-strength and heat-resistant magnesium alloy is composed of the following components by mass: Y: 4.5wt%, Nd: 4.0wt%, Gd: 1.5wt%, Ag: 1.0wt%, Zr: 0.5 wt%, the balance being Mg and inevitable impurities.
时效处理:将挤压型材在250℃热处理24h,然后空冷至室温。Aging treatment: heat the extruded profile at 250℃ for 24h, and then air-cool to room temperature.
实施例8Example 8
本实施例8与实施例5不同的是:高强耐热镁合金由以下质量百分比的组分组成:Y:4.5wt%,Nd:1.5wt%,Gd:4.0wt%,Ag:1.5wt%,Zr:0.5wt%,余量为Mg及不可避免的杂质。The difference between Example 8 and Example 5 is that the high-strength and heat-resistant magnesium alloy is composed of the following components by mass: Y: 4.5wt%, Nd: 1.5wt%, Gd: 4.0wt%, Ag: 1.5wt%, Zr: 0.5 wt%, the balance being Mg and inevitable impurities.
时效处理:将挤压型材在250℃热处理12h,然后空冷至室温。Aging treatment: heat the extruded profile at 250℃ for 12h, and then air-cool to room temperature.
取上述实施例1-8镁合金棒材进行室温及高温拉伸性能测试,实验结果见表1及表2。Take the above-mentioned embodiment 1-8 magnesium alloy bars to carry out room temperature and high temperature tensile properties test, the experimental results are shown in Table 1 and Table 2.
表1本发明所述高强耐热镁合金的室温力学性能Table 1 Room temperature mechanical properties of the high-strength and heat-resistant magnesium alloy according to the present invention
表2本发明所述高强耐热镁合金在250℃下力学性能Table 2 Mechanical properties of the high-strength and heat-resistant magnesium alloy according to the present invention at 250°C
注:比较例1为铸态WE43镁合金,比较例2为挤压态WE43镁合金。Note: Comparative Example 1 is as-cast WE43 magnesium alloy, and Comparative Example 2 is extruded WE43 magnesium alloy.
由上表可见,本发明的合金具有优异的室温及高温力学性能,可以满足镁合金在国防军工、航空航天、汽车和轨道交通等高技术产业的应用要求。镁合金微观组织金相照片表明,本发明所述合金的主要强化机制为时效析出强化,通过添加非稀土元素Ag,形成了RE-Ag细小高温稳定相及Mg-RE-Ag共晶体,新形成的相具有细小弥散及高温稳定的特点,合金的组织细小均匀,且细小、高温稳定的第二相弥散分布在基体中,能够有效阻碍基面位错滑移,从而提高合金室温及高温条件下的强度。It can be seen from the above table that the alloy of the present invention has excellent mechanical properties at room temperature and high temperature, and can meet the application requirements of magnesium alloys in high-tech industries such as national defense, aerospace, automobile and rail transit. The microstructure and metallographic photographs of magnesium alloys show that the main strengthening mechanism of the alloy described in the present invention is aging precipitation strengthening. By adding non-rare earth element Ag, RE-Ag fine high temperature stable phase and Mg-RE-Ag eutectic are formed. The phase of the alloy has the characteristics of fine dispersion and high temperature stability. The microstructure of the alloy is fine and uniform, and the second phase, which is small and stable at high temperature, is dispersed in the matrix, which can effectively hinder the dislocation slip of the basal plane, thereby improving the temperature of the alloy at room temperature and high temperature. Strength of.
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。The above are only the preferred embodiments of the present invention. It should be pointed out that for those skilled in the art, without departing from the principles of the present invention, several improvements and modifications can be made. It should be regarded as the protection scope of the present invention.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810966108.4A CN108624793B (en) | 2018-08-23 | 2018-08-23 | A kind of high-strength heat-resistant magnesium alloy containing Ag and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810966108.4A CN108624793B (en) | 2018-08-23 | 2018-08-23 | A kind of high-strength heat-resistant magnesium alloy containing Ag and preparation method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN108624793A CN108624793A (en) | 2018-10-09 |
CN108624793B true CN108624793B (en) | 2020-08-25 |
Family
ID=63708947
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810966108.4A Active CN108624793B (en) | 2018-08-23 | 2018-08-23 | A kind of high-strength heat-resistant magnesium alloy containing Ag and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108624793B (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109161769B (en) * | 2018-10-30 | 2022-11-22 | 北京科技大学 | A kind of functional rapid soluble rare earth magnesium alloy material and preparation method thereof |
CN112779446B (en) * | 2020-12-26 | 2022-07-15 | 中国科学院长春应用化学研究所 | Multi-element microalloyed high-strength heat-resistant rare earth magnesium alloy and preparation method thereof |
CN113737071B (en) * | 2021-09-03 | 2022-08-26 | 湖南稀土金属材料研究院有限责任公司 | Heat-resistant magnesium alloy and preparation method and application thereof |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104651694A (en) * | 2015-01-30 | 2015-05-27 | 上海交通大学 | Magnesium alloy and preparation method and application thereof |
CN105624504A (en) * | 2016-02-03 | 2016-06-01 | 中南大学 | Heat-resisting rare earth magnesium alloy and thermal treatment process for uneven-wall-thickness casting of heat-resisting rare earth magnesium alloy |
CN106086563A (en) * | 2016-08-05 | 2016-11-09 | 沈阳明腾科技有限公司 | A kind of high-strength temperature-resistant cast magnesium alloy and preparation method thereof |
CN106367649A (en) * | 2016-09-30 | 2017-02-01 | 肖旅 | Magnesium alloy easy to prepare and plastically form and component manufacturing method thereof |
CN107858575A (en) * | 2017-11-08 | 2018-03-30 | 中国兵器科学研究院宁波分院 | A kind of high-strength temperature-resistant casting magnesium alloy material and preparation method thereof |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2004085689A1 (en) * | 2003-03-25 | 2006-06-29 | 河村 能人 | High strength and high toughness magnesium alloy and method for producing the same |
GB0323855D0 (en) * | 2003-10-10 | 2003-11-12 | Magnesium Elektron Ltd | Castable magnesium alloys |
-
2018
- 2018-08-23 CN CN201810966108.4A patent/CN108624793B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104651694A (en) * | 2015-01-30 | 2015-05-27 | 上海交通大学 | Magnesium alloy and preparation method and application thereof |
CN105624504A (en) * | 2016-02-03 | 2016-06-01 | 中南大学 | Heat-resisting rare earth magnesium alloy and thermal treatment process for uneven-wall-thickness casting of heat-resisting rare earth magnesium alloy |
CN106086563A (en) * | 2016-08-05 | 2016-11-09 | 沈阳明腾科技有限公司 | A kind of high-strength temperature-resistant cast magnesium alloy and preparation method thereof |
CN106367649A (en) * | 2016-09-30 | 2017-02-01 | 肖旅 | Magnesium alloy easy to prepare and plastically form and component manufacturing method thereof |
CN107858575A (en) * | 2017-11-08 | 2018-03-30 | 中国兵器科学研究院宁波分院 | A kind of high-strength temperature-resistant casting magnesium alloy material and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
CN108624793A (en) | 2018-10-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109022983B (en) | A kind of high-strength and high-toughness magnesium alloy containing Sc and preparation method thereof | |
CN101760683B (en) | High-strength casting magnesium alloy and melting method thereof | |
CN105463269B (en) | High-strength, highly corrosion resistant cast aluminium alloy gold and its compression casting preparation method | |
CN102732763B (en) | High-strength Mg-Gd-Y-Zn-Mn alloy | |
CN106148792A (en) | Wrought magnesium alloy of high intensity height Gd content and preparation method thereof | |
CN108774703B (en) | Li-containing light high-strength magnesium alloy and preparation method thereof | |
CN109266930B (en) | A kind of high-strength toughness deformation magnesium alloy and preparation method thereof | |
CN108624793B (en) | A kind of high-strength heat-resistant magnesium alloy containing Ag and preparation method thereof | |
CN108754267A (en) | High-strength deforming magnesium alloy and preparation method thereof containing rare earth samarium | |
CN105568105B (en) | A kind of high-strength and high-plasticity Mg-Gd-Y-Ni-Mn alloy and preparation method thereof | |
CN103146973B (en) | High-temperature-resistant rare earth magnesium alloy | |
CN104046871A (en) | Heat-resistant magnesium alloy and preparation method thereof | |
CN114686711B (en) | A high-strength and tough cast magnesium-rare-earth alloy capable of rapid high-temperature solution treatment and its preparation method | |
CN111378875A (en) | High-thermal-conductivity corrosion-resistant Al-RE-Y-Zr alloy suitable for gravity casting and preparation method thereof | |
CN103305738B (en) | Siliceous heat resisting magnesium-rare earth alloy and preparation method thereof | |
WO2016074423A1 (en) | Magnesium alloy and preparation method and use thereof | |
CN105018812A (en) | Heat-resistant magnesium alloy and fabrication method thereof | |
CN109097639B (en) | A kind of high-strength and high-toughness scandium-containing aluminum-silicon alloy and preparation method thereof | |
CN111321333A (en) | A kind of heat-resistant magnesium alloy and preparation method thereof | |
CN114480933B (en) | Ultra-high-strength aluminum alloy and preparation method and application thereof | |
CN108034874B (en) | A kind of rare earth magnesium alloy containing molybdenum rhenium and preparation method thereof | |
CN101037749A (en) | Ytterbium micro-alloyed aluminium-copper-magnesium-silver-manganese system high-strength deforming heat-stable aluminium alloy and preparation method thereof | |
CN101177750A (en) | A high-strength heat-resistant heat-resistant aluminum alloy containing rare earth praseodymium and its preparation process | |
CN103074531B (en) | Heat resistant alloy of rare earth and magnesium and preparation method thereof | |
CN103484743A (en) | Rare earth magnesium alloy and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |