CN108620576A - 一种高导电非晶软磁涂层 - Google Patents

一种高导电非晶软磁涂层 Download PDF

Info

Publication number
CN108620576A
CN108620576A CN201710165080.XA CN201710165080A CN108620576A CN 108620576 A CN108620576 A CN 108620576A CN 201710165080 A CN201710165080 A CN 201710165080A CN 108620576 A CN108620576 A CN 108620576A
Authority
CN
China
Prior art keywords
amorphous
powder
coating
magnetic
conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710165080.XA
Other languages
English (en)
Inventor
黎嘉威
张继君
常春涛
王新敏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ningbo Institute of Material Technology and Engineering of CAS
Original Assignee
Ningbo Institute of Material Technology and Engineering of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ningbo Institute of Material Technology and Engineering of CAS filed Critical Ningbo Institute of Material Technology and Engineering of CAS
Priority to CN201710165080.XA priority Critical patent/CN108620576A/zh
Publication of CN108620576A publication Critical patent/CN108620576A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/17Metallic particles coated with metal
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/32Coating with nickel, cobalt or mixtures thereof with phosphorus or boron
    • C23C18/34Coating with nickel, cobalt or mixtures thereof with phosphorus or boron using reducing agents
    • C23C18/36Coating with nickel, cobalt or mixtures thereof with phosphorus or boron using reducing agents using hypophosphites
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/38Coating with copper
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/42Coating with noble metals
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/48Coating with alloys
    • C23C18/50Coating with alloys with alloys based on iron, cobalt or nickel
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/52Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating using reducing agents for coating with metallic material not provided for in a single one of groups C23C18/32 - C23C18/50
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/02Coating starting from inorganic powder by application of pressure only
    • C23C24/04Impact or kinetic deposition of particles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/06Metallic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15308Amorphous metallic alloys, e.g. glassy metals based on Fe/Ni
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15341Preparation processes therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15383Applying coatings thereon

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Electromagnetism (AREA)
  • Plasma & Fusion (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Powder Metallurgy (AREA)

Abstract

本发明提供了一种高导电非晶软磁涂层,所述涂层包括一种导电磁性非晶粉末,所述粉末包括:铁基非晶磁粉,和包覆于所述的铁基非晶磁粉表面的导电非晶层;其中,所述铁基非晶磁粉具有如下式所示的组分:(Fe0.76Si0.09B0.1P0.05)100‑xMx,式中,M选自下组:Nb、Co、Ni、Cu、Mo、Cr、Mn、V,或其组合;x为原子比,0≤x≤4,所述铁基非晶磁粉中Fe的原子百分含量大于70%,且所述导电非晶层是非晶态的。所述涂层厚度均匀、具有良好的致密度和导电性。

Description

一种高导电非晶软磁涂层
技术领域
本发明属于表面工程及电磁兼容技术领域,具体地,涉及到一种导电磁性非晶粉末及其制备方法以及用其制备的高导电非晶软磁涂层。
背景技术
电磁波辐射产生的电磁干扰和健康危害等问题日益严重,电磁屏蔽是有效的解决方法之一。但是,国内在电磁屏蔽领域的研究相对滞后,主要表现在屏蔽性能低。因此,研制满足于不同环境和应用场合需求的“薄、轻、宽、强”新型电磁屏蔽材料,是非常有必要的。
低频(<100KHz)磁场由于趋肤效应小、波阻抗低,使得材料对低频磁场辐射的吸收和反射损耗变得很小,所以低频磁屏蔽问题一直是研究的难点。根据磁旁路原理,高磁导率材料可将磁力线约束在一条磁阻很低的通道内,使被保护的器件免受磁场的干扰,所以目前采用高磁导率材料仍是减小低频电磁辐射最有效的办法之一。与传统的低频磁屏蔽材料(低碳钢、硅钢片、坡莫合金等)相比,Fe基非晶/纳米晶合金兼具低廉的成本和超高的磁导率,因而在低频磁屏蔽领域有着广阔的应用前景。
目前,电磁屏蔽材料的形式主要有非晶带材粘合、电化学沉积制备非晶合金膜及复合法制备非晶合金粉末涂料等,但是现有的Fe基非晶合金在作为电磁屏蔽材料应用时,并没有很好的发挥其在软磁性和热稳定性等性能上的优势,而且在实际生产和应用当中还存在低频磁屏蔽性能不理想、频带窄、制备困难等问题。
综上所述,本领域尚缺乏一种性能优异的导电磁性非晶材料。
发明内容
本发明的目的是提供一种导电磁性非晶粉末及其制备方法,和一种高导电非晶软磁涂层。所述涂层厚度均匀、具有良好的致密度和导电性。
在本发明的第一方面,提供了一种导电磁性非晶粉末,所述粉末包括:
铁基非晶磁粉,和
包覆于所述的铁基非晶磁粉表面的导电非晶层;
其中,所述铁基非晶磁粉具有如下式所示的组分:
(Fe0.76Si0.09B0.1P0.05)100-xMx
式中,M选自下组:Nb、Co、Ni、Cu、Mo、Cr、Mn、V,或其组合;x为原子比,0≤x≤4,所述铁基非晶磁粉中Fe的原子百分含量大于70%,且所述导电非晶层是非晶态的。
在另一优选例中,x>0。
在另一优选例中,x<4。
在另一优选例中,所述M为选自下组的一种、两种、三种、四种、五种的组合:Nb、Co、Ni、Cu、Mo、Cr、Mn、V。
在另一优选例中,所述M为Nb,且x=1。
在另一优选例中,所述导电非晶层选自下组:Cu层、Fe层、Ag层、Ni-P-Cu层,或其组合。
在另一优选例中,所述导电非晶层的厚度为1~2μm。
在另一优选例中,所述导电非晶层为Ni-P-Cu层。
在另一优选例中,所述的铁基非晶磁粉的粒径范围为10~25μm。
在另一优选例中,所述粉末为完全非晶态。
在另一优选例中,所述铁基非晶磁粉采用多级气雾化方法制备。
在本发明的第二方面,提供了一种高导电非晶软磁涂层,所述涂层包括本发明第一方面所述的导电磁性非晶粉末。
在另一优选例中,所述涂层厚度为200~300μm。
在另一优选例中,所述涂层是通过喷涂所述导电磁性非晶粉末得到的涂层。
在另一优选例中,所述喷涂包括超音速火焰喷涂和/或冷喷涂。
在另一优选例中,所述的涂层孔隙率为0-1%,优选0.001-1%。
在本发明的第三方面,提供了一种导电磁性非晶粉末的制备方法,所述方法包括:通过化学镀的方法,在铁基非晶磁粉表面镀上导电非晶层,得到所述导电磁性非晶粉末。
在另一优选例中,在所述方法之前还包括步骤:提供一种化学镀溶液,通过所述化学镀溶液进行化学镀,其中,所述化学镀溶液包括0–4g/L CuSO4·5H2O,和任选的选自下组的一种或多种组分:
在另一优选例中,所述的化学镀溶液中,所述的CuSO4·5H2O的浓度为0.01-4g/L。
在另一优选例中,所述的化学镀溶液中,所述的CuSO4·5H2O的浓度为0.5-2g/L。
在另一优选例中,所述的化学镀时间为20-40min。
在本发明的第四方面,提供了一种高导电非晶软磁涂层的制备方法,将本发明第一方面所述的导电磁性非晶粉末覆盖在基体表面,得到所述高导电非晶软磁涂层。
在另一优选例中,所述方法包括步骤:将本发明第一方面所述的导电磁性非晶粉末喷涂在基体表面,得到所述高导电非晶软磁涂层。
在另一优选例中,所述的导电磁性非晶粉末是用如本发明第三方面所述的方法制备的。
在另一优选例中,所述喷涂通过选自下组的方法进行:超音速火焰喷涂、冷喷涂技术。
应理解,在本发明范围内,本发明的上述各技术特征和在下文(如实施例)中具体描述的各技术特征之间都可以互相组合,从而构成新的或优选的技术方案。限于篇幅,在此不再一一累述。
附图说明
图1(a)是本发明实施例1中制得的原始非晶合金粉末的扫描电镜图(SEM)形貌图,(b)和(c)分别是本发明实施例1中复合后的非晶粉末的SEM表面形貌图和截面形貌图;
图2(a)和(b)分别是本发明实施例1中制得的非晶合金粉末在不同五水硫酸铜浓度下复合粉末的X射线衍射图(XRD)和差示扫描量热曲线图(DSC);
图3是本发明实施例1中制得的非晶合金涂层与NiPCu复合涂层(五水硫酸铜浓度为1g/L,时间为30min)的X射线衍射图。
图4(a)(b)是利用上述方法制得铁基非晶合金涂层及NiPCu复合涂层(五水硫酸铜浓度为1g/L,时间为30min)的截面形貌图。
图5是本发明实施例1中制得的非晶合金涂层与NiPCu复合涂层(五水硫酸铜浓度为1g/L,时间为30min)的磁滞回线图;
图6是本发明实施例1中制得的非晶合金涂层与NiPCu复合涂层的阻抗谱图;
图7是本发明实施例1中制得的铁基非晶复合涂层电磁屏蔽性能图。
具体实施方式
本发明人经过广泛而深入地研究,意外地发现,通过在铁基非晶磁粉表面化学镀具有优异导电性的金属镀层,可以得到完全非晶的态的磁粉。利用该导电非晶磁粉喷涂制得的涂层具有良好的致密度,导电性及电磁屏蔽性能。在此基础上,完成了本发明。
本发明的优点:
本发明采用简易的化学镀技术,在非晶粉末表面生长一层导电非晶层,很好地解决了铁基非晶合金导电性差的问题,该技术所采用的设备与工艺技术简单,操作方便,能够获得厚度均匀、致密、导电性优异的非晶层,可大规模生产。
基于本发明所述的导电非晶磁粉获得的高导电非晶软磁涂层,具有结构致密、热稳定性高、软磁性能良好、导电性好及电磁屏蔽性能优异的特点。这种电磁屏蔽涂层在军用方舱,潜艇、雷达、通讯等领域具有巨大的应用前景。
术语
如本文所用,术语“非晶合金粉末”、“铁基非晶合金粉末”、“铁基非晶磁粉”可互换使用。
如本文所用,术语“非晶合金涂层”和“铁基非晶合金涂层”可互换使用。
如本文所用,术语“高导电非晶软磁涂层”和“电磁屏蔽非晶涂层”可互换使用。
以下结合具体实施例,进一步说明本发明。需理解,以下的描述仅为本发明的最优选实施方式,而不应当被认为是对于本发明保护范围的限制。在充分理解本发明的基础上,下列实施例中未注明具体条件的实验方法,通常按照常规条件,或按照制造厂商所建议的条件,本领域技术人员可以对本发明的技术方案作出非本质的改动,这样的改动应当被视为包括于本发明的保护范围之中的。
实施例1
本实施例中,优选的非晶合金粉末为铁基非晶合金粉末,具体成分为(Fe0.76Si0.09B0.1P0.05)99Nb1
该铁基非晶合金粉末材料的制备方法如下:
(1)将工业级原材料按所需的成分中的原子百分比配制原料,利用真空感应炉制备成分均匀的母合金铸锭。
(2)将得到的母合金铸锭用砂轮磨掉表面杂质,然后置于多级气雾化装置中获得铁基非晶合金粉末。上述制得的非晶合金粉末的扫描电镜图如图1(a)所示,粉末球形度高,表面光滑,具有良好的流动性。本发明中,粒径范围优选为10~25μm。
然后,对上述非晶粉末进行化学镀处理,通过优化镀液配比及化学镀时间得到导电性优异的完全非晶磁粉。化学镀溶液中各个成分的含量以及化学镀工艺如下表:
同时对溶液中CuSO4·5H2O的浓度进行调控,其浓度分别为0g/L,0.5g/L,1g/L,2g/L,3g/L,4g/L。化学镀时间分别为5min,10min,15min,20min,30min,60min。
当CuSO4·5H2O浓度大于2g/L时,镀层出现晶化,另外综合考虑镀层的厚度及镀层中铜含量,最终确定CuSO4·5H2O浓度为1g/L,时间为30min为最佳条件。
在上述最佳条件下制得的导电非晶磁粉结构如图1(b),(c)所示,铁基非晶磁粉表面均匀的包覆了一层致密的,厚度1~2μm的NiPCu导电层。
在五水硫酸铜浓度大于2g/L时,NiPCu层出现晶化,如图2(a)所示。另外NiPCu层在很大程度上降低了粉体的熔点(~100℃),如图2(b)所示,这使得可以在更低的温度下进行喷涂,从而降低涂层的氧含量,优化其性能。
采用超音速火焰喷涂技术,使用上述制得的复合非晶磁粉在铜板或铝板表面制备铁基非晶合金涂层。本实例中优选超音速火焰喷涂技术,但本发明并不仅限于此,还可以是冷喷涂技术。
利用超音速火焰喷涂技术制得铁基非晶合金涂层的非晶结构如图3中所示,该技术制备的非晶合金涂层没有明显的晶化峰,说明该合金成分具有高的非晶形成能力,适于制备非晶合金涂层。
利用超音速火焰喷涂技术制得铁基非晶合金涂层的截面形貌如图4(a)(b)所示从中可以看出,两类非晶涂层与基体的结合紧密,涂层孔隙率均低于1%,但NiPCu改性涂层的结构更加致密,内部孔洞等缺陷更少。
利用振动样品磁强计测试上述非晶涂层的软磁性能,非晶涂层的磁滞回线如图5所示,从中可以看出,其NiPCu复合涂层的软磁性能与原始Fe基非晶涂层的相当。
用电化学工作站测试上述制得的导电非晶涂层的阻抗,以此来表征其导电性,其阻抗谱如图6所示,从图中可以看出,NiPCu复合涂层的阻抗远小于原始铁基非晶涂层的,说明NiPCu复合涂层的导电性明显优于Fe非晶涂层的。
利用亥姆霍兹线圈法测试上述非晶涂层在10kHz~500kHz频率范围内的电磁屏蔽性能,结果显示,本申请的涂层具有优异的屏蔽性能。
在本发明提及的所有文献都在本申请中引用作为参考,就如同每一篇文献被单独引用作为参考那样。此外应理解,在阅读了本发明的上述讲授内容之后,本领域技术人员可以对本发明作各种改动或修改,这些等价形式同样落于本申请所附权利要求书所限定的范围。

Claims (10)

1.一种导电磁性非晶粉末,其特征在于,所述粉末包括:
铁基非晶磁粉,和
包覆于所述的铁基非晶磁粉表面的导电非晶层;
其中,所述铁基非晶磁粉具有如下式所示的组分:
(Fe0.76Si0.09B0.1P0.05)100-xMx
式中,M选自下组:Nb、Co、Ni、Cu、Mo、Cr、Mn、V,或其组合;x为原子比,0≤x≤4,所述铁基非晶磁粉中Fe的原子百分含量大于70%,且所述导电非晶层是非晶态的。
2.如权利要求1所述的粉末,其特征在于,所述导电非晶层选自下组:Cu层、Fe层、Ag层、Ni-P-Cu层,或其组合。
3.如权利要求1所述的粉末,其特征在于,所述导电非晶层的厚度为1~2μm。
4.如权利要求1所述的粉末,其特征在于,所述的铁基非晶磁粉的粒径范围为10~25μm。
5.一种高导电非晶软磁涂层,其特征在于,所述涂层包括权利要求1-4所述的导电磁性非晶粉末。
6.如权利要求5所述的涂层,其特征在于,所述涂层厚度为200~300μm。
7.如权利要求5所述的涂层,其特征在于,所述的涂层孔隙率为0-1%,优选0.001-1%。
8.一种导电磁性非晶粉末的制备方法,其特征在于,所述方法包括:
通过化学镀的方法,在铁基非晶磁粉表面镀上导电非晶层,得到所述导电磁性非晶粉末。
9.如权利要求8所述的方法,其特征在于,在所述方法之前还包括步骤:提供一种化学镀溶液,通过所述化学镀溶液进行化学镀,其中,所述化学镀溶液包括0–4g/L CuSO4·5H2O,和任选的选自下组的一种或多种组分:
10.一种高导电非晶软磁涂层的制备方法,其特征在于,将权利要求1-4所述的导电磁性非晶粉末覆盖在基体表面,得到所述高导电非晶软磁涂层。
CN201710165080.XA 2017-03-20 2017-03-20 一种高导电非晶软磁涂层 Pending CN108620576A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710165080.XA CN108620576A (zh) 2017-03-20 2017-03-20 一种高导电非晶软磁涂层

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710165080.XA CN108620576A (zh) 2017-03-20 2017-03-20 一种高导电非晶软磁涂层

Publications (1)

Publication Number Publication Date
CN108620576A true CN108620576A (zh) 2018-10-09

Family

ID=63686468

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710165080.XA Pending CN108620576A (zh) 2017-03-20 2017-03-20 一种高导电非晶软磁涂层

Country Status (1)

Country Link
CN (1) CN108620576A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113106431A (zh) * 2021-04-27 2021-07-13 山西智软科技有限公司 一种热辅助磁记录用存储介质及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07183110A (ja) * 1993-12-22 1995-07-21 Mitsubishi Materials Corp 電磁波シールド粉片
CN1667158A (zh) * 2004-03-10 2005-09-14 日本化学工业株式会社 化学镀成导电粉体及其制造方法
CN101802240A (zh) * 2007-09-18 2010-08-11 Nec东金株式会社 软磁性非晶合金
CN104018139A (zh) * 2014-06-20 2014-09-03 哈尔滨工业大学 一种空心微珠/Ni-Fe-P/Cu复合镀层及其制备方法
CN104162662A (zh) * 2014-08-18 2014-11-26 华中科技大学 表面改性的非晶合金粉末、制备方法及利用其制备的涂层
CN206134404U (zh) * 2016-05-11 2017-04-26 宁波中科毕普拉斯新材料科技有限公司 一种铁基纳米晶磁粉芯

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07183110A (ja) * 1993-12-22 1995-07-21 Mitsubishi Materials Corp 電磁波シールド粉片
CN1667158A (zh) * 2004-03-10 2005-09-14 日本化学工业株式会社 化学镀成导电粉体及其制造方法
CN101802240A (zh) * 2007-09-18 2010-08-11 Nec东金株式会社 软磁性非晶合金
CN104018139A (zh) * 2014-06-20 2014-09-03 哈尔滨工业大学 一种空心微珠/Ni-Fe-P/Cu复合镀层及其制备方法
CN104162662A (zh) * 2014-08-18 2014-11-26 华中科技大学 表面改性的非晶合金粉末、制备方法及利用其制备的涂层
CN206134404U (zh) * 2016-05-11 2017-04-26 宁波中科毕普拉斯新材料科技有限公司 一种铁基纳米晶磁粉芯

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113106431A (zh) * 2021-04-27 2021-07-13 山西智软科技有限公司 一种热辅助磁记录用存储介质及其制备方法
CN113106431B (zh) * 2021-04-27 2023-03-28 深圳市优讯佳电子科技有限公司 一种热辅助磁记录用存储介质及其制备方法

Similar Documents

Publication Publication Date Title
Gao et al. Controlled reduction synthesis of yolk-shell magnetic@ void@ C for electromagnetic wave absorption
Cheng et al. Facile synthesis of FeCo alloys with excellent microwave absorption in the whole Ku-band: effect of Fe/Co atomic ratio
Lin et al. Synthesis and microwave absorption properties of plate-like BaFe12O19@ Fe3O4 core-shell composite
Wan et al. Microwave absorption properties of FeCo-coated carbon fibers with varying morphologies
JP5065960B2 (ja) 高周波磁性材料およびその製造方法。
CN108154984B (zh) 一种多孔四氧化三铁/碳纳米棒状电磁波吸收材料及其制备方法与应用
CN101299365A (zh) 芯壳型磁性粒子和高频磁性材料
JP2006351946A (ja) 軟磁性成形体の製造方法
He et al. Annealing temperature effect on microstructure, magnetic and microwave properties of Fe-based amorphous alloy powders
Lv et al. Facile synthesis of porous coin-like iron and its excellent electromagnetic absorption performance
Wang et al. Enhanced microwave absorbing properties and heat resistance of carbonyl iron by electroless plating Co
Gong et al. Preparation of CoFe alloy nanoparticles with tunable electromagnetic wave absorption performance
CN109732078A (zh) 一种铁基纳米晶软磁合金微粉电磁波吸收剂及其制备方法
US20220380609A1 (en) Core-Shell Structured Composite Powder Electromagnetic Wave Absorber Formed by Coating Fe-Based Nanocrystalline Alloy with Carbon, and Preparation Method Thereof
Zhao et al. Morphology-dependent electromagnetic wave absorbing properties of iron-based absorbers: one-dimensional, two-dimensional, and three-dimensional classification
Li et al. Microwave absorbing properties and enhanced infrared reflectance of Fe/Cu composites prepared by chemical plating
Wang et al. Microwave absorption properties of amorphous iron nanostructures fabricated by a high-yield method
CN101853727B (zh) 一种铁-碳纳米复合电磁波吸收材料及其制备方法
Liu et al. A facile strategy for the core-shell FeSiAl composites with high-efficiency electromagnetic wave absorption
Lee et al. Enhanced microwave absorption properties of graphene/FeCoNi composite materials by tuning electromagnetic parameters
Zhou et al. Microwave absorption performance of magnetic Fe–Ni–P nanoparticles electrolessly plated on hollow glass microspheres
Liu et al. Optimizing soft magnetic properties by reducing internal defects and residual stress of Fe85-xSi9. 6Al5. 4Snx soft magnetic composites
Niu et al. Achieving enhanced dielectric property via growing Co-Ni-P nano-alloys on SiC nanowires with 3D conductive network
Li et al. Fe/amorphous ceramics core/shell structured nanoflakes-assembled rod-like architecture for efficient microwave absorber
CN117174424B (zh) 一种电感用高性能合金磁体及制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20181009

RJ01 Rejection of invention patent application after publication