CN108610410A - 一种Keap1-Nrf2-ARE 通路抑制因子的快速筛选方法 - Google Patents

一种Keap1-Nrf2-ARE 通路抑制因子的快速筛选方法 Download PDF

Info

Publication number
CN108610410A
CN108610410A CN201810454236.0A CN201810454236A CN108610410A CN 108610410 A CN108610410 A CN 108610410A CN 201810454236 A CN201810454236 A CN 201810454236A CN 108610410 A CN108610410 A CN 108610410A
Authority
CN
China
Prior art keywords
nrf2
keap1
screening method
ubiquitination
motifs
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810454236.0A
Other languages
English (en)
Inventor
孙坤来
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang Ocean University ZJOU
Original Assignee
Zhejiang Ocean University ZJOU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang Ocean University ZJOU filed Critical Zhejiang Ocean University ZJOU
Priority to CN201810454236.0A priority Critical patent/CN108610410A/zh
Publication of CN108610410A publication Critical patent/CN108610410A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/47Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Zoology (AREA)
  • Genetics & Genomics (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Toxicology (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

一种Keap1‑Nrf2‑ARE通路抑制因子的快速筛选方法,所述的快速筛选方法是:修饰Keap1的半胱氨酸残基,使Nrf2在细胞核内积聚,并且表达Nrf2的靶基因。在正常条件下,Nrf2与Keap1结合,存在于细胞之中,发生氧化应激时,Keap1的半胱氨酸残基被修饰,改变构象导致Nrf2释放出来,进入细胞核中,与ARE结合后,促进靶基因的表达;诱导剂无法使Keap1‑Nrf2解离,并且Nrf2可以经泛素化后降解;Keap1通过其BTB区结合Cul3、Kelch区结合Nrf2,将Nrf2连接到E3复合体,使泛素从E3转移到Nrf2的赖氨酸残基,即位于ETGE基序、DLG基序之间,泛素化的Nrf2被迅速降解。发生氧化应激时,Keap1特定的半胱氨酸残基被修饰,导致构象的改变,DLG基序与Keap1的亲和力减弱而分离,即所谓的hinge and latch模型,从而免于泛素化降解。

Description

一种Keap1-Nrf2-ARE 通路抑制因子的快速筛选方法
技术领域
本发明涉及的是一种Keap1-Nrf2-ARE 通路抑制因子的快速筛选方法。
背景技术
癌症发生以后Keap1-Nrf2通路的高表达或过度积累会降低化疗或放疗引起的过度氧化应激对肿瘤细胞的伤害,帮助其抵抗化学药物或放射治疗,有利于肿瘤细胞的存活并促进其生长。此外,在肿瘤发生之后或在恶性肿瘤中Nrf2的过度激活会引起肿瘤细胞对化疗或放射疗法的抵抗和耐受性、导致患者预后不良。由此看来,肿瘤一旦发生,Nrf2因子在细胞内积累,不但不利于肿瘤的预防,反而会增强肿瘤细胞的耐药性并促进其生长,不利于肿瘤的治疗和患者的康复。因此,Keap1-Nrf2-ARE通路抑制因子的快速筛选方法具有重要意义。
发明内容
本发明的目的在于克服现有技术存在的不足,而提供一种可以快速、高效的筛选出具有Nrf2抑制作用的活性因子的、通过Nrf2抑制因子的发现为肿瘤的预防和治疗提供新方法的Keap1-Nrf2-ARE 通路抑制因子的快速筛选方法。
本发明的目的是通过如下技术方案来完成的,一种Keap1-Nrf2-ARE 通路抑制因子的快速筛选方法,所述的快速筛选方法是:修饰Keap1的半胱氨酸残基,使Nrf2在细胞核内积聚,并且表达Nrf2的靶基因。
作为优选:在正常条件下,Nrf2与Keap1结合,存在于细胞之中,发生氧化应激时,Keap1的半胱氨酸残基被修饰,改变构象导致Nrf2释放出来,进入细胞核中,与ARE结合后,促进靶基因的表达。
作为优选:诱导剂无法使Keap1-Nrf2解离,并且Nrf2可以经泛素化后降解;Keap1通过其BTB区结合Cul3、Kelch区结合Nrf2,将Nrf2连接到E3复合体,使泛素从E3转移到Nrf2的赖氨酸残基,即位于ETGE基序、DLG基序之间,泛素化的Nrf2被迅速降解。发生氧化应激时,Keap1特定的半胱氨酸残基被修饰,导致构象的改变,DLG基序与Keap1的亲和力减弱而分离,即所谓的hinge and latch模型,从而免于泛素化降解;另外,多种蛋白激酶,例如MAPKs、PKC、PI3K等,可通过诱导Nrf2的磷酸化参与对Nrf2转录活性的调节。
本发明可以快速、高效的筛选出具有Nrf2抑制作用的活性因子的、通过Nrf2抑制因子的发现为肿瘤的预防和治疗提供新方法。
具体实施方式
下面将结合具体实施例对本发明作详细的介绍:外来物质(致癌物、药物及环境污染物等)在体内一般经历两相代谢过程,一相代谢过程主要是官能团反应,在P450酶性的参与下,机体对药物分子进行氧化、还原、羟化、水解等,使大部分外来物质失活;二相代谢过程主要是呃合反应,在有关酶的催化下,将内源性极性小分子物质,如葡萄糖醛酸、谷胱甘肽等,经共价键结合外来物或一相代谢活化物的分子上,使之失活解毒;
致癌物质在体内的激活主要发生在一相代谢阶段,而二相代谢可以通过结合反应来减少它们对机体的毒害;二相代谢过程是在一系列酶的参与下完成的,它们能清除体内多种致癌物质及其它毒性或氧化性物质,从而消除这些物质对DNA及生物功能蛋白的破坏,以维持机体内环境的稳定,起到抗癌、抗氧化、抗衰老的作用,一般把这种酶统称为药物代谢二相酶,因此诱导这些酶的表达是预防癌症的重要措施,而二相酶的表达主要是通过Keap1-Nrf2-ARE 通路。
Nrf2是一种66000分子量的蛋白质,共有一个基本的亮氨酸结构域,几乎在各种细胞内都可表达,它可以与DNA的NF-EZ区结合,在造血细胞中,NF-EZ区参与调节球蛋白基因的表达。
转录因子Nrf2首先和肌腱纤维瘤蛋白以异二聚体的形式结合,然后该异二聚体再与ARE结合,从而启动二相酶基因的转录。
一种Keap1-Nrf2-ARE 通路抑制因子的快速筛选方法,所述的快速筛选方法是:修饰Keap1的半胱氨酸残基,使Nrf2在细胞核内积聚,并且表达Nrf2的靶基因。
本发明在正常条件下,Nrf2与Keap1结合,存在于细胞之中,发生氧化应激时,Keap1的半胱氨酸残基被修饰,改变构象导致Nrf2释放出来,进入细胞核中,与ARE结合后,促进靶基因的表达;Nrf2高表达对肿瘤细胞有益。
诱导剂无法使Keap1-Nrf2解离,并且Nrf2可以经泛素化后降解;Keap1通过其BTB区结合Cul3、Kelch区结合Nrf2,将Nrf2连接到E3复合体,使泛素从E3转移到Nrf2的赖氨酸残基,即位于ETGE基序、DLG基序之间,泛素化的Nrf2被迅速降解。发生氧化应激时,Keap1特定的半胱氨酸残基被修饰,导致构象的改变,DLG基序与Keap1的亲和力减弱而分离,即所谓的hinge and latch模型,从而免于泛素化降解;另外,多种蛋白激酶,例如MAPKs、PKC、PI3K等,可通过诱导Nrf2的磷酸化参与对Nrf2转录活性的调节。

Claims (3)

1.一种Keap1-Nrf2-ARE 通路抑制因子的快速筛选方法,其特征在于;所述的快速筛选方法是:修饰Keap1的半胱氨酸残基,使Nrf2在细胞核内积聚,并且表达Nrf2的靶基因。
2.根据权利要求1所述的Keap1-Nrf2-ARE 通路抑制因子的快速筛选方法,其特征在于:在正常条件下,Nrf2与Keap1结合,存在于细胞之中,发生氧化应激时,Keap1的半胱氨酸残基被修饰,改变构象导致Nrf2释放出来,进入细胞核中,与ARE结合后,促进靶基因的表达。
3.根据权利要求1所述的Keap1-Nrf2-ARE 通路抑制因子的快速筛选方法,其特征在于:诱导剂无法使Keap1-Nrf2解离,并且Nrf2可以经泛素化后降解;Keap1通过其BTB区结合Cul3、Kelch区结合Nrf2,将Nrf2连接到E3复合体,使泛素从E3转移到Nrf2的赖氨酸残基,即位于ETGE基序、DLG基序之间,泛素化的Nrf2被迅速降解;发生氧化应激时,Keap1特定的半胱氨酸残基被修饰,导致构象的改变,DLG基序与Keap1的亲和力减弱而分离,即所谓的hinge and latch模型,从而免于泛素化降解;另外,多种蛋白激酶,例如MAPKs、PKC、PI3K等,可通过诱导Nrf2的磷酸化参与对Nrf2转录活性的调节。
CN201810454236.0A 2018-05-14 2018-05-14 一种Keap1-Nrf2-ARE 通路抑制因子的快速筛选方法 Pending CN108610410A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810454236.0A CN108610410A (zh) 2018-05-14 2018-05-14 一种Keap1-Nrf2-ARE 通路抑制因子的快速筛选方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810454236.0A CN108610410A (zh) 2018-05-14 2018-05-14 一种Keap1-Nrf2-ARE 通路抑制因子的快速筛选方法

Publications (1)

Publication Number Publication Date
CN108610410A true CN108610410A (zh) 2018-10-02

Family

ID=63662968

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810454236.0A Pending CN108610410A (zh) 2018-05-14 2018-05-14 一种Keap1-Nrf2-ARE 通路抑制因子的快速筛选方法

Country Status (1)

Country Link
CN (1) CN108610410A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108676727A (zh) * 2018-05-14 2018-10-19 浙江海洋大学 一种具有Keap1-Nrf2通路抑制活性的海洋真菌

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101916330A (zh) * 2010-08-06 2010-12-15 辽宁大学 一种以Keap1为靶点的新型防癌抗癌药物的虚拟筛选方法
CN103298938A (zh) * 2011-01-21 2013-09-11 独立行政法人理化学研究所 氧化应激指示物表达用核酸构建物及其应用
CN107033100A (zh) * 2017-05-24 2017-08-11 济南大学 一种苯并噻唑衍生物、制备方法及其医药用途

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101916330A (zh) * 2010-08-06 2010-12-15 辽宁大学 一种以Keap1为靶点的新型防癌抗癌药物的虚拟筛选方法
CN103298938A (zh) * 2011-01-21 2013-09-11 独立行政法人理化学研究所 氧化应激指示物表达用核酸构建物及其应用
CN107033100A (zh) * 2017-05-24 2017-08-11 济南大学 一种苯并噻唑衍生物、制备方法及其医药用途

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
DHULFIQAR ALI ABED ET AL: "Discovery of direct inhibitors of Keap1-Nrf2 protein-protein interaction as potential therapeutic and preventive agents", 《ACTA PHARMACEUTICA SINICA B》 *
HIGGINS,PJ: "《Transcription Factors: Methods and Protocols, Methods in Molecular Biology》", 31 December 2010 *
刘晓平: "银杏叶提取物(EGb)通过Keap1-Nrf2-ARE通路诱导药物代谢二相酶的研究", 《中国博士学位论文全文数据库 医药卫生科技辑》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108676727A (zh) * 2018-05-14 2018-10-19 浙江海洋大学 一种具有Keap1-Nrf2通路抑制活性的海洋真菌

Similar Documents

Publication Publication Date Title
Mead et al. Mesenchymal stem cell–derived small extracellular vesicles promote neuroprotection in rodent models of glaucoma
Domenis et al. Pro inflammatory stimuli enhance the immunosuppressive functions of adipose mesenchymal stem cells-derived exosomes
Mead et al. Concise review: dental pulp stem cells: a novel cell therapy for retinal and central nervous system repair
Oses et al. Preconditioning of adipose tissue-derived mesenchymal stem cells with deferoxamine increases the production of pro-angiogenic, neuroprotective and anti-inflammatory factors: Potential application in the treatment of diabetic neuropathy
Zhu et al. Ginsenoside Rg1 prevents cognitive impairment and hippocampus senescence in a rat model of D-galactose-induced aging
Valerio et al. Glycogen synthase kinase‐3 inhibition reduces ischemic cerebral damage, restores impaired mitochondrial biogenesis and prevents ROS production
Huang et al. Clinical cell therapy guidelines for neurorestoration (IANR/CANR 2017)
Lee et al. Involvement of BDNF/ERK signaling in spontaneous recovery from trimethyltin-induced hippocampal neurotoxicity in mice
Foraker et al. Cross‐talk between human mesenchymal stem/progenitor cells (MSCs) and rat hippocampal slices in LPS‐stimulated cocultures: the MSCs are activated to secrete prostaglandin E2
US20210322485A1 (en) Mitochondrial augmentation therapy with stem cells enriched with functional mitochondria
Park et al. Umbilical cord mesenchymal stem cell-conditioned media prevent muscle atrophy by suppressing muscle atrophy-related proteins and ROS generation
Li et al. Therapeutic effect of adipose‑derived stem cell transplantation on optic nerve injury in rats
Fink et al. Intrastriatal transplantation of adenovirus-generated induced pluripotent stem cells for treating neuropathological and functional deficits in a rodent model of Huntington's disease
Loussouarn et al. Mesenchymal stromal cell-derived extracellular vesicles regulate the mitochondrial metabolism via transfer of miRNAs
Khalil et al. Therapeutic effect of bone marrow mesenchymal stem cells in a rat model of carbon tetrachloride induced liver fibrosis
CN108610410A (zh) 一种Keap1-Nrf2-ARE 通路抑制因子的快速筛选方法
Farahani et al. Metabolic Syndrome Alters the Cargo of Mitochondria‐Related microRNAs in Swine Mesenchymal Stem Cell‐Derived Extracellular Vesicles, Impairing Their Capacity to Repair the Stenotic Kidney
Zare et al. The protective effect of bone marrow-derived mesenchymal stem cells in liver ischemia/reperfusion injury via down-regulation of miR-370
Jiang et al. Mesenchymal stem cell senescence during aging: from mechanisms to rejuvenation strategies
Tan et al. Diversified treatment options of adult stem cells for optic neuropathies
Izquierdo-Altarejos et al. Pathological and therapeutic effects of extracellular vesicles in neurological and neurodegenerative diseases
CN110257323B (zh) 基于通心络预处理的心肌细胞来源外泌体及其制备方法
Liu et al. Self-assembly of gelatin microcarrier-based MSC microtissues for spinal cord injury repair
Nasello et al. Stem cells and other emerging agents as innovative “drugs” in neurodegenerative diseases: benefits and limitations
Shen et al. Autophagy regulation combined with stem cell therapy for treatment of spinal cord injury

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20181002

WD01 Invention patent application deemed withdrawn after publication