CN108610057A - 一种宽温域减摩抗磨兼具高韧的赛隆基复合材料及其制备方法 - Google Patents
一种宽温域减摩抗磨兼具高韧的赛隆基复合材料及其制备方法 Download PDFInfo
- Publication number
- CN108610057A CN108610057A CN201810310158.7A CN201810310158A CN108610057A CN 108610057 A CN108610057 A CN 108610057A CN 201810310158 A CN201810310158 A CN 201810310158A CN 108610057 A CN108610057 A CN 108610057A
- Authority
- CN
- China
- Prior art keywords
- match
- grand
- based composites
- temperature range
- ductility
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/515—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
- C04B35/58—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
- C04B35/597—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon oxynitride, e.g. SIALONS
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/38—Non-oxide ceramic constituents or additives
- C04B2235/3852—Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
- C04B2235/6562—Heating rate
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/66—Specific sintering techniques, e.g. centrifugal sintering
- C04B2235/666—Applying a current during sintering, e.g. plasma sintering [SPS], electrical resistance heating or pulse electric current sintering [PECS]
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/96—Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Ceramic Products (AREA)
Abstract
本发明公开了一种宽温域减摩抗磨兼具高韧的赛隆基复合材料,该复合材料由70~90wt%的赛隆和10~30wt%的氮化钛组成。本发明还公开了该复合材料的制备方法。本发明制备的赛隆基复合材料兼具优异的力学性能(高韧性)和摩擦学性能(低摩擦磨损),在室温至800ºC的温度范围内呈现出优异的摩擦学性能,特别适用于在宽温域服役工况下(25~800ºC)仍要求保持低摩擦和高韧性的特殊工件。
Description
技术领域
本发明涉及一种宽温域减摩抗磨兼具高韧的赛隆基复合材料及其制备方法,该材料在室温~800ºC下具有优异的减摩抗磨性能同时兼具良好的断裂韧性。
背景技术
结构材料的可靠性和稳定性已成为确保航天、航空、核能、轨道交通等高端装备机械系统安全、稳定、高效运行的关键因素。赛隆陶瓷复合材料以其优异的机械性能、高温性能及化学稳定性,在航空航天、发动机部件、冶金、化工机械等方面均具有十分诱人的应用前景。但作为摩擦学材料也有其缺点,突出的问题是在干摩擦下特别是在高温下的摩擦系数和磨损率都比较高,这在很大程度上限制了其在宽温域摩擦领域的应用。同时,赛隆陶瓷材料由于较低的断裂韧性进一步制约了其在结构材料方面更加广泛的应用。因此,改善赛隆陶瓷复合材料在宽温域的摩擦学性能和机械性能的研究日益受到人们的重视,已经成为当前材料科学和摩擦学领域的前沿课题之一。
从材料的増韧机理和摩擦学的基本理论出发,通过添加第二相颗粒,来改善材料的断裂韧性和摩擦学性能。一方面,在裂纹的扩展增殖过程中,第二相颗粒可以通过裂纹桥连,裂纹偏折等机制增加能量的耗散来提高材料的断裂韧性;另一方面,第二相颗粒通过改善机械性能以及在高温下形成减摩抗磨转移膜来改善材料的摩擦学性能。本研究中通过掺杂氮化钛粉末,成功的制备了一种宽温域减摩抗磨兼具高韧的赛隆基复合材料。
发明内容
本发明的目的在于提供一种在室温至800ºC范围内具有优异的摩擦学性能兼具良好的断裂韧性的赛隆基复合材料及其制备方法。
一种宽温域减摩抗磨兼具高韧的赛隆基复合材料,其特征在于该复合材料由70~90wt%的赛隆和10~30wt%的氮化钛组成。
所述赛隆的组成为Si4Al2O2N6。
如上所述宽温域减摩抗磨兼具高韧的赛隆基复合材料的制备方法,其特征在于将赛隆和氮化钛粉末置于球磨机中混合,得到粒径为0.55~5μm的混合粉末;随后将混合粉末装入石墨模具中,置于放电等离子烧结炉中烧结;烧结参数为:真空度为10-2~10-1Pa,升温速度为100~150ºC/min,烧结温度为1550~1650ºC,压力为30~40MPa,保温时间5~10min;烧结结束后,随炉冷却至室温得到赛隆基复合材料。
采用压痕法来计算材料的断裂韧性。摩擦磨损实验采用HT-1000高温摩擦磨损试验机进行评价,对偶球为Si3N4陶瓷,载荷为5N,滑动线速度为0.10m/s,摩擦半径为4mm,行程为200m,测试温度为25ºC、200ºC、400ºC、600ºC、和800ºC。摩擦系数和磨损率为3次试验平均值,而断裂韧性至少测试9个点的平均值。
本发明制备的宽温域减摩抗磨兼具高韧的赛隆基复合材料具有以下优点:
1、赛隆基复合材料由结合良好的氮化钛和赛隆相组成。这种材料的制备是基于第二相颗粒可以增加裂纹在扩展过程中的能量耗散来提高材料的断裂韧性。该材料经压痕法测试材料的断裂韧性发现,其在室温至800ºC均具有良好的断裂韧性。
2、通过掺杂氮化钛,可赋予塞隆基复合材料在室温至800ºC具有优异摩擦学性能,其摩擦系数在0.3-0.68之间,磨损率低至10-5-10-6mm3/ Nm。实现了陶瓷复合材料的结构/抗磨减摩功能一体化设计。
本发明所制备的赛隆基复合材料兼具优异的力学性能(高韧性)和摩擦学性能(低摩擦磨损),在室温至800ºC的温度范围内呈现出优异的摩擦学特性,特别适用于在宽温域服役工况下(25~800ºC)仍要求保持低摩擦和高韧性的特殊工件。
附图说明
图1本发明所述赛隆基复合材料在25~800ºC下的断裂韧性。
图2本发明所述赛隆基复合材料与氮化硅球配副在400ºC下的摩擦系数曲线。
具体实施方式
下面将本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅为本发明的一部分实施例,而不是全部实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下获得的所有其他实施例,都属于本发明保护的范围。
实施例1:
按照质量百分比,分别称取90wt%的赛隆和10wt%的氮化钛粉末,其中赛隆粉末的组成为Si4Al2O2N6;然后将粉末置于球磨机中混合,得到粒径为0.55~5μm的混合粉末。随后将混合粉末装入石墨模具中,置于等离子体烧结炉中烧结。烧结参数为:真空度低于5×10-1Pa,升温速率150ºC/min,烧结温度1600ºC,压力35MPa,保温时间10min。烧结结束后,随炉冷却至室温得到赛隆基复合材料。然后采用压痕法来计算材料的断裂韧性。测试条件为:载荷10kg、加载持续时间10s、测试温度为25ºC、200ºC、400ºC、600ºC和800ºC。其赛隆基复合材料在25~800ºC下的断裂韧性如图1所示。
实施例2:
按照质量百分比,分别称取80wt%的赛隆和20wt%的氮化钛粉末,其中赛隆粉末的组成为Si4Al2O2N6;然后将粉末置于球磨机中混合,得到粒径为0.55~5μm的混合粉末。随后将混合粉末装入石墨模具中混合,置于放电等离子烧结炉中烧结。烧结参数为:真空度低于5×10-1Pa,升温速率150ºC/min,烧结温度1600ºC,压力35 MPa,保温时间10 min。烧结结束后,随炉冷却至室温得到赛隆基复合材料。摩擦磨损实验采用HT-1000高温摩擦磨损试验机进行评价,对偶球为Si3N4陶瓷,载荷为5N,滑动线速度为0.10m/s,摩擦半径为4mm,行程为200m,测试温度为25ºC,200ºC,400ºC,600ºC和800ºC。图2为赛隆基复合材料与氮化硅球配副在400ºC下的摩擦系数曲线。
实施例3:
按照质量百分比,分别称取70wt%的赛隆和30wt%的氮化钛粉末,其中赛隆粉末的组成为Si4Al2O2N6;然后将粉末置于球磨机中混合,得到粒径为0.55~5μm的混合粉末。随后将混合粉末装入石墨模具中,置于放电等离子烧结炉中烧结。烧结参数为:真空度低于5×10- 1Pa,升温速率150ºC/min,烧结温度1600ºC,压力35MPa,保温时间10min。烧结结束后,随炉冷却至室温得到赛隆基复合材料。摩擦磨损实验采用HT-1000高温摩擦磨损试验机进行评价,对偶球为Si3N4陶瓷,载荷为5N,滑动线速度为0.10m/s,摩擦半径为4mm,行程为200m,测试温度为25ºC、200ºC、400ºC、600ºC和800ºC。
赛隆基复合材料在25ºC、200ºC、400ºC、600ºC和800ºC温度范围内的摩擦系数和磨损率见表1。
表1:实施例3的赛隆基复合材料与Si3N4陶瓷球配副的摩擦系数和磨损率
。
Claims (3)
1.一种宽温域减摩抗磨兼具高韧的赛隆基复合材料,其特征在于该复合材料由70~90wt%的赛隆和10~30wt%的氮化钛组成。
2.如权利要求1所述的赛隆基复合材料,其特征在于所述赛隆的组成为Si4Al2O2N6。
3.如权利要求1或2所述宽温域减摩抗磨兼具高韧的赛隆基复合材料的制备方法,其特征在于将赛隆和氮化钛粉末置于球磨机中混合,得到粒径为0.55~5μm的混合粉末;随后将混合粉末装入石墨模具中,置于放电等离子烧结炉中烧结;烧结参数为:真空度为10-2~10-1Pa,升温速度为100~150ºC/min,烧结温度为1550~1650ºC,压力为30~40MPa,保温时间5~10min;烧结结束后,随炉冷却至室温得到赛隆基复合材料。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810310158.7A CN108610057A (zh) | 2018-04-09 | 2018-04-09 | 一种宽温域减摩抗磨兼具高韧的赛隆基复合材料及其制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810310158.7A CN108610057A (zh) | 2018-04-09 | 2018-04-09 | 一种宽温域减摩抗磨兼具高韧的赛隆基复合材料及其制备方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN108610057A true CN108610057A (zh) | 2018-10-02 |
Family
ID=63659888
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810310158.7A Pending CN108610057A (zh) | 2018-04-09 | 2018-04-09 | 一种宽温域减摩抗磨兼具高韧的赛隆基复合材料及其制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108610057A (zh) |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05217117A (ja) * | 1992-01-31 | 1993-08-27 | Asahi Glass Co Ltd | 薄膜磁気ヘッド |
CN101087670A (zh) * | 2004-12-22 | 2007-12-12 | 日本特殊陶业株式会社 | 赛纶陶瓷刀片以及装备这种刀片的切削工具 |
CN101209924A (zh) * | 2006-12-27 | 2008-07-02 | 山特维克知识产权股份有限公司 | 用于对韧性有要求的操作的陶瓷材料及由其制成的切削刀具 |
JP2011098842A (ja) * | 2009-11-04 | 2011-05-19 | Sumitomo Electric Ind Ltd | 焼結体とその製造方法、ならびに回転工具 |
US20120126039A1 (en) * | 2010-11-18 | 2012-05-24 | Kennametal, Inc. | Charge-Dispersing Alpha Prime-Beta Prime SiAlON |
JP2013053022A (ja) * | 2011-09-01 | 2013-03-21 | Sumitomo Electric Ind Ltd | 複合焼結体およびそれを用いた複合焼結体工具 |
CN103269817A (zh) * | 2010-12-22 | 2013-08-28 | 山特维克知识产权股份有限公司 | 由基于硅铝氧氮聚合料的材料制成的切削工具 |
WO2014003150A1 (ja) * | 2012-06-27 | 2014-01-03 | 京セラ株式会社 | サイアロン焼結体およびこれを用いた耐磨耗性部品 |
CN107584125A (zh) * | 2017-08-31 | 2018-01-16 | 中国科学院兰州化学物理研究所 | 一种高韧自润滑赛隆基复合材料的制备方法 |
CN107686358A (zh) * | 2017-08-17 | 2018-02-13 | 武汉钢铁有限公司 | 一种塞隆‑bn复相陶瓷材料及其制备方法、应用 |
-
2018
- 2018-04-09 CN CN201810310158.7A patent/CN108610057A/zh active Pending
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05217117A (ja) * | 1992-01-31 | 1993-08-27 | Asahi Glass Co Ltd | 薄膜磁気ヘッド |
CN101087670A (zh) * | 2004-12-22 | 2007-12-12 | 日本特殊陶业株式会社 | 赛纶陶瓷刀片以及装备这种刀片的切削工具 |
CN101209924A (zh) * | 2006-12-27 | 2008-07-02 | 山特维克知识产权股份有限公司 | 用于对韧性有要求的操作的陶瓷材料及由其制成的切削刀具 |
JP2011098842A (ja) * | 2009-11-04 | 2011-05-19 | Sumitomo Electric Ind Ltd | 焼結体とその製造方法、ならびに回転工具 |
US20120126039A1 (en) * | 2010-11-18 | 2012-05-24 | Kennametal, Inc. | Charge-Dispersing Alpha Prime-Beta Prime SiAlON |
CN103269817A (zh) * | 2010-12-22 | 2013-08-28 | 山特维克知识产权股份有限公司 | 由基于硅铝氧氮聚合料的材料制成的切削工具 |
JP2013053022A (ja) * | 2011-09-01 | 2013-03-21 | Sumitomo Electric Ind Ltd | 複合焼結体およびそれを用いた複合焼結体工具 |
WO2014003150A1 (ja) * | 2012-06-27 | 2014-01-03 | 京セラ株式会社 | サイアロン焼結体およびこれを用いた耐磨耗性部品 |
CN107686358A (zh) * | 2017-08-17 | 2018-02-13 | 武汉钢铁有限公司 | 一种塞隆‑bn复相陶瓷材料及其制备方法、应用 |
CN107584125A (zh) * | 2017-08-31 | 2018-01-16 | 中国科学院兰州化学物理研究所 | 一种高韧自润滑赛隆基复合材料的制备方法 |
Non-Patent Citations (3)
Title |
---|
KH. A. NEKOUEE ET AL: "Preparation and characterization of β-SiAlON/TiN nanocomposites sintered by spark plasma sintering and pressureless sintering", 《MATERIALS AND DESIGN》 * |
NURCAN CALIS ACIKBAS: "Tribological behavior of α1/β1-SiAlON-TiN composites", 《JOURNAL OF THE EUROPEAN CERAMIC SOCIETY》 * |
QICHUN SUN ET AL: "Dry sliding wear behavior of β-Sialon ceramics at wide range temperature from 25 to 800℃", 《JOURNAL OF THE EUROPEAN CERAMIC SOCIETY》 * |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107058808B (zh) | 一种铝合金基固体润滑复合材料及其制备方法 | |
CN105016738A (zh) | 氮化硅陶瓷及其制备方法 | |
CN105986147B (zh) | 一种宽温域镍基自润滑复合材料及其制备方法 | |
CN107857592A (zh) | 一种高致密度超高温Ta4HfC5陶瓷块材的制备方法 | |
CN107584125B (zh) | 一种高韧自润滑赛隆基复合材料的制备方法 | |
Fan et al. | Microstructure and properties of carbon fiber reinforced SiC matrix composites containing Ti3SiC2 | |
Peçanha Jr et al. | Characterization of TiB2-AlN composites for application as cutting tool | |
CN105112760A (zh) | 一种TiAl基高温自润滑合金材料及其应用 | |
Yan et al. | Effect of Nano-ZrO 2 on the Microstructure and High Temperature Tribological Properties of MoSi 2 Coating | |
Ma et al. | Effects of Al2O3–Y2O3/Yb2O3 additives on microstructures and mechanical properties of silicon nitride ceramics prepared by hot‐pressing sintering | |
Su et al. | Fibrous monolithic ceramic with a single alumina phase: Fracture and high‐temperature tribological behaviors | |
CN106011539B (zh) | 一种镍铝/氧化钒/银宽温域自润滑复合材料及其制备方法 | |
Sun et al. | On the fabrication and mechanical properties of Si3N4 ceramics with low content sintering additives | |
Tan et al. | Dense and core‐rim structured B4C‐TiB2 ceramics with Mo‐Co‐WC additive | |
Yuan et al. | Hardness and toughness improvement of SiC‐based ceramics with the addition of (Hf0. 2Mo0. 2Ta0. 2Nb0. 2Ti0. 2) B2 | |
CN108610057A (zh) | 一种宽温域减摩抗磨兼具高韧的赛隆基复合材料及其制备方法 | |
CN108774065A (zh) | 一种SiC/MCMBs复合材料及其制备方法和应用 | |
CN108503370A (zh) | 一种单相氮化硅陶瓷及其sps制备工艺 | |
CN105294099A (zh) | 一种ZrO2–MoS2–CaF2高温自润滑耐磨材料 | |
Wang et al. | Fabrication and tribological properties of HSS‐based self‐lubrication composites with an interpenetrating network | |
CN104805326A (zh) | 一种摩擦系数可调的Ti3Al1-xSnxC2固溶体材料及其制备方法 | |
CN108002844A (zh) | 一种宽温域自润滑赛隆基复合材料 | |
Song et al. | Enhanced thermal shock response of Al2O3–graphite composites through a layered architectural design | |
CN105177386B (zh) | 一种无油润滑轴承材料及其制备方法 | |
Li et al. | Enhanced thermal conductivity and flexural strength of sintered reaction‐bonded silicon nitride with addition of (Y0. 96Eu0. 04) 2O3 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20181002 |